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Determinant quantum Monte Carlo study of d-wave pairing in the plaquette Hubbard hamiltonian
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Determinant quantum Monte Carlo (DQMC) is used to determine the pairing and magnetic response for a
Hubbard model built up from four-site clusters—a two-dimensional square lattice consisting of elemental 2 × 2
plaquettes with hopping t and on-site repulsion U coupled by an interplaquette hopping t ′ � t . Superconductivity
in this geometry has previously been studied by a variety of analytic and numeric methods, with differing
conclusions concerning whether the pairing correlations and transition temperature are raised near half filling by
the inhomogeneous hopping or not. For U/t = 4, DQMC indicates an optimal t ′/t ≈ 0.4 at which the pairing
vertex is most attractive. The optimal t ′/t increases with U/t . We then contrast our results for this plaquette
model with a hamiltonian which instead involves a regular pattern of site energies whose large site energy limit
is the three-band CuO2 model; we show that there the inhomogeneity rapidly, and monotonically, suppresses
pairing.
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I. INTRODUCTION

One of the earliest numerical indications of the possibility
that an on-site electron-electron interaction U might play a
role in superconducting materials was the observation of a
negative “binding energy” in exact diagonalization studies of
the Hubbard hamiltonian on 2 × 2 clusters. In this geometry,
the ground state energy of two holes doped together into a
half-filled system was shown to be lower than if the two holes
were on separate clusters:

�p = E0(2) + E0(0) − 2 E0(1) < 0. (1)

Here E0(n) is the ground state energy of n holes. The
observation that the n = 2 and n = 0 ground states have s-
and d-wave symmetry, respectively, and hence are connected
by a d-wave pair creation operator, suggested the possible
relevance of models involving such 2 × 2 clusters with cuprate
superconductors [1]. Pair binding was also studied on larger
Hubbard clusters [2,3], and on other geometries, e.g., on
one-dimensional chains of varying length [4], with three
electronic bands [5–7], models with intersite interactions [8],
and the strong coupling t-J limit [2,9–11].

Following these small cluster studies, a considerable
amount of analytic and numeric attention has been focused on
the “plaquette Hubbard model” which consists of a periodic
array of 2 × 2 plaquettes with hopping t and repulsion U

connected by a weaker hybridization t ′. It was suggested that
the plaquettes act as centers of attraction, which then drive
superconductivity in the extended lattice. This picture provides
a “local” counterpart to theories of pairing which focus
qualitatively on the exchange of magnetic fluctuations. Perhaps
unsurprisingly, the presence of inhomogeneous hoppings
introduces phases to the Mott insulator, antiferromagnetic,
and d-wave superconductor typically discussed in the uniform
t = t ′ case. Specifically, the quantum numbers and symmetries
of the 2 × 2 plaquette can evolve into a wide variety of ground
states when t ′ is made nonzero [12]. An additional diagonal

hopping can also change the ground state of the 2 × 2 plaquette
building block [13] and induce types of crystalline insulators.
The effects of both chemical potential and hopping disorder on
pair binding have been examined [14], and were shown to be
less damaging to superconductivity when there is a plaquette
structure compared to the uniform case.

A key conceptual question concerns the existence of an
“optimal inhomogeneity” [15–17]. As pointed out by Tsai
and Kivelson [18], pairing which exists at very weak t ′ is
expected to exhibit a critical temperature Tc which increases
as t ′ grows. If it were the case that Tc is small or zero
in the homogeneous model t ′ = t , this necessarily implies
a maximal Tc at an intermediate value 0 < t ′/t < 1. Early
work relevant to this issue looked at pair binding energies
when two plaquettes were linked in different geometries [19].
For the cubic (fully connected) configuration, a maximum
binding was found for t ′/t ≈ 0.3 at U/t = 4 and for t ′/t ≈ 0.5
when U/t = 8. Exact diagonalization of 4 × 4 clusters [20]
indicated that the overall maximum occurs at t ′/t ≈ 0.5 and
U/t ≈ 8. Additional evidence for an optimal inhomogeneity
in the plaquette Hubbard model is provided by a contractor-
renormalization (CORE) study [21] where the pair binding
energy was found to be maximized in the range 0.5 < t ′/t <

0.7 and 5 < U/t < 8.
In related work, the density matrix renormalization group

method has been used to study a collection of 2 × 2 plaquettes
connected to form a two leg ladder [22]. It was found that, close
to half filling, U/t ≈ 6 and t ′/t ≈ 0.6 give the optimal pair
binding energy. Although there can be no finite temperature
transition in such one-dimensional ladder geometries, an inter-
chain mean field theory suggests that the critical temperature
again exhibits an “optimal degree of inhomogeneity” with a
maximum occurring at t ′ < t .

There have also been several methods which challenge the
idea of an optimal inhomogeneity at intermediate t ′/t . The
central result of a dynamical cluster approximation (DCA)
analysis [23] was that the critical temperature Tc for d-wave
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pairing is maximal for t ′/t = 1 for interaction strengths U of
the order of the bandwidth and lattice fillings ρ ≈ 0.9. That is,
inhomogeneity monotonically suppresses superconductivity.
The qualitative physical picture behind this conclusion was
that inhomogeneities reduce the magnetic contributions to the
pairing interaction [24–26].

Cellular dynamical mean field theory (CDMFT) is another
approach with which the plaquette Hubbard hamiltonian has
been analyzed [27]. At weak coupling, inhomogeneity reduces
the order parameter for small to intermediate doping but en-
hances it at larger doping. For strong coupling, inhomogeneity
suppresses pairing for all doping. Overall, the CDMFT results
seem generally consistent with those of the DCA, namely
that for inhomogeneity in the nearest-neighbor hopping such
as is present in the plaquette Hubbard model, the supercon-
ducting order parameter does not exceed that of the uniform
system.

The contrasting results between the DMRG interchain
MFT, CORE, and exact diagonalization treatments, and other
cases in which optimal inhomogeneity occurs, on one hand,
and the DCA, CDMFT methods on the other, provide the
motivation for the work described in this paper—a study of
the plaquette Hubbard hamiltonian [28] using the determinant
quantum Monte Carlo method [29,30]. After presenting our
results, we will discuss some of the possible origins of the
range of conclusions concerning the underlying physics of
this model.

The remainder of this paper is organized as follows: In
Sec. II we write down the plaquette Hubbard hamiltonian and
discuss the measurements we use to monitor d-wave pairing.
We also provide a brief summary of the DQMC algorithm
and its limitations. In Sec. III we discuss our results at half
filling and in the doped case. Our central conclusion is that an
optimal degree of inhomogeneity does occur in the plaquette
Hubbard model, although the largest pairing signal appears to
occur at t ′/t ≈ 0.4 for U/t = 4, a bit less than that reported
in other work. This optimal t ′/t increases with U/t at half
filling. The sign problem restricts us to higher temperatures
than those accessible in the DCA [23] and CDMFT [27]
approaches. Section IV discusses the effect on pairing of
another form of inhomogeneity in which the site energies are
varied periodically across the lattice, and Sec. V concerns the
sign problem. The paper concludes with a summary of our
findings.

II. THE PLAQUETTE HUBBARD HAMILTONIAN

The plaquette Hubbard hamiltonian is

Ĥ = − t
∑

〈ij〉∈P,σ

(c†iσ cjσ + c
†
jσ ciσ )

−t ′
∑

〈ij〉�∈P,σ

(c†iσ cjσ + c
†
jσ ciσ ) + U

∑
i

(
ni↑ − 1

2

)

×
(

ni↓ − 1

2

)
− μ

∑
i

(ni↑ + ni↓). (2)

Here c
†
iσ (ciσ ) are the usual creation (destruction) operators

for fermions of spin σ on lattice site i. The designations

FIG. 1. (Color online) Lattice geometry for the plaquette Hub-
bard model, a 2D square lattice built from plaquettes of strong hopping
t connected by weaker hopping t ′.

〈ij 〉 ∈ P and 〈ij 〉 �∈ P in the kinetic energy terms convey the
fact that hopping t between near neighbor sites i,j on the
same plaquette is different from the hopping t ′ for sites i,j on
different plaquettes. This geometry is illustrated in Fig. 1. We
have written the interaction term in particle-hole symmetric
form, so that μ = 0 corresponds to half filling. (Note that
the Hubbard hamiltonian with near-neighbor hopping on a
bipartite lattice is particle-hole symmetric for any pattern of
intersite hoppings tij , and hence, in particular, for the case
considered here.)

Although we have referred to t ′ as the “interplaquette
hopping,” so that t ′ = 0 is the limit of independent 2 × 2
clusters, we note that setting t = 0 also results in a collection
of decoupled 2 × 2 t ′ clusters. More generally, the hamiltonian
is invariant [23,27] under the interchange of t and t ′. As
a consequence, there is no need to explore the physics of
t ′/t > 1. The hamiltonian is also invariant when the values
of t and t ′ are interchanged only on the horizontal links, or
only on the vertical links. Our numerical approach preserves
all these symmetries.

In the determinant quantum Monte Carlo (DQMC) algo-
rithm [29,30], the expectation values of observables 〈Â〉 =
Tr Â exp(−βĤ ) / Tr exp(−βĤ ) for fermionic hamiltonians
like Eq. (2) are evaluated by discretizing the inverse tem-
perature β and rewriting the partition function as a path
integral. Replacing the exponential of the interaction terms in
the hamiltonian by a coupling of quadratic fermion operators
to a Hubbard-Stratonovich field allows the fermions to be
integrated out analytically, leaving a product of fermion
determinants (one determinant for each spin species) as
the weight to sample the Hubbard-Stratonovich field. Each
operator Â can then be measured by accumulating appropriate
combinations of Green’s functions, the inverse of the matrices
whose determinants form the Boltzmann weight. As described
further below, the flexibility to alter the order in which the
Monte Carlo average is performed and in which the Green’s
functions are multiplied can be used to control which many-
body effects are included in the expectation value, and hence
to isolate the pairing vertex.

The discretization of β introduces a “Trotter error”. We have
used �τ = 1/8 in the work reported here [30,31]. In practice,
unless one examines a local quantity like the energy or double
occupancy which can be obtained to very high accuracy, the
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FIG. 2. (Color online) The average sign 〈S 〉 is shown for the
plaquette Hubbard model at U/t = 4 and an 8 × 8 lattice for
two different densities. (Because of particle-hole symmetry 〈S 〉 =
1 at ρ = 1.) The sign problem becomes somewhat worse with
inhomogeneity t ′ �= t . Roughly speaking, it becomes difficult to
generate accurate data in DQMC when 〈S 〉 � 0.3.

systematic Trotter errors with this choice of �τ are less than
the statistical errors in the measurements we present.

The central limitation to the DQMC algorithm is the sign
problem [38] which arises when the product of determinants
becomes negative. This will restrict the temperatures accessi-
ble in the study reported here, and, as a consequence, temper
our ability to make conclusive statements about the effect
of inhomogeneity in the case when the system is doped.
At half filling, because spatial variations in the hopping do
not destroy particle-hole symmetry, there is no sign problem
and DQMC can better access the ground state for any t ′/t .
Off half-filling data for the average sign 〈S 〉 are given in
Fig. 2. 〈S 〉 is relatively weakly dependent on t ′/t . The lowest
accessible temperature is around T/t ∼ 1/5 for the entire
range 0 < t ′/t < 1, although simulations become somewhat
more difficult as t ′/t decreases. It is possible to get accurate
data for certain quantities, like the density, for quite small
values of 〈S 〉. However for more complex quantities like
magnetic and pair correlations at large distances, if reasonable
accuracy (statistical error bars less than 10%) is desired, then
〈S 〉 � 0.3 is needed. 〈S 〉 is roughly the same for the two
densities ρ = 0.875 and ρ = 0.774 shown. For ρ = 0.500,
however, 〈S 〉 is better behaved (not shown) and reliable
averages can be obtained for temperatures as low as T/t =
1/16, for several values of t ′/t .

The spectrum of the U = 0 hopping hamiltonian for an
isolated 2 × 2 plaquette consists of four energy levels, E =
−2t,0,0,2t . As t ′ is turned on, these discrete levels broaden
until they finally merge into the 2D square lattice density of
states N (E) at t ′ = t . This evolution is shown in Fig. 3. At half
filling, where EFermi = 0, and for small dopings, N (EFermi) is
enhanced by inhomogeneity. In principle this might lead to a
greater tendency to ordered phases, including superconducting
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FIG. 3. (Color online) The noninteracting density of states of the
uniform (t ′ = t) 2D Hubbard model extends from −4t to +4t and
has a van Hove singularity at E = 0. In the other limit t ′/t = 0
there are four discrete (delta function) levels at E = −2t,0,0, + 2t .
The density of states is shown here for interpolating ratios of
t ′/t , exhibiting the evolution between these cases. Regardless of
the relative values, Eq. (2) is particle hole symmetric, implying
N (E) = N (−E).

ones, although the possibly competing effect of inhomogeneity
on the interaction vertex must also be considered [23].

For large inhomogeneity (t ′/t < 0.5) the discrete 2 × 2
eigenlevels are not sufficiently broadened by t ′ to coalesce
into a single band, and the noninteracting system is a band
insulator at ρ = 0.5 and ρ = 1.5. Figure 4 shows QMC data for
ρ(μ) at interaction strengths U/t = 2 and U/t = 4 and weakly
coupled plaquettes t ′/t = 0.2. There is a band gap evident at
ρ = 0.5 (and also, due to particle-hole symmetry at ρ = 1.5,
not shown). Nonzero U/t is also seen to cause an insulating gap
to develop at half filling, ρ = 1. This is a dramatic change from
the noninteracting limit, since it represents the suppression of
the large peak in N (E) at E = 0 in Fig. 3. The development
of this gap, even though U/t is much less than the bandwidth,
is associated with the onset of long-range antiferromagnetic
order, as we shall see in the next section. Notice that reasonable
data can be obtained for the density even at U/t = 4,βt = 16.
This, however, is not true for more complicated spin and pair
correlations.

The equal time spin correlation function and magnetic
structure factor are given by

cspin(�r ) = 〈m�r0+�r m
†
�r0

〉 m†
r = c

†
�r↑c�r↓ (3)

S+−(qx,qy) = 1

N

∑
i,j

cspin(�r ) ei �q·�r

with an analogous expression for Szz(qx,qy). In the homoge-
neous system it is known that at T/t = 0 and at half filling the
2D Hubbard hamiltonian possesses long-range magnetic order
[30,31,39,40]. That is, the spin-spin correlations cspin(�r ) in real
space approach a nonzero value asymptotically as | �r | → ∞.
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FIG. 4. (Color online) Density as a function of chemical potential
for an 8 × 8 lattice at t ′/t = 0.2. The band gaps evident in the U/t =
0 density of states at ρ = 0.5 and ρ = 1.5 (Fig. 3) persist at weak to
intermediate coupling U/t = 2–4 shown here. (Since ρ is particle-
hole symmetric we focus on ρ � 1.) However the interactions also
drive the formation of an insulating gap at ρ = 1.

On finite sized lattices, this is established by an appropriate
scaling of the structure factor with lattice size [41].

As with magnetic order, a tendency to d-wave pairing
can be examined via the asymptotic behavior of equal time
correlations,

cd pair(�r ) = 〈�
d �r0+�r �

†
d �r0

〉
(4)

�
†
d �r = c

†
�r↑(c†�r+x̂↓ − c

†
�r+ŷ↓ + c

†
�r−x̂↓ − c

†
�r−ŷ↓).

However, a more sensitive measurement, and one which makes
better contact with previous DCA work [23], is the d-wave
pairing susceptibility,

cd pair(�r,τ ) = 〈�
d �r0+�r (τ )�†

d �r0
(0)〉

�
†
d �r (τ ) = eτH �

†
d �r (0)e−τH (5)

Pd =
∑

�r

∫ β

0
cd pair(�r,τ ) dτ.

Pd is a preferred diagnostic of superconductivity, especially
if the sign problem precludes going to low temperatures,
because it allows for a comparison between the fully dressed
susceptibility and the uncorrelated susceptibility P d , and
hence an indication of pairing even when only short range
order is present [42]. The technical distinction between Pd and
P d in a DQMC simulation is that when the expectation value
of the four fermion terms in Eq. (5) is evaluated, the Green’s
functions obtained by the Wick contractions are first multiplied
together and then averaged to obtain Pd , whereas for P d , the
Green’s functions are first averaged and then multiplied. In
P d the effect of the interactions is only to dress the individual
single particle propagators, while Pd includes all interaction
effects [42].

This distinction allows us to extract the interaction vertex
�d from Pd and P d :

�d = 1

Pd

− 1

P d

. (6)

If �dP d < 0, the associated pairing interaction is attractive.
More precisely, Eq. (6) can be rewritten as

Pd = P d

1 + �dP d

, (7)

so that �dP d → −1 signals a superconducting instability.

III. RESULTS

A. Half filling

Our central interest is in the doped lattice, where antifer-
romagnetism might potentially give way to d-wave pairing.
However, we begin by briefly showing results at ρ = 1, which,
as we shall see, are not qualitatively so dissimilar to ρ < 1.

Due to the spatial inhomogeneity, spin and pair correlations
are not the same on all pairs of near-neighbor (NN) links. In
Fig. 5(a) we show the NN spin correlations cspin(1,0) along an
intraplaquette (t) bond and along an interplaquette (t ′) bond.
We also show the next-nearest-neighbor (NNN) correlation
cspin(1,1) across the internal diagonal of a plaquette. The NN
values are negative, indicating (short-range) antiferromagnetic
order. As expected, the interplaquette value vanishes at
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FIG. 5. (Color online) Spin (a) and charge (b) correlations along
an intraplaquette bond (black squares), interplaquette bond (red
circles), and along the diagonal of the plaquette (blue triangles). Here
ρ = 1, U/t = 4, and βt = 5. The lattice is 8 × 8.
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FIG. 6. (Color online) (a) Product of d-wave superconducting
vertex � and no-vertex pairing susceptibility P d as a function of
interplaquette hopping t ′. Parameters are half filling (μ/t = 0) and
U/t = 4. If �P d → −1, a superconducting instability ensues. Pair-
ing tendency is optimized at intermediate t ′/t ≈ 0.40, and increases
as temperature is lowered. Finite size effects (8 × 8 and 16 × 16
lattices are compared) are minimal. (b) Antiferromagnetic structure
factor Saf . Long-range correlations (antiferromagnetic correlation
length exceeds finite size of lattice) do not develop at βt = 16 until
t ′/t � 0.6.

t ′/t = 0 and the two NN correlations become degenerate when
t ′/t = 1. The NNN correlations are positive, in agreement with
antiferromagnetic behavior.

Figure 5(b) shows the analogous short-range d-wave pair
correlations cd pair(1,0) and cd pair(1,1). The value of cd pair(1,0)
along an interplaquette (t ′) bond does not vanish at t ′/t = 0
owing to the finite spatial size of the d-wave operator [Eq. (5)].
Short-ranged pairing correlations change very smoothly with
t ′/t . We will therefore turn to the more sensitive magnetic and
pairing structure factors and susceptibilities.

The left panel of Fig. 6 shows the product �P d of the pairing
vertex and the uncorrelated susceptibility. �P d becomes
closest to −1, where a superconducting instability would
occur, at an intermediate value t ′/t ∼ 0.4. The tendency to
pairing becomes greater as βt is increased (lower temperature).
Finite size effects are small, with data for 8 × 8 and 16 × 16
lattices largely coinciding.

Figure 6(b) shows the antiferromagnetic structure factor
SAF ≡ S(π,π ). We emphasize that ρ = 1 is privileged from
the point of the view of the DQMC algorithm, since there
is no sign problem and hence very low temperatures can
be simulated. The large values of SAF evident in Fig. 6(b)
arise from the development of longer ranged correlations
at the low temperatures accessible at ρ = 1, so that the
spatial sum in Eq. (3) receives contributions from all lattice
separations. In principle, SAF ∝ L2, the lattice volume, but
there are significant finite size corrections and a careful scaling
analysis [30,40,41] is required to establish long-range order.
Nevertheless, the growth in SAF from L = 8 to L = 16 in
Fig. 6(b) is certainly suggestive. The sharp onset at t ′/t ∼ 0.6
is similar to results reported in Ref. [21], as we shall discuss
further below. SAF appears to have a maximum at intermediate
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FIG. 7. (Color online) (a) Normalized difference of the spin
correlation for the t ′/t = 0.8 and the t ′/t = 1.0 at a given position
�r along the equivalent NN lines [(1,0) or (0,1)]. The (green) circles
are the correlations outward from a plaquette while in the (blue)
triangles are the same but the correlations start in a direction inside
the plaquettes, as depicted in the inset. (b) The same as in (a) but for
the (1,1) direction, i.e., along the NNN links.

t ′/t on the 8 × 8 lattice, an effect which is even more
pronounced in the largest size, 16 × 16.

To understand this result better we show, in Fig. 7, the
normalized difference of the spin correlations:

δcspin(�r ) = ct ′=0.8
spin (�r ) − ct ′=1.0

spin (�r )

ct ′=0.8
spin (�r ) + ct ′=1.0

spin (�r )
. (8)

Panel (a) has �r along the (1,0) direction, and panel (b) along the
(1,1) direction. With the exception of the correlation for spins
which are first neighbors in different plaquettes, all values of
�r show an increase, δcspin > 0. What this tells us is that the
enhancement in SAF comes from an increase in the real-space
spin correlations for all separations, and is not simply from
an enhancement at short (or long) distances. The fact that
δcspin(�r = 0) is small further informs us that the effect is not
just due to a trivial change in the local moment.

We conclude this section by showing half-filled results for
different interaction strength U/t . In Fig. 8 (left panel), the
evolution with t ′/t of the product of the d-wave supercon-
ducting vertex and the no-vertex susceptibility, �dP̄d , is given
for U/t = 8 and several temperatures. As the temperature
is lowered, a clear minimum in �P̄d indicates an optimal
inhomogeneity, at a larger t ′/t than for U/t = 4.

In Fig. 8 (right panel), the antiferromagnetic structure factor
is given. As the temperature decreases, the antiferromagnetic
structure factor becomes larger. Similar to the case of U/t = 4,
SAF has an onset at t ′/t ∼ 0.6.

Figure 9 shows �dP d and SAF for four different U/t values
at fixed inverse temperature βt = 16. In Fig. 9(a), an optimal
inhomogeneity is present for all U/t , shifting systematically
to larger t ′/t as U/t increases. We note this trend is generally
consistent with what is shown in Fig. 4 of Ref. [19], Fig. 2
of Ref. [20], and Figs. 2 and 5 of Ref. [21]. The maximum
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FIG. 8. (Color online) Similar to Fig. 6 except U/t = 8. The left
panel shows the measure �P̄d of the pairing instability as a function
of inhomogeneity t ′/t for different inverse temperatures, and the right
panel is the antiferromagnetic structure factor. The lattice is half filled
ρ = 1.

in | �P̄d | is most evident at U/t = 4, for this fixed inverse
temperature βt = 16. Comparison of SAF data for 8 × 8 and
16 × 16 lattices shows that the structure factor is growing
roughly proportional to the volume, as expected in an ordered
Neél phase. The magnetic structure factor also increases with
U/t as double occupancy is suppressed.

B. The doped lattice

After this brief synopsis of results at ρ = 1, we turn to
the case when the filling is incommensurate, the situation
of most interest to understanding cuprate superconductivity.
Figure 10 shows the same spin correlations as in Fig. 5(a), but
for ρ = 0.500 (a), ρ = 0.774 (b), and ρ = 0.875 (c). The NN
spin correlations exhibit the expected evolution with density—
they are largest at ρ = 1.000 [Fig. 5(a)], and decrease as we
move away from half filling. Similar to what happens at half
filling, the NNN spin correlation inside a plaquette is positive

0.0 0.2 0.4 0.6 0.8 1.0
-0.70

-0.65

-0.60

-0.55

-0.50

-0.45

-0.40

-0.35

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

35

40(a)

t' / tt' / t

Γ dP d

8×8
ρ = 1.0
βt = 16

U/t=2
U/t=4
U/t=6
U/t=8
U/t=4 16×16
U/t=8 16×16

(b)

S
A

F

FIG. 9. (Color online) The tendency to (a) superconductivity
�P̄d and (b) antiferromagnetic structure factor SAF as functions of
inhomogeneity t ′/t at fixed low temperature βt = 16 and filling
ρ = 1 for different U/t .
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FIG. 10. (Color online) Spin correlations cspin(1,0) along an in-
traplaquette (t) bond and along an interplaquette (t ′) bond. Also
shown are next-nearest-neighbor values inside a plaquette. The lattice
size is 8 × 8, inverse temperature βt = 5, and interaction strength
U/t = 4.

for ρ = 0.875, again as expected for antiferromagnetism,
but decreases with growing t ′. With decreasing density the
behavior for this quantity changes: for ρ = 0.774, cspin(1,1)
is essentially zero for all t ′/t . For ρ = 0.500, however, it
is negative and increases in magnitude as the connection
between the plaquettes is reduced. This later result can be
understood when we recall that at this density the system has
two fermions in every plaquette on average. The configuration
which minimizes the kinetic energy and the local repulsive
interaction is a singlet state with spins residing on NNN
neighbors. In this case the NNN correlation becomes negative.
This effect is enhanced as t ′/t is smaller.

Figure 11 shows short-range d-wave pair correlations for
the same densities as Fig. 10. Contrary to what is observed
for spin correlations, NN and NNN pairing correlations do not
decrease with doping.

Having described the short-range, real space correlations,
we now turn to more sensitive magnetic and pairing struc-
ture factors and susceptibilities. The latter especially has
an enhanced signal since it is sensitive to the build-up of
correlations in the imaginary time direction. The magnetic
structure factor dependence on t ′/t and qx,qy for three
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FIG. 11. (Color online) Nearest-neighbor and next-nearest-
neighbor d-wave pairing correlations as a function of t ′/t . The lattice
size is 8 × 8, inverse temperature βt = 5, and interaction strength
U/t = 4.

different dopings on an 8 × 8 lattice at inverse temperature
βt = 5 is shown in Fig. 12. Near half filling (ρ = 0.875,0.774)
S(qx,qy) is peaked at (π,π ), indicating the dominance of
antiferromagnetic correlations. At ρ = 0.875 the AF peak
substantially increases as t ′ → t , with a concomitant reduction
in S at other momenta. Presumably these effects would become
larger at lower T . However, βt ≈ 5 is the limit accessible
to DQMC owing to the sign problem. For lower densities,
S(qx,qy) is rather insensitive to t ′.

There is a substantial difference in scale of the antifer-
romagnetic structure factor: SAF = S(π,π ) ∼ 1 in the doped
lattice, whereas at half filling, SAF ∼ 10 (Fig. 6). This arises
both from the rapid suppression of antiferromagnetic order
with doping in the square lattice Hubbard model [30,31], and
also because of the lower temperatures that can be reached at
ρ = 1 (βt ∼ 10 − 16) compared to ρ �= 1 (βt ∼ 5). Despite
the absence of long-range order in the doped model, the
short-range spin correlations do grow as T is lowered.

At ρ = 0.875 the overall evolution with t ′/t of the antifer-
romagnetic structure factor S(π,π ) in Fig. 12 is consistent
with that found in Ref. [21]. That is, S(π,π ) increases
monotonically with t ′/t and is maximal at t ′/t = 1. However,
the two results appear to differ in the finer details. Specifically,
the CORE study indicates that the staggered magnetic order
parameter is roughly constant for 0 < t ′/t < 0.5, and then
increases rather abruptly at t ′/t ≈ 0.6. This is mirrored in an

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

S(
q x,q

y)

(π,π)

(π,0)(0,0)

t'/t =0.8
t'/t =0.9
t'/t =1.0

t'/t =0.4
t'/t =0.5
t'/t =0.6
t'/t =0.7

t'/t =0.0
t'/t =0.1
t'/t =0.2
t'/t =0.3

S(
q x,q

y)

8 x 8
U = 4t
βt = 5

(c) ρ = 0.875

(b) ρ = 0.774

(a) ρ = 0.500

S(
q x,q

y)

(0,0)(0,0) (π,0)
(q

x
,q

y
)

(π,π)

FIG. 12. (Color online) The equal time structure factor S(qx,qy)
is shown as a function of momentum as one traverses the Brillouin
zone triangle shown in the panel (a) inset. Panels (a), (b), and (c)
correspond to the dopings ρ = 0.5,0.774, and 0.875, respectively.
For each density, S is given for eleven different t ′/t . The lattice size
is 8 × 8, U/t = 4, and inverse temperature βt = 5.

increase in the number of magnons, a phenomenon to which
the appearance of a maximum in the pair binding energy is
attributed. In contrast, our DQMC data appear to indicate
a more immediate rise in S(π,π ) as t ′ grows from zero. A
possible origin of the difference is that our work is at finite
temperature, whereas the CORE study is in the ground state.
Indeed, at half filling it is known that S(π,π ) does not reach
its low T values until T/t � 0.08, temperatures which are
not accessible when the system is doped, due to the sign
problem. That finite temperature is a likely explanation of the
difference and is substantiated by examining the ρ = 1 data in
Fig. 6. Interestingly, the rapid rise in SAF occurs at the same
t ′/t ∼ 0.6 obtained from CORE. Note that in Ref. [21] the
number of holes is Nh = 2,4 on a 6 × 6 cluster, corresponding
to ρ = 0.945,0.890. The latter value is comparable to that of
Fig. 12(c).

Figure 13 extends the pairing results of Fig. 6(a) to the
doped case. Although the sign problem currently prevents
simulations at low T , all densities shown exhibit a maximum in
|�dP d | away from the uniform limit t ′/t = 1. For ρ = 0.774
and ρ = 0.875, the sign is fairly small for βt = 5 and small
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FIG. 13. (Color online) Dependence of the pairing vertex on t ′/t

away from half filling. All densities appear to show a maximum of
|�dP d | at intermediate t ′/t . The lattice size is 8 × 8, U/t = 4, and
βt = 5. Also included for comparison is βt = 7 data in the ρ = 0.500
case.

t ′/t (see Fig. 2). We have thus done a very large number of
runs (up to 100 runs with 50 000 sweeps each), to decrease the
error bars and push the limits of the QMC method. For ρ = 0.5,
where the sign is higher, we were able to reach βt = 7 (open
symbols). Similar to what is seen in Fig. 6(a), for ρ = 1, the
signal for optimal inhomogeneity indeed increases as T is
lowered. It is reasonable to assume that the same trend will
hold for ρ = 0.774 and ρ = 0.875.

Almost all of the work presented in this paper is for U/t =
4. The sign problem in DQMC becomes dramatically worse
as U/t increases. In order to study the U/t evolution and still
reach reasonably low temperatures, we can reduce the density
to ρ = 0.5 which restores the sign even though U/t � 4. Even
so, it is not possible for us to assess accurately claims [20–22]
that U/t ∼ 8 is optimal for pairing.

The choice ρ = 0.5 does however improve the average
sign enough to see the t ′/t evolution of d-wave pairing,
which we established to have an optimal inhomogeneity
at half filling. Figure 14(a) shows �dP d versus T/t for
different t ′/t . As at ρ = 1, there is evidence for an optimal
inhomogeneity: In the uniform case �dP d versus T/t is almost
temperature independent and is also small, |�dP d | � 0.01. As
inhomogeneity is turned on to t ′/t ∼ 0.5, |�dP d | increases
by almost an order of magnitude (although it is still far from
the �dP d = −1 criterion for a transition). Further increase of
the inhomogeneity to t ′/t < 0.5 decreases |�dP d |. The same
optimum t ′/t ∼ 0.5 can be seen for ρ = 0.774, as shown in
Fig. 14(b).

Early in DQMC studies of the homogeneous square lattice
it was established that d-wave pairing is the dominant
superconducting instability. This conclusion is not altered by
t ′ �= t . Figure 15 shows the same quantities as Fig. 13 for s

and extended s (s∗) symmetry channels. The correlations are
obtained in a similar fashion as in the d-wave case, but the
associated phases in Eq. (5) are positive. For the s symmetry
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FIG. 14. (Color online) The evolution of �dP d with T/t for ρ =
0.500 (a) and ρ = 0.774 (b). The plots emphasize the existence of an
optimal degree of inhomogeneity. Here the lattice size is 8 × 8 and
U/t = 4.

the pairs are created and destroyed locally (�†
s �r = c

†
�r↑c

†
�r↓),

whereas in the extended one they all enter with the same phase
sign [�†

s∗ �r = c
†
�r↑(c†�r+x̂↓ + c

†
�r+ŷ↓ + c

†
�r−x̂↓ + c

†
�r−ŷ↓)]. While s-

wave symmetry produces only repulsive interactions, some
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FIG. 15. (Color online) Same as Fig. 13 but now comparing the
interaction vertex times the uncorrelated susceptibility for two other
symmetry channels: s in (a) and s∗ in (b). While in the former all
densities result in a repulsion between the pairs for the whole range
of t ′/t studied, in the latter depending on the specific parameters the
pairing turns attractive but is substantially smaller in magnitude in
comparison to the d-wave symmetry channel.
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FIG. 16. (Color online) Checkerboard geometry, in which a frac-
tion f of the sites, displayed in a checkerboard pattern, has onsite
energy raised by V0 �= 0. Panel (a) shows the f = 1/4 lattice and and
(b) the f = 1/2 one, for 8 × 8 systems.

parameters in the s∗-wave case exhibit attraction. Nonetheless
it is smaller in magnitude than d-wave symmetry.

IV. CHECKERBOARD HUBBARD MODEL

The nature of pairing in models with other sorts of
inhomogeneities, e.g., built of two site dimers rather than four
site clusters [18], modulated by different site potentials [43] or
consisting of lines of different chemical potentials, alternating
between half-filled antiferromagnetic stripes and doped stripes
has also been explored [44]. In this section we examine the
effects on pairing of an inhomogeneity pattern in which the
local energies on a regular pattern of sites is raised by an
amount V0. That is, we add a term H ′ = V0

∑
l∈A,σ nlσ to the

Hubbard hamiltonian Eq. (2) with t ′ = t . The collection A
consists of a fraction f of the lattice sites. This geometry is
illustrated in Fig. 16, for f = 1/4 (a) and f = 1/2 (b), the
two cases analyzed here.

One motivation for considering this particular pattern with
f = 1/4 is that in the limit V0 → ∞ the lattice maps onto
the “three band” hamiltonian sometimes used to model the
CuO2 plane of the cuprate superconductors (with, however,
the choice of equal copper d and oxygen p energies.) The
red sites without any blue neighbors are like the Cu atoms,
while the red sites with two blue neighbors represent the O
sites which link the Cu. Thus this model makes partial contact
with earlier studies of binding on CuO2 clusters in the limit
εpd = 0 [5–7]. Another point of contact of this model is to other
inhomogeneity patterns which share an f = 1/4 proportion of
sites with raised onsite energy, for example Ref. [44] in which
a pattern of stripes was shown to enhance d-wave pairing away
from half filling.

Results for this site-energy inhomogeneous geometry (f =
1/4) are shown in Fig. 17(a). In stark contrast to the plaquette
model and to the striped V0 model [44], �dP d becomes
positive when V0 is turned on: The d-wave pairing vertex
is made repulsive. As with the plaquette hamiltonian of the
previous sections, we are interested in how the dependence
of pairing on inhomogeneity is affected by the density. To
this end we show, in Fig. 17(b), the same quantity but with
ρ = 0.875. This data is consistent with the previous density,
and we conclude that this form of site energy inhomogeneity
competes destructively with superconductivity.
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FIG. 17. (Color online) Product of interaction vertex �d and un-
correlated susceptibility P d for a Hubbard model with an alternating
pattern of site energies. [See Fig. 16(a).] The vertex is weakly
attractive for the homogeneous case V0 = 0 but becomes repulsive
for V0 � 1. Here the lattice size is 16 × 16, filling ρ = 0.774 in (a)
and ρ = 0.875 in (b), and interaction strength U/t = 4.

Finally, we consider a pattern of inhomogeneity with f =
1/2 [see Fig. 16(b)]. Figure 18 demonstrates the effect of V0

is monotonic and again inimical to superconductivity.
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FIG. 18. (Color online) Same as Fig. 17, but for f = 1/2 and an
8 × 8 lattice. The qualitative behavior is similar to the f = 1/4 case:
The site inhomogeneity drives the interaction vertex repulsive.
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V. THE SIGN PROBLEM

We return here briefly to the sign problem which is
the fundamental limitation to using DQMC to study lattice
fermion hamiltonians [38]. In generic situations (that is, in
the absence of particle-hole or some other symmetry which
makes the sign positive) the fermion sign 〈S〉 is well behaved
down to some temperature scale T/t ∼ α, where 1

3 � α � 1
5

depends, in the single band Hubbard model, on U and
ρ. Below this temperature, 〈S〉 decays exponentially with
β = 1/T so that simulations are feasible only in a very narrow
range of temperatures below the point at which some of the
fermion determinants begin to go negative. 〈S〉 also decays
exponentially with spatial volume V , but in practice the β

dependence is usually more problematic. The behavior of 〈S〉
with ρ and spatial geometry is also affected by “shell effects”
[45] so that the sign can remain close to unity for fillings
for which multiple k points have the same noninteracting
energy εk .

The plaquette Hubbard hamiltonian offers a window into
this V dependence, since it must be rigorously true at t ′/t = 0
that 〈S(V = L × L)〉 = 〈S(V = 2 × 2)〉(L/2)2

. It is interest-
ing, then, to understand how the coupling of independent
plaquettes with t ′/t �= 0 modifies this manifestly exponential
decay. We show results in Fig. 19. When t ′/t = 0 (top panel)
the average sign (symbols) precisely follows the prediction
(dashed lines) based on the sign of an elemental 2 × 2 cluster.
However, when the clusters are coupled, t ′/t = 0.6 (bottom
panel), the average sign is increased. While the improvement
in the behavior of 〈S〉 is not sufficient to allow ground state
properties to be obtained, it is nevertheless intriguing, and
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FIG. 19. (Color online) Top panel: Average sign 〈S〉 as a function
of filling ρ for t = 1,U/t = 4,βt = 6, and different system sizes.
Interplaquette hopping t ′/t = 0 so that the system is composed of
(L/2)2 independent 2 × 2 clusters. Dashed lines are the prediction
for the average sign obtained by taking the sign for a 2 × 2 lattice
(i.e., a single plaquette) raised to the (L/2)2 power. Bottom panel:
Same except interplaquette hopping t ′/t = 0.6. The fact that 〈S〉 ∼ 1
for ρ ∼ 0.5 is a “shell effect.” (See text.)

nontrivial, that the entanglement of the clusters by hopping
t ′ here reduces the sign problem: The coefficient γ of the
exponential decay 〈S〉 ∝ e−γV changes from γ ∼ 0.056, at
t ′/t = 0.0, to γ ∼ 0.014, at t ′/t = 0.6.

VI. CONCLUSIONS

Study of the effect of inhomogeneities on superconductivity
has been a focus of much computational effort on the Hubbard
and t-J models over the last decade. One branch of effort
has explored models where inhomogeneity is included in
the hamiltonian itself. Other work concerns the question of
inhomogeneity which arises spontaneously in a translationally
invariant hamiltonian. The plaquette Hubbard model has been
a natural candidate of interest since it seems to contain the
nascent element, a substantial binding energy, in its building
blocks.

We have shown here that DQMC indicates that a sensitive
measurement of d-wave pairing yields an “optimal degree of
inhomogeneity.” That is �P d is closer to −1 at t ′/t ∼ 0.4
when U/t = 4 than at t ′/t = 0 or t ′/t = 1. Larger U/t lead
to larger optimal t ′/t for the 2 � U/t � 8 range studied.
This result agrees qualitatively with some past numeric work
(differing in the precise optimal t ′/t), but is in disagreement
with several of the most powerful computational methods
available for these sorts of problems. When simulations are
conducted directly on doped lattices, our work clearly shows
the existence of an optimal inhomogeneity, which develops
further as T is lowered. While the sign problem prevents
us from going to very low temperatures, we can further
infer what happens for small doping through our results at
half filling, where there is little limitation on the accessible
temperature. Here, as White et al. have emphasized [30], the
pair correlation function cd pair(�r,τ ) = 〈�

d �r0+�r (τ ) �
†
d �r0

(0)〉
probes the insertion and propagation of a pair of fermions in the
half-filled lattice, resulting in an effective doping δ = 2/L2.
On an 8 × 8 lattice, for example, this corresponds to δ ∼ 0.03.
Direct simulations of the doped system would, of course, be
preferable, especially since this effective doping is system
size dependent. Nevertheless, comparisons of data for different
t ′/t,U/t and (large) βt on lattices of fixed size are possible.
In this way, our low temperature, half-filled results speak
to the issue of the role of inhomogeneity. Simulations of
an alternative ‘checkerboard Hubbard model’ show that the
attractive d-wave vertex is not generic. A different pattern of
spatial inhomogeneity produced a repulsive vertex for most
parameter regimes of this second hamiltonian.

We have also exploited the ability to decouple the model
spatially to obtain data on the sign problem as independent
(t ′/t = 0) spatial clusters are coupled. We find that the average
sign is increased by finite t ′/t .

We conclude this paper with a few remarks concerning the
results from different numerical methods. Our DQMC results
are most consistent with the exact diagonalization [20], DMRG
[22], and CORE [21] treatments indicating the existence of an
optimal degree of inhomogeneity. As is well known, what
makes the problem of strong correlation so challenging is the
competition between different possible ordered (or disordered)
states at low temperature which are close in energy. Even
small approximations in analytic and numeric treatments can
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tip the balance in these near degeneracies. DQMC treats the
correlated electron problem exactly on lattices of finite size.
Here, we are exploring a superconducting mechanism which
explicitly attributes pairing to a spatially local attraction, as
opposed to the exchange of lattice vibrations or spin waves.
In such a situation it is plausible that finite size effects, while
still present, might be less strong.
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