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We study the Gaffnian trial wave function proposed to describe fractional quantum Hall correlations at Bose
filling factor ν = 2/3 and Fermi filling ν = 2/5. A family of Hamiltonians interpolating between a hard-core
interaction for which the physics is known and a projector whose ground state is the Gaffnian is studied in
detail. We give evidence for the absence of a gap by using large-scale exact diagonalizations in the spherical
geometry. This is in agreement with recent arguments based on the fact that this wave function is constructed
from a nonunitary conformal field theory. By using the cylinder geometry, we discuss in detail the nature of
the underlying minimal model and we show the appearance of heterotic conformal towers in the edge energy
spectrum where left and right movers are generated by distinct primary operators.
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I. INTRODUCTION

Coulomb interactions between electrons in the lowest
Landau level (LLL) lead to the appearance of the fractional
quantum Hall effect (FQHE). Since the kinetic energy is
quenched by the magnetic field, the nature of phases is
entirely dictated by the interactions and is not amenable to
standard many-body treatments. Hence the use of trial wave
functions has been the key to unlocking the FQHE physics.
The most experimentally prominent quantum Hall fraction at
LLL filling factor ν = 1/3 has been explained by Laughlin by
means of an explicit first-quantized wave function [1]. Some
successful wave functions have been introduced to describe
other fractions in the picture of “composite fermions” (CF) [2].
Another line of attack uses conformal field theory (CFT) to
produce candidate wave functions by computing expectation
values of CFT vertex operators. The prime example in this
family is the Moore-Read “Pfaffian” which is built from an
Ising-like theory [3]. It is a promising candidate [4,5] to
describe the FQHE observed in the second Landau level at
filling ν = 5/2. To assess the relevance of a given FQHE
wave function, there are a handful of tools at our disposal.
If the function has an explicit analytical expression one may
compute observables by Monte Carlo evaluation of expectation
values. This is the case of the CF wave functions. It is also
possible to test these predictions with exact diagonalization
(ED) of systems with small numbers of particles that can be
treated without ad hoc approximations. Some of the trial wave
functions have also a simple property: They are exact ground
states of some local positive-definite quantum Hamiltonians.
This last case is relevant to wave functions that have special
vanishing properties when two or more particles come close.
The important quantities that should be extracted from a given
trial state are the charge and statistics of the quasiparticles,
the edge mode characteristics with their scaling exponents. In
principle they can be measured by using various experimental
techniques. For example, tunneling measurements give access
to scaling exponents, interferometry may lead to the braiding
statistics of quasiparticles, noise measurements can give
the charge, and thermal transport can also be used to find
exponents.

In the CFT approach it is immediately clear what are the
physically relevant theories from which one can construct a
trial wave function. The Laughlin state can be derived from
a simple compact boson theory with U (1) symmetry. The
Pfaffian state is obtained by adding an extra Ising CFT on
top of a similar boson theory. It can be seen as the first
member of a set of so-called Read-Rezayi [6] states that
involve Zk parafermions. The Zk parafermions belong to the
series of Wk minimal models. Such models are indexed by
two integers Wk(p,p′) and the parafermions correspond to the
subset Wk(k + 1,k + 2). There is evidence that they play a
role in some FQHE states. Indeed, the state observed at filling
ν = 2 + 2/5 in some samples has been suggested to be related
by particle-hole symmetry in the second Landau level to the
ν = 3/5 fermionic Z3 parafermionic state. In the realm of the
bosonic FQHE, which may be relevant to ultracold atomic
gases [7,8], the sequence of states with filling ν = k/2 for
k = 1,2,3,4, . . . may be the ground state after melting of the
vortex lattice. These Wk models do not exhaust the list [9,10] of
CFTs. One also can consider the family of so-called minimal
models M(p,p′), with p,p′ integers, to build FQHE wave
functions. While the Pfaffian state is related to M(4,3), which
is the same as Z2 Ising fermions, the other states are different.
The state at ν = 2/5 constructed from M(5,3) was proposed
by Simon et al. in Ref. [11], where it was called the “Gaffnian.”
It has certainly some desirable properties like good overlap
with the true ground state for Coulomb interactions. Several
studies have been devoted to its properties [12–19]. However,
there is a potential problem which has been raised originally
by Read [20–22]. One expects that the CFT from which one
constructs the FQHE trial wave function should be unitary if
the bulk state has a gap. This severely restricts minimal models
to p = p′ + 1. In the plasma language [23] it means that there
is screening of charge. Studies of Gaffnian quasiparticles have
also raised doubts [24]. The Pfaffian and the Zk parafermions
are all based on a unitary CFT, hence qualify for describing
incompressible FQHE states. The other states should be
gapless, hence describe critical points presumably in between
several types of FQHE phases.

There is also another way of classifying the models
based on the family of Jack polynomials [25–28]. These are
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multivariate symmetric polynomials that are known to play
a role in several integrable systems. It has been shown that
they can be characterized by their vanishing properties when
two or more coordinates become equal. Some of the wave
functions mentioned above, i.e., the Laughlin, Moore-Read,
and parafermion wave functions, are all Jack polynomials.
Generally speaking they are indexed by a real parameter
and a partition of an integer. Bernevig and Haldane have
proposed new trial FQHE states for filling factors ν = k/r ,
k and r being integers. They can be derived from a CFT
which is the minimal model [29,30] Wk(k + 1,k + r). These
models are unitary only if r = 2 and this leads back to the
Read-Rezayi family of states. We are thus facing again a set
of wave functions that should describe critical states. So it is
natural to ask if standard tools used in the study of FQHE
physics are able to directly prove the criticality of these
states. The original study of the Gaffnian state for example
is rather inconclusive due to the small number of particles
reached in exact diagonalization studies as pointed out by the
authors themselves. Subsequent investigations have pointed
out possible problems in the entanglement spectrum and also
that there are level crossings when interpolating between the
Coulomb interaction and the special hard-core interaction for
which the Gaffnian is the exact ground state.

In this paper we concentrate on the Gaffnian state in
order to obtain direct evidence for criticality. We use exact
diagonalizations in the spherical geometry for the bosonic
formulation and we are able to reach larger system sizes
than previously considered. The Hamiltonian we consider is a
one-parameter family interpolating between the pure hard-core
two-body δ function interaction and the special three-body
interaction involving derivatives of δ functions for which the
Gaffnian is the exact ground state. We start from the pure
hard-core limiting case where there is ample evidence that
the physics is gapped with a description in terms of CF
appropriate to bosonic systems. We observe then a definite
scaling behavior of the gap of neutral collective excitations vs
system size which serves as a reference law when we tune the
Hamiltonian towards the Gaffnian limit. Provided we focus
on the right angular momentum sector we observe a change
in the scaling law which is fully consistent with a critical
system. The sphere geometry has no boundary and is well
suited to get gap estimates. To get additional insight in the
CFT properties we also study the Gaffnian in the cylinder
geometry with open boundary conditions. It is known that
this is efficient to capture edge state physics when adding a
shallow confining potential. Of course we expect that in the
thermodynamic limit there should be no distinction between
bulk and edge modes for a critical system. However, it needs
not be so for finite size systems. Indeed, we show that there
are well-defined edge modes that can be classified according
to the underlying CFT. As in the case of the Pfaffian [31] the
edge modes form conformal towers of the Virasoro algebra.
These special sets of states are generated by primary operators
of the CFT. In the Gaffnian case we find a new property: the
towers are “heterotic,” i.e., the left and right moving modes
are not generated by the same operator. It is a very special
combination of primaries that can explain the edge spectrum.
While these properties are found for all cylinder diameters,
they become manifest when the cylinder radius goes to zero.

Then the problem can be exactly solved for a large number of
particles in the subspace generated by quasiholes.

In Sec. II we discuss the vanishing properties of quantum
Hall wave functions and their classifications. The Gaffnian
state is formulated explicitly. Section III is devoted to CFT
aspects of the Gaffnian and we give elements of CFT
concerning conformal towers in the cylinder geometry and
discuss edge mode properties. In Sec. V we give gap estimates
for a family of Hamiltonians and show evidence for criticality
of the Gaffnian state. Finally, Sec. VI contains our conclusions.

II. THE GAFFNIAN WAVE FUNCTION

We first discuss FQHE wave functions in the planar disk
geometry. In this case, the symmetric gauge is appropriate and
the lowest Landau level wave functions are of the form

�(z1, . . . ,zN ) = P (z1, . . . ,zN )e−∑
i |zi |2/4, (1)

where P is a polynomial which is symmetric for bosons with
coordinates z1, . . . ,zN and antisymmetric for fermions. In this
paper we focus on spin-polarized states only. The magnetic
length is set to unity. The angular momentum Lz with respect
to the axis perpendicular to the plane is a conserved quantity.
The Laughlin state for filling factor ν = 1/m is given by

P (z1, . . . ,zN ) =
∏
i<j

(zi − zj )m. (2)

It is also very convenient from a theoretical point of view to put
the particles on the surface of a sphere with a radial magnetic
field as if it were created by a magnetic monopole in the center.
This geometry has no boundaries and a finite area. The sphere
has full rotation symmetry so states can be classified by their
total angular momentum L in addition to the component Lz:
They form multiplets of definite L. If the number of flux quanta
piercing the sphere is Nφ then the LLL has degeneracy Nφ + 1
and a (unnormalized) basis can be taken as

�M
S = uS+MvS−M, M = −S, . . . , + S, (3)

where 2S = Nφ and the spinors are given by u =
cos(θ/2)eiφ/2, v = sin(θ/2)e−iφ/2 in spherical coordinates.
Many-body wave functions then become polynomials in u,v
variables. For example, the Laughlin state is given by

�(m) =
∏
i<j

(uivj − ujvi)
m. (4)

The Laughlin wave function Eq. (2) is a model state which
is not an exact ground state for electrons with Coulomb
interactions. However, it is known to be the exact ground
state of a special hard-core Hamiltonian. To understand this
property in more detail, one first has to note that any two-body
interaction Hamiltonian H2b in the LLL can be written as

Ĥ2b =
∑
i<j

∑
k

VkP̂ (k)
ij , (5)

where P̂ (m)
ij is the projector onto relative angular momentum

m for the pair of particles i,j , m is a positive integer, and the
real numbers Vm are the so-called Haldane pseudopotentials
that are defined by the choice of the Hamiltonian. In the
Laughlin state [Eq. (2)] each pair of particles has a common
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factor (zi − zj )m and thus at least relative angular momentum
m. We construct a special Hamiltonian with the following
recipe: We take all pseudopotentials with k > m equal to zero.
Then the Laughlin state has exactly zero energy and if we ask
for minimum angular momentum it is unique. For example,
fermions at ν = 1/3 have an exact Laughlin ground state for
the hard-core Hamiltonian

∑
i<j V1P̂ (1)

ij .
There is a generalization [32,33] of this line of reasoning

by considering now arbitrary k-body interactions instead of
two-body interactions. We first discuss the three-body case
k = 3. Similarly we can define relative angular momentum
for three particles. For bosons the minimum value is then
zero since all three bosons may be in the same quantum state
while for fermions it is three. Consider now the projectors onto
definite values of the three-body relative angular momentum
P̂ (m)

ijk . They can be used to define hard-core Hamiltonians
by projecting out wave function components with relative
momenta less than some values. The simplest case corresponds
to the projection of the smallest value. This is the Hamiltonian:

ĤPf =
∑

i<j<k

P̂ (m)
ijk , m = 0 (bosons), m = 3 (fermions).

(6)

If we ask for the zero-energy ground state with minimal angular
momentum there is a unique state which is called the Moore-
Read Pfaffian state. In planar coordinates the Bose Pfaffian
can written as

�Bose
Pf = S

⎡
⎣ ∏

i1<j1

(
zi1 − zj1

)2 ∏
i2<j2

(
zi2 − zj2

)2

⎤
⎦ . (7)

In this formula we distribute the particles into two packets of
equal size, the respective indices being i1,j1, . . . in one packet
and i2,j2, . . . in the other one and we symmetrize (S) over
the choices of the two packets. The vanishing properties of
this wave function are easily read-off from this formula: If two
particles come close together then the function does not vanish
because they may belong to distinct packets, however if three
particles coincide then at least two of the them will be in the
same packet and the wave function will vanish as the second
power of their distance. The filling factor is ν = 1 for the Bose
case. It can also be written as

�Bose
Pf = Pf

(
1

zi − zj

) ∏
i<j

(zi − zj ), (8)

where Pf stands for the Pfaffian symbol. This latter object
is defined for an arbitrary skew-symmetric N × N (N even)
matrix A:

Pf(A) =
∑

σ

εσAσ (1)σ (2)Aσ (3)σ (4) · · · Aσ (N−1)σ (N), (9)

where the sum runs over all permutations of the index with N

values and εσ is the signature of the permutation. This is the
original definition of the Pfaffian state by Moore and Read from
CFT arguments [3]. The Pfaffian appears from the correlation
functions of Ising model Majorana fermions. The fermionic
wave functions are obtained by multiplying by the Jastrow
factor

∏
i<j (zi − zj ) and the filling factor is now ν = 1/2.

Now we note that if we forbid relative angular momentum
zero for three particles with the operator [Eq. (6)], then the next
allowed momentum is two. We can then consider the special
Hamiltonian that projects out these two possible three-body
relative momenta:

ĤGf =
∑

i<j<k

P̂ (0)
ijk +

∑
i<j<k

P̂ (2)
ijk . (10)

This is the definition appropriate to the bosonic case. There
is a unique zero-energy ground state provided we ask for the
smallest angular momentum. The wave function is then given
by the following formula:

�Gf = S

⎡
⎣ ∏

i1<j1�N/2

(
zi1 − zj1

)2+p
∏

N/2<i2<j2

(
zi2 − zj2

)2+p

×
∏

i�N/2<j

(zi − zj )1+p
∏

k�N/2

1

(zk − zk+N/2)

⎤
⎦ . (11)

It has been called the Gaffnian in Ref. [11]. The Bose
case corresponds to p = 0 and the filling factor is ν = 2/3,
while p = 1 describes a fermionic state at ν = 2/5. It is
also possible [34] to write the Gaffnian wave function in the
following way:

�Gf =
∏
i<j

(zi − zj )2(p+1)

×S

⎡
⎣ ∏

i1<j1

(
zi1 − zj1

) ∏
i2<j2

(
zi2 − zj2

)
per [M]

⎤
⎦ . (12)

in terms of the N/2 × N/2 matrix Mi,j = [zi − zj+N/2]−1

and per[M] = ∑
{σ }

∏N
k=1 Mk,σ (k) is the permanent of M ,

where the sum is over all σ permutations of N elements. The
symmetrized wave function (11), as a candidate for the FQHE
at ν = 2/5, has been studied by Yoshioka et al. in Ref. [35],
and one obtains a large overlap with the ED ground state for
a Coulomb interaction. Furthermore, this wave function, also
called “Gaffnian,” has recently been studied within CFT and
may support non-Abelian quasiparticle excitations.

III. CONFORMAL FIELD THEORY CONSTRUCTION
OF THE GAFFNIAN

We describe the construction of the Gaffnian wave function
according to the general CFT approach introduced by Moore
and Read. The bulk wave function in the planar geometry is
taken to be the expectation value of a set of operators of a
1 + 1D CFT:

�(z1, . . . ,zN ) = 〈0|O(z1) · · · O(zN )Obk|0〉, (13)

where the operator O(z) is the product of a vertex operator
for the charge sector described by a free boson φc(z) and a
statistical field belonging to some CFT O(z) = ψ(z)eiφc(z)/

√
ν .

One needs to add also a background charge operator Obk

to ensure global electric neutrality and having a nonzero
correlation function. Alternative constructions are possible
with a different role for the neutrality [36]. In the case of
the Laughlin state there is no statistical sector and we just
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have to compute the correlation function of exponentials of a
free boson:

�L(z1, . . . ,zN ) =
∏
i<j

(zi − zj )1/ν . (14)

In the Moore-Read Pfaffian case the statistical operator ψ(z)
is taken to be a Majorana fermion so that there is an additional
factor given by

〈ψ(z1) · · · ψ(zN )〉 = Pf

(
1

zi − zj

)
. (15)

This leads to the previous formula [Eq. (8)] for the Pfaffian
state. Now if we consider a more general CFT state we need
a field ψ with fusion relation ψ × ψ ∼ 1, conformal weight
�ψ , and operator product expansion

ψ(z)ψ(w) ∼ 1

(z − w)2�ψ
[1 + · · · ], (16)

so that the wave function is given by

�(z1, . . . ,zN ) = 〈ψ(z1) · · · ψ(zN )〉
∏
i<j

(zi − zj )2�ψ+q . (17)

The possible values of q are then dictated by simple statistics
requirements. In the case of the Gaffnian state, authors of
Ref. [11] have advocated the use of the CFT defined by the
Virasoro minimal modelM(5,3) which contains a field ψ with
the correct fusion rule [Eq. (16)] and dimension �ψ = 3/4.
This CFT also contains two other primary fields ϕ and σ of
dimensions �ϕ = 1/5 and �σ = −1/20, respectively.

According to the bulk/boundary correspondence we expect
that the edge theory of a CFT-derived quantum Hall state
should be given by the very same CFT that is used to construct
the bulk ground state wave function. A precise derivation of
this correspondence has been given in Ref. [22].

If we consider the edge spectrum of a theory we expect
the energies to be arranged in so-called conformal towers
of states since they should form a representation of the
underlying Virasoro algebra of the CFT. We briefly describe
for completeness the tower structure which is explained in
detail in the CFT literature [9,10]. It is based on the use of
the so-called generators of the Virasoro algebra Ln with n an
integer, positive or negative.

If we create a state by acting with a primary operator onto
the vacuum |�〉 = �(0)|0〉 then this state is annihilated by all
Virasoro generators Lk with k > 0 and is an eigenstate of L0

with eigenvalue ��. Action with the other generators with
k < 0 generates a family of states called the descendants of
the primary state:

|{ni}〉 = L−nk
· · · L−n1 |�〉, (18)

where the indices ni are positive. We call the “level” of such a
state the integer n ≡ ∑

k nk . Not all these state are orthogonal
and in a given CFT there are relations between states at a
given level so that the number of possible states is not simply
given by counting the partition of the level n into k integers.
If we introduce p(�,n) as the number of independent states at
level n, it is conveniently manipulated through its generating

functional:

χ (�,q) =
∞∑

n=0

p(�,n)qn. (19)

This quantity is called the character and encodes the structure
of the representation of the Virasoro algebra. Expansion in
powers of q allows us to count the states. In the case of
minimal models M(p,p′) there is a finite number of primary
operators �r,s with r = 1, . . . ,p − 1, s = 1, . . . ,p′ − 1 with
the redundancy �r,s ≡ �p−r,p′−s . Their scaling dimensions
are given by

hr,s = (sp − rp′)2 − (p − p′)2

4pp′ . (20)

The Gaffnian CFT M(5,3) has fields ψ = �1,4, ϕ = �1,3,
σ = �1,2 and identity operator 1 = �1,1. To obtain the
characters of a minimal model, we can use the Rocha-Caridi
formula which is valid for generic minimal models, unitary or
not. It is given by

χ (�r,s,q) = 1

(q)∞

k=+∞∑
k=−∞

(
qk2pp′+k(pr−p′s) − q(kp′+r)(kp+s)

)
,

(21)

where we have used the symbol

(q)∞ ≡
∞∏

n=1

(1 − qn). (22)

Alternatively, a fermionic representation for the characters
in the peculiar case of M(5,3) is available from the work of
Kedem et al. [37]:

χ (�1,1,q) =
∞∑

f =0

qf (f +1)

(q)2f

, χ (�1,2,q) =
∞∑

f =0

qf 2

(q)2f

, (23)

χ (�1,3,q) =
∞∑

f =0

qf (f +1)

(q)2f +1
, χ (�1,4,q) =

∞∑
f =0

qf (f +2)

(q)2f +1
, (24)

where

(q)k ≡
k∏

n=1

(1 − qn). (25)

With these character formula one can extract the degeneracy
appearing in the towers. Low-lying state counting is given in
the upper part of Table I for each primary field of the Gaffnian
CFT. Provided the bulk is gapped, these degeneracies would
be seen in the spectrum of edge modes in the disk geometry.
While this is the case for the Laughlin and Pfaffian case, we
show in the next section that this is not case for the Gaffnian.

IV. GAFFNIAN CONFORMAL TOWERS FROM THE
CYLINDER GEOMETRY

In a generic nonchiral statistical critical model we expect
energies to be related to Virasoro generators by

H ∝ L0 + L̄0, (26)
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TABLE I. Upper part: Number of states at each level of the
Virasoro algebra for the statistical part M(5,3) of the Gaffnian CFT
for each primary operator. This gives edge state counting in the disk
geometry. Lower part: We have added the boson sector to obtain the
full Gaffnian state counting.

�1,1 = 1 1 0 1 1 2 2 4 4 6 7 10 11
�1,2 = σ 1 1 1 2 3 4 5 7 9 12 15 19
�1,3 = ϕ 1 1 2 2 3 4 6 7 10 12 16 20
�1,4 = ψ 1 1 1 2 2 3 4 5 7 9 11 14

φc + 1 1 1 3 5 10 16 29 45 74
φc + σ 1 2 4 8 15 26 44 72 115
φc + ϕ 1 2 5 9 17 29 50 80 129
φc + ψ 1 2 4 8 14 24 40 64 101

and momenta are expressed through the difference of the
generators:

P ∝ L0 − L̄0. (27)

In these equations the barred Virasoro generators pertain to the
antichiral copy of the algebra. If we act with these relations
onto a set of descendant states [Eq. (18)], we generate a set of
energies and momenta:

En,n̄ ∝ n + n̄ + h + h̄, P ∝ n − n̄, (28)

where n = ∑
i ni and n̄ = ∑

i n̄i are levels in the chiral and
antichiral Virasoro algebras.

In the realm of FQHE a nonchiral setup is obtained by
considering the cylinder geometry which has naturally two
counterpropagating edges. The Fock space of the edge theory
is given by the tensor product of the two boundary Fock
spaces. We use thus use periodic boundary conditions along
one direction of the cylinder and impose for simplicity a hard
cutoff in orbital space to define a finite-dimensional problem.
In this geometry there is only one conserved momentum K
along the periodic direction. It can be used to label many-body
eigenstates.

The Gaffnian Hamiltonian in the disk geometry can be
written as

ĤGf =
∑

i<j<k

S
[ ∇4

i δ2(zi − zj ) δ2(zj − zk)
]
. (29)

This Hamiltonian when written in the cylinder basis has a
unique ground state with zero momentum provided we fix the
number of orbitals as

2K + 1 = 3
2N − 2, (30)

as in the spherical geometry. If we add extra orbitals then
additional zero-energy quasiholes appear. This is displayed in
Fig. 1.

The set of quasihole states is exactly degenerate provided
there is perfect translation invariance. If we now add a
shallow confining potential along the axis of the cylinder
the degeneracy is lifted and it is possible to identify the
edge excitations as conformal towers in the low-energy points
of the spectrum. This is possible in the Laughlin [38] and
Pfaffian [31] cases. This picture is valid as long as there is
a clear separation between the set of quasihole-derived states
and the bulk states. In the Gaffnian case we show in the next

0 2 4 6 8
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2

4
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8

10

12

Momentum

E
ne

rg
y

FIG. 1. (Color online) Low-lying spectrum of the special
Gaffnian Hamiltonian [Eq. (29)] in the cylinder geometry for N = 8
bosons and 10 orbitals. Eigenstates are classified as a function of
the conserved total momentum K . There is a set of zero-energy
eigenstates that extend up to K = 4 that are Gaffnian quasiholes.

section that the bulk gap goes to zero in the thermodynamic
limit. This means that the edge mode identification should
be considered as an artifact: They will mix with bulk modes
as soon as the system is large enough. Indeed, we observe
that when the radius L of the cylinder is of order of a few
magnetic lengths it is difficult to identify the edge modes. The
situation becomes on the contrary very clear when going to
the thin cylinder limit L → 0. It is then possible to study
numerically large systems provided one focuses onto the
subspace generated by the quasihole states that have exactly
zero energy in the absence of confining potential: One has
just to solve a problem of minimum electrostatic energy
under constraints. The lowest-lying states are then clearly
arranged into conformal towers as can be seen in Fig. 2. The
ground state in each of the sectors we find can be tentatively
identified by comparing the degeneracies observed with those
deduced from the CFT predictions in the lower part of Table
I, which includes the charged boson mode in addition to the
statistical field.

When the number of bosons is even there are two towers
that alternate when increasing the total momentum: (a) and (b)
in Fig. 2. The tower of type (a) is generated by the identity
operator as well as ϕ operator. The ground state of tower (a) is
thus

|0,a〉 = 1 e2inφc/
√

6e2inφ̄c/
√

6|0〉, (31)

and the first excited state with the same total momentum is
obtained by acting with the primary field ϕ:

|1,a〉 = ϕϕ̄ e2inφc/
√

6e2inφ̄c/
√

6|0〉. (32)

For tower (b) it involves the two other primary fields, the
ground state is now

|0,b〉 = σ σ̄ ei(2n+1)φc/
√

6ei(2n+1)φ̄c/
√

6|0〉, (33)
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(a) (b)

(c) (d)

FIG. 2. (Color online) Conformal towers of the Gaffnian state. The spectra are found for even number of bosons in (a) and (b), and odd
number of bosons for (c) and (d). Close to each set of quasidegenerate levels we have given the associated degeneracy. These numbers are
exactly those predicted by CFT. Operator assignments of these towers are given in the text. We note that odd towers (c) and (d) involve different
operators for left and right moving modes: they are “heterotic.”

and the first excited state now given by

|1,b〉 = ψψ̄ ei(2n+1)φc/
√

6ei(2n+1)φ̄c/
√

6|0〉. (34)

These towers are analogous to those found in the Pfaffian
case [31] in the sense that the left and right moving modes
are generated by the same operator. In these formulas n is an
integer that varies as we go from one tower to its neighbor.
Increasing total momenta and hence going through several
towers means that we are encountering all the topological
sectors [29,39] of the Gaffnian (in general multiple times).

When there is an odd number of bosons there are also two
alternating types of towers: see (c) and (d) in Fig. 2 that are
mirror symmetric from each other. Hence, there is essentially
only one type of conformal tower. While their almost twofold
ground state degeneracy is reminiscent of the ψ tower of the
Pfaffian, they are structurally different since now right and
left moving modes are not generated by the same operator.
To borrow terminology from string theory [40] they are aptly
said to be “heterotic.” In the (c) case the leftmost ground state
leads to a tower based on two operators ψ for the left-handed
modes and the identity for the right-handed modes. Its almost
degenerate rightmost ground state generates a tower based on
σ for the left modes and ϕ for the right modes. We have checked
that these assignments hold at least up to the sixth level. This
can be easily checked with the data in Table I. We have thus
recovered the tower structure of edge states expected from the
Gaffnian CFT. This is possible due to two facts: We use the
cylinder geometry with widely separated edges for small radius
and we restrict the Hilbert space to the set of quasihole states.
The states that appear in these towers are bona fide quantum

mechanical states with a perfectly well-defined positive scalar
product since we are dealing with constrained electrostatics.
Since the underlying CFT is nonunitary it means that this
structure cannot persist in the true thermodynamic limit. On
the cylinder geometry, we observe that when going to large
cylinder radius it is no longer possible to identify clearly the
descendant states. This is a hint of what goes wrong with the
Gaffnian. In fact, we now give direct evidence in the next
section for its critical character.

V. GAP ESTIMATES ON THE SPHERICAL GEOMETRY

To investigate the possible criticality of the Gaffnian state
we revert to the spherical geometry. We focus on its bosonic
formulation because this allows for larger sizes to be studied
numerically. When written on the sphere the wave function
[Eq. (11)] requires a definite relationship between flux and
number of bosons:

2S = Nφ = 3
2N − 3. (35)

This coincides with the relation for the principal or Jain series
of quantum Hall fractions at filling factor ν = 2/3. Indeed, it
is known that bosons in the LLL with hard-core interactions
form usual Abelian FQHE states at fillings ν = p/(p + 1).
They fit in the CF scheme by introducing 1CF entities that
are bound states of one boson and one vortex. These 1CFs
feel reduced magnetic field 2S∗ = 2S − (N − 1) and integer
fillings of CF LLs describes a FQHE state as in the fermionic
FQHE. With two filled levels we obtain the Bose state ν = 2/3
which appears to be incompressible in numerical studies for
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FIG. 3. (Color online) The energy spectrum of the family of
Hamiltonians interpolating between the Gaffnian and the pure two-
body projector. There are N = 14 bosons on the sphere with Nφ = 18.
Energy levels are classified by their total angular momentum in the
spherical geometry. The two-body case is at the top of the picture and
displays a collective mode with a dispersion relation similar to what
is observed in smaller systems. When we switch on the three-body
Hamiltonian [Eq. (10)] the dispersion relation first flattens and then
acquires a hanging-chain shape as in other paired states. The value of
Ltot with minimal energy changes as a function of α.

the pure contact interaction. On the sphere such a state appears
as a rotationally invariant Ltot = 0 state. Neutral excitations are
obtained by promoting some CF from full to empty levels. This
operation creates a branch of states dubbed excitons where a
CF goes from the level with L = S∗ + 1 to the first empty level
L = S∗ + 2. This branch is prominent in exact diagonalization
studies and is reasonably well described by CF wave functions
adapted for the Bose statistics.

In order to have some control on the gap estimate for the
Gaffnian we study a family of Hamiltonians that interpolates
between the special three-body interaction of Eq. (10) and the
pure two-body hard-core case:

Ĥα = α ĤGf + (1 − α)
∑
i<j

P̂ (0)
ij , (36)

At fixed flux number of particles relation [Eq. (35)] one
interpolates between the Gaffnian state and the CF state. The
spectra for N = 14 bosons is displayed in Fig. 3 for various
values of the α interpolating parameter. We have plotted only
the lowest energy state in each L sector. The ground state
is always at L = 0. It is only for α = 1 that the ground state
energy is zero. For other values there are pairs of particles with
zero relative angular momentum. If we now try to extrapolate
the finite-size gap to the thermodynamic limit, we observe
the scaling in Fig. 4. As small boson systems generally have
severe finite-size effects, larger boson systems are desirable for
extrapolation. In fact, excitation energies with N = 8 bosons
shows irregularity for all cases. As α increases, those with
N = 10 bosons do still show some irregularity. On the other
hand, taking into account only the three largest sizes N = 12,

0 0.05 0.1
0

2

4

6

1/N

G
ap

α=0

α=1

FIG. 4. (Color online) Extrapolation of gaps to the thermody-
namic limit. The gaps are plotted versus inverse of the number of
particles. We display excitation energies from 8 to 16 bosons while
extrapolations are carried out with only the largest sizes N = 12, 14,
and 16 bosons. The angular momentum of the state is fixed at Ltot = 2.
Only the special Gaffnian Hamiltonian is gapless within the precision
of our method. The lowest-lying straight line corresponds to α = 0
and the topmost line to α = 1 with intermediate values differing
by 0.1.

14 and 16, we find very good regularity. For increasing values
of α towards the pure Gaffnian Hamiltonian we find also a
rather smooth dependence that we consider as evidence for
zero gap when α = 1.

0 0.5 1
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1
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αααα

G
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FIG. 5. (Color online) The extrapolated gaps as a function of the
interpolating parameter α based on sizes N = 12, 14, 16. The lower
(blue online) curve is obtained from Ltot = 2 gaps and the upper (red
online) curve is for Ltot = 3. The gapped two-body case is for α = 0
and the Gaffnian case for α = 1. There is evidence for zero gap only
at the Gaffnian point and the gap opens linearly with |1 − α|.
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We present estimates for infinite-system gaps in Fig. 5.
The gap opens immediately as soon as we add the two-body
interaction. The gap behavior is close to linear as a function
of |1 − α| close to α = 1. This means that the two-body
interaction should be considered as a relevant perturbation
with respect to the critical Gaffnian state. The gap in the L = 3
sector is also plotted in Fig. 5 and shows that there are in fact
multiple level crossings in the excited states when approaching
the CF regime for α ≈ 0.

This is similar to the observation of Ref. [24] of level
crossings in the sector of charged quasiparticles.

VI. CONCLUSIONS

We have studied various aspects of the Gaffnian state
which is based on a nonunitary CFT M(5,3). As such it is
expected to describe a gapless state of matter [22]. By exact
diagonalizations on large systems in the spherical geometry
we have given numerical evidence for its critical nature. The
pure two-body contact interaction projected onto the LLL
appears to be a relevant perturbation which opens a gap even

for infinitesimal coupling. The criticality of the Gaffnian we
find is in agreement with other lines of attack [28,41,42].

By use of the cylinder geometry we have shown the appear-
ance of the conformal towers expected from its underlying
CFT structure. The towers are based on all primary operators
of the theory and in the case of an odd number of particles
they are heterotic, i.e., their left and right movers are created
by different operators, at variance with the Laughlin [38] or
Moore-Read case [31]. These towers appear however only in
the thin-torus limit which has no thermodynamic limit. Indeed,
since there are negative norm states in the representations of
the Virasoro algebra, there should be drastic changes in the
energy spectrum when going to the true thermodynamic limit.
Here what happens is that there are states that were looking
like “bulk” states in Fig. 3 that mix with “edge” states.
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