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We construct a minimal four-band model for the two-dimensional (2D) topological insulators and quantum
anomalous Hall insulators based on the px- and py-orbital bands in the honeycomb lattice. The multiorbital
structure allows the atomic spin-orbit coupling which lifts the degeneracy between two sets of on-site Kramers
doublets jz = ± 3

2 and jz = ± 1
2 . Because of the orbital angular momentum structure of Bloch-wave states at �

and K (K ′) points, topological gaps are equal to the atomic spin-orbit coupling strengths, which are much larger
than those based on the mechanism of the s-p band inversion. In the weak and intermediate regime of spin-orbit
coupling strength, topological gaps are the global gap. The energy spectra and eigen wave functions are solved
analytically based on Clifford algebra. The competition among spin-orbit coupling λ, sublattice asymmetry m, and
the Néel exchange field n results in band crossings at � and K (K ′) points, which leads to various topological band
structure transitions. The quantum anomalous Hall state is reached under the condition that three gap parameters
λ, m, and n satisfy the triangle inequality. Flat bands also naturally arise which allow a local construction of
eigenstates. The above mechanism is related to several classes of solid state semiconducting materials.
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I. INTRODUCTION

The two-dimensional (2D) quantum Hall effect [1] is among
the early examples of topological states of matter whose
magnetic band structure is characterized by the first Chern
number [2–5]. Later on, quantum anomalous Hall (QAH)
insulators were proposed with Bloch band structures [5].
Insulators with nontrivial band topology were also generalized
into time-reversal (TR) invariant systems, termed topological
insulators (TIs) in both 2D and 3D, which have become a major
research focus in contemporary condensed matter physics
[6–8]. The topological index of TR invariant TIs is no longer
just integer valued, but Z2 valued, in both 2D and 3D [9–15].
In 4D, it is the integer-valued second Chern number [12,16].
Various 2D and 3D TI materials were predicted theoretically
and observed experimentally [11,17–21]. They exhibit gapless
helical 1D edge modes and 2D surface modes through transport
and spectroscopic measurements.

Solid state materials with the honeycomb lattice structure
(e.g., graphene) are another important topic of condensed
matter physics [22–24]. There are several proposals of QAH
model in the honeycomb lattice [25,26]. As a TR invariant
doublet of Haldane’s QAH model [9,27], the celebrated 2D
Kane-Mele model was originally proposed in the context of
graphene-like systems with the pz band. However, the atomic
level spin-orbit (SO) coupling in graphene does not directly
contribute to opening the topological band gap [28]. Because
of the single band structure and the lattice symmetry, the
band structure SO coupling is at the level of a high-order
perturbation theory and thus is tiny.

Recently, the px- and py-orbital physics in the honeycomb
lattice has been systematically investigated in the context of
ultracold-atom optical lattices [29–35]. The optical potential
around each lattice potential minimum is locally harmonic.
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The s- and p-orbital bands are separated by a large band gap,
and thus the hybridization between them is very small. The
pz-orbital band can also be tuned to high energy by imposing
strong laser beams along the z direction. Consequently, we
can have an ideal px- and py-orbital system in the artificial
honeycomb optical lattice.

Such an orbitally active system provides a great opportunity
to investigate the interplay between nontrivial band topology
and strong correlations, which is fundamentally different
from graphene [29,31,32]. Its band structure includes not
only Dirac cones but also two additional narrow bands which
are exactly flat in the limit of vanishing π bonding. Inside
the flat bands, due to the vanishing kinetic energy scale,
nonperturbative strong correlation effects appear, such as
the Wigner crystallization of spinless fermions [29,31] and
ferromagnetism [33] of spinful fermions as exact solutions.
Very recently, the honeycomb lattice for polaritons has been
fabricated [36]. Both the Dirac cone and the flat dispersion for
the px/py orbital bands have been experimentally observed.
The band structure can be further rendered topologically
nontrivial by utilizing the existing experimental technique of
the on-site rotation around each trap center [37]. This provides
a natural way to realize the QAH effect (QAHE) as proposed
in Refs. [32,35], and the topological gaps are just the rotation
angular velocity [32,35]. In the Mott-insulating states, the
frustrated orbital exchange can be described by a novel
quantum 120◦ model [30], whose classic ground states map to
all the possible loop configurations in the honeycomb lattice.
The px- and py-orbital structure also enables unconventional
f -wave Cooper pairing even with conventional interactions
exhibiting flat bands of zero energy Majorana edge modes
along boundaries parallel to gap nodal directions [34].

The px- and py-orbital structures have also been studied
very recently in several classes of solid state semiconducting
materials including fluoridated tin film [26,38,39], function-
alized germanene systems [40], BiX/SbX (X = H,F,Cl,Br)
systems [41,42], and in organic materials [43–45]. All these
materials share the common feature of the active px and
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py orbitals in the honeycomb lattice, enabling a variety of
rich structures of topological band physics. The most striking
property is the prediction of the large topological band gap
which can even exceed room temperature.

In the literature, a common mechanism giving rise to
topological band gaps is the band inversion, which typically
applies for two bands with different orbital characters; say, the
s-p bands. However, although band inversion typically occurs
in systems with strong SO coupling, the SO coupling does not
directly contribute to the value of the gap. The band inversion
would lead to gap closing at finite momenta in the absence
of the s-p hybridization, and the s-p hybridization reopens
the gap whose nature becomes topological. The strength
of the hybridization around the � point linearly depends
on the magnitude of the momenta, in the spirit of the k · p

perturbation theory, which is typically small. This is why in
usual topological insulators based on band inversion, in spite of
considerable SO coupling strengths, the topological gap values
are typically small. On the other hand, as for the single-band
systems in the honeycomb lattice such as graphene, the effect
from the atomic level SO coupling to the band structure is
also tiny, as a result of a high-order perturbation theory.

In the model presented in this paper, here are only p

orbitals. The two-sublattice structure and the px/py-orbital
configuration together greatly enhance the effect of SO
coupling, as illustrated in Fig. 5. The atomic-scale SO coupling
directly contributes to the opening of the topological gap at the
K (K ′) point between bands 2 and 3, and that at the � point
between bands 1 and 2. Since the atomic SO coupling can be
very large, the topological band gap can even reach the level
of 0.3 eV according to the estimation in Ref. [40].

In this article, we construct a minimal four-band model
to analyze the topological properties based on the px- and
py-orbital structure in the honeycomb lattice. The eigen energy
spectra and wave functions can be analytically solved with the
help of Clifford � matrices. The atomic SO coupling lifts the
degeneracy between two onsite Kramers pairs with jz = ± 3

2
and jz = ± 1

2 . As explained in the preceding paragraph, the
topological gap in this class of systems is extraordinary large.
In the weak and intermediate regime of spin-orbit coupling
strength, the topological gaps are the global gap. The lattice
asymmetry and the SO coupling provide two different gap
opening mechanisms, and their competition leads to a variety
of topological band structures. With the introduction of both
the sublattice anisotropy and the Néel exchange field, the
system can become a large gap QAH insulator.

The article is organized as follows. The four-band model
for the px- and py-orbital system in the honeycomb lattice is
constructed in Sec. II. The symmetry analysis is presented in
Sec. III. In Sec. IV, the analytic solutions of energy spectra
and eigen wave functions are presented. The study of band
topology and band crossing is presented in Sec. V. Effective
two-band models are constructed around high-symmetry
points near band crossings in Sec. VI. The mechanism of large
topological band gap is explained in Sec. VII. We add the Néel
exchange field term in Sec. VIII, and investigate how to get a
large gap QAH insulator. Conclusions are presented in Sec. IX.

II. THE px AND py BAND HAMILTONIAN

The two sublattices of the honeycomb lattice are de-
noted A and B. The bonding part of the Hamiltonian

is

H0 = t‖
∑
�r∈A,s

{p†
i,s(�r)pi,s(�r + aêi) + H.c.}

− t⊥
∑
�r∈A,s

{p′†
i,s(�r)p′

i,s(�r + aêi) + H.c.}, (1)

where s = ↑,↓ represents two eigenstates of spin sz; ê1,2 =
±

√
3

2 êx + 1
2 êy and ê3 = −êy are three unit vectors from one A

site to its three neighboring B sites; a is the nearest neighbor
bond length; pi ≡ (pxêx + pyêy) · êi and p′

i ≡ (−pxêy +
pyêx) · êi are the projections of the p orbitals parallel and
perpendicular to the bond direction êi for i = 1, . . . , 3,
respectively; t‖ and t⊥ are the corresponding σ - and π -bonding
strengths, respectively. Typically speaking, t⊥ is much smaller
than t‖. The signs of the σ - and π -bonding terms are opposite
to each other because of the odd parity of p orbitals. The pz

orbital is inactive because it forms σ bonding with halogen
atoms or the hydrogen atom.

There exists the atomic SO coupling �s · �L on each site.
However, under the projection into the px- and py-orbital
states, there are only four on-site single-particle states. They
can be classified into two sets of Kramers doublets: p

†
+,↑|0〉

and p
†
−,↓|0〉 with jz = ± 3

2 , and p
†
+,↓|0〉 and p

†
−,↑|0〉 with jz =

± 1
2 , where p

†
±,s = 1√

2
(p†

x,s ± ip
†
y,s) are the orbital angular

momentum Lz eigenstates and jz is the z component of
total angular momentum. These four states cannot be mixed
under jz conservation, and thus only the szLz term survives
which splits the degeneracy between the two sets of Kramers
doublets. The SO coupling is modeled as

Hso = −λ
∑
�r,σ,s

σ s p†
σ,s(�r)pσ,s(�r), (2)

where σ = ± refers to the orbital angular momentum number
Lz, s = ± corresponds to the eigenvalues of sz = ↑,↓, and λ

is the SO coupling strength. For completeness, we also add the
sublattice asymmetry term

Hm = m

⎧⎨
⎩

∑
�r∈A,σ,s

p†
σ,s(�r)pσ,s(�r) −

∑
�r∈B,σ,s

p†
σ,s(�r)pσ,s(�r)

⎫⎬
⎭ .

(3)

In Sec. VIII, we will consider the QAH state based on this
system by adding the following time-reversal (TR) symmetry
breaking Néel exchange term

Hn = n

⎧⎨
⎩

∑
�r∈A,σ,s

s p†
σ,s(�r)pσ,s(�r) −

∑
�r∈B,σ,s

s p†
σ,s(�r)pσ,s(�r)

⎫⎬
⎭ .

(4)

where n is the Néel exchange field strength. Before Sec. VIII,
we only consider the Hamiltonian H0 + Hso + Hm without the
Néel exchange term.

III. SYMMETRY PROPERTIES

One key observation is that electron spin sz is conserved
for the total Hamiltonian H0 + Hso + Hm. We will analyze
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the band structure in the sector with s = ↑, and that with
s = ↓ can be obtained by performing time-reversal (TR)
transformation. H0 + Hso is a TR doubled version of the QAH
model proposed in ultracold fermion systems in honeycomb
optical lattices [30]. In the sector with s = ↑, we introduce
the four-component spinor representation in momentum space
defined as

ψ↑τσ (�k) = (ψ↑,A,+(�k), ψ↑,B,+(�k), ψ↑,A,−(�k), ψ↑,B,−(�k))T ,

(5)

where two sublattice components are denoted A and B. The
doublet of orbital angular momentum and that of the sublattice
structure are considered as two independent pseudospin
degrees of freedom, which are denoted by two sets of Pauli
matrices as σ1,2,3 and τ1,2,3, respectively. Unlike sz, these two
pseudospins are not conserved. The nearest neighbor hopping
connects A-B sublattices, which does not conserve the orbital
angular momentum due to orbital anisotropy in lattice systems.

The Hamiltonian H↑(�k) can be conveniently represented as

H↑(�k) = h031τ ⊗ σ3 + h30τ3 ⊗ 1σ + h10(�k)τ1 ⊗ 1σ

+h20(�k)τ2 ⊗ 1σ + h11(�k)τ1 ⊗ σ1 + h22(�k)τ2 ⊗ σ2

+h21(�k)τ2 ⊗ σ1 + h12(�k)τ1 ⊗ σ2, (6)

with the expressions of

h03 = −λ, h30 = m,

h10 = t1

3∑
i=1

cos(�k · êi),

h20 = −t1

3∑
i=1

sin(�k · êi),

h11 = t2

3∑
i=1

cos(�k · êi) cos 2θi, (7)

h22 = −t2

3∑
i=1

sin(�k · êi) sin 2θi,

h21 = −t2

3∑
i=1

sin(�k · êi) cos 2θi,

h12 = t2

3∑
i=1

cos(�k · êi) sin 2θi,

where t1,2 = 1
2 (t‖ ± t⊥) and θi = 1

6π , 5
6π , 3

2π are the azimuthal
angles of the bond orientation êi for i = 1, 2, and 3,
respectively.

For the sector with s = ↓, the four-component
spinors ψ↓ are constructed as ψ↓τσ (�k) =
(ψ↓,A,+(�k),ψ↓,B,+(�k),ψ↓,A,−(�k),ψ↓,B,−(�k))T . Under this
basis, H↓(�k) has the same matrix form as that of H↑(�k) except
we flip the sign of λ in the h03 term.

Next we discuss the symmetry properties of H↑(�k). We first
consider the case of m = 0, i.e., in the absence of the lattice

asymmetry. H↑(�k) satisfies the parity symmetry defined as

PH↑(�k)P −1 = H↑(−�k), (8)

with P = τ1 ⊗ 1σ . H↑(�k) also possesses the particle-hole
symmetry

C ′H↑(�k)(C ′)−1 = −H ∗
↑ (−�k), (9)

where C ′ = τ3 ⊗ σ1, satisfying (C ′)2 = 1, and ∗ represents
complex conjugation. C ′ is the operation of p↑,A,σ → p↑,A,σ

and p↑,B,σ → −p↑,B,σ combined with switching eigenstates
of Lz.

Furthermore, when combining two sectors of s = ↑ and
↓ together, the system satisfies the TR symmetry defined
as T = is2 ⊗ 1τ ⊗ σ1 ⊗ K with T 2 = −1, where K is the
complex conjugation. Due to the above symmetry proprieties,
our system is in the DIII class [46] in the absence of lattice
asymmetry. However, in the presence of lattice asymmetry,
the particle-hole symmetry C ′ is broken, and only the TR
symmetry exists. In that case, the system is in the sympletic
class AII. In both cases, the topological index is Z2.

Nevertheless, in the presence of sublattice asymmetry m,
the product of parity and particle-hole transformations remains
a valid symmetry as

CH↑(�k)C−1 = −H ∗
↑ (�k), (10)

where C = iτ2 ⊗ σ1, satisfying C2 = −1. This symmetry
ensures the energy levels, for each �k, appear symmetric with
respect to the zero energy.

Without loss of generality, we choose the convention that
m > 0 and λ > 0 throughout the rest of this article. The case
of m < 0 can be obtained through a parity transformation that
flips the A and B sublattices as

Hm<0(�k) = (τ1 ⊗ 1σ )Hm>0(−�k)(τ1 ⊗ 1σ )−1. (11)

The case of λ < 0 can be obtained through a partial TR
transformation only within each spin sector but without
flipping electron spin:

Hλ<0(�k) = (1τ ⊗ σ1)H ∗
λ>0(−�k)(1τ ⊗ σ1)−1. (12)

IV. ENERGY SPECTRA AND EIGENFUNCTIONS

In this section, we provide solutions to the Hamiltonian of
px- and py-orbital bands in honeycomb lattices. Based on
the properties of � matrices, most results can be expressed
analytically.

A. Analytic solution to eigenenergies

Due to Eq. (10), the spectra of H↑(�k) are symmetric
with respect to the zero energy. Consequently, they can be
analytically solved as follows. The square of H↑(�k) can be
represented in the standard �-matrix representation as

H 2(�k) = g0(�k) + 2
5∑

i=1

gi(�k)�i, (13)
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with the gi’s expressed as

g0 = λ2 + m2 + 3
(
t2
1 + t2

2

) + (
2t2

2 − t2
1

) 3∑
j=1

cos �k · �bj ,

g1 = −t1t2

3∑
j=1

cos �k · �bj sin θi,

g5 = −t1t2

3∑
j=1

cos �k · �bj cos θi,

g2 = −λt2

3∑
j=1

cos �k · �aj ,

g3 = −λt2

3∑
j=1

sin �k · �aj ,

g4 =
√

3

2
t2
1

3∑
j=1

sin �k · �bj − mλ, (14)

where �b1 = ê2 − ê3, �b2 = ê3 − ê1, and �b3 = ê1 − ê2.
The � matrices satisfy the anticommutation relation as

{�i,�j } = 2δij . They are defined here as

�1 = 1τ ⊗ σ1, �2,3,4 = τ1,2,3 ⊗ σ3, �5 = 1τ ⊗ σ2. (15)

The spectra are solved as E2(�k) = g0 ± 2(
∑5

i=1 g2
i )

1
2 .

In the case of neglecting the π bonding, i.e., t1 = t2 = 1
2 t‖,

the spectra can be expressed as

E1,4(�k) = ±
√

f1(�k) +
√

f2(�k),

E2,3(�k) = ±
√

f1(�k) −
√

f2(�k),

(16)

where

f1(�k) = λ2 + m2 + 3

2
t2
‖ + 1

4
t2
‖ηc(�k),

f2(�k) =
{

t2
‖
4

[3 − ηc(�k)] − 4λ2

}2

(17)

+ λ2(9t2
‖ − 16λ2 + 4m2) −

√
3

4
t2
‖mληs(�k),

and the expressions for ηc, ηs are defined as

ηc(�k) =
3∑

j=1

cos �k · �bj , ηs(�k) =
3∑

j=1

sin �k · �bj . (18)

B. Solution to eigen wave functions

Eigen wave functions ψi(�k) for the band index i = 1, . . . ,4
can be obtained by applying two steps of projection operators
successively. The first projection is based on H 2(�k) which
separates the subspace spanned by ψ1,4(�k) from that by ψ2,3(�k).

We define

P14(�k) = 1

2

[
1 +

5∑
i=1

g′
i(�k)�i

]
,

P23(�k) = 1

2

[
1 −

5∑
i=1

g′
i(�k)�i

]
,

(19)

where g′
i is normalized according to g′

i(�k) = gi(�k)/
√

f2(�k)
such that

∑
i g

′,2
i = 1. In each subspace, we can further

distinguish the positive and negative energy states by applying

Pi(�k) = 1

2

{
1 + 1

Ei

H↑(�k)

}
. (20)

for each band i = 1, . . . ,4. In other words, starting from an
arbitrary state vector ψ(�k), we can decompose it into ψ(�k) =∑4

i=1 φi(�k) according to

φ1,4(�k) = P1,4(�k)P14(�k)ψ,

φ2,3(�k) = P2,3(�k)P23(�k)ψ.
(21)

which satisfy Hφi(�k) = Eiφi(�k). Nevertheless, the concrete
expressions of eigen wave functions ψi (i = 1, . . . ,4) after
normalization are rather complicated and thus we will not
present their detailed forms.

C. A new set of bases

Below we present a simplified case in the absence of SO
coupling, i.e., λ = 0, in which the two-step diagonalizations
can be constructed explicitly. This also serves as a set of
convenient bases for further studying the band topology after
turning on SO coupling. We introduce a new set of orthonormal
bases denoted as

|A1(�k)〉 = 1√
2Nk

⎛
⎜⎜⎜⎝

γ ∗
1−(�k)

0

γ ∗
1+(�k)

0

⎞
⎟⎟⎟⎠ ,

|B1(�k)〉 = 1√
2Nk

⎛
⎜⎜⎜⎜⎝

0

γ1+(�k)

0

γ1−(�k)

⎞
⎟⎟⎟⎟⎠ ,

(22)

and

|A2(�k)〉 = 1√
2Nk

⎛
⎜⎜⎜⎜⎝

γ2−(�k)

0

γ2+(�k)

0

⎞
⎟⎟⎟⎟⎠ ,

(23)

|B2(�k)〉 = 1√
2Nk

⎛
⎜⎜⎜⎜⎝

0

γ ∗
2+(�k)

0

γ ∗
2−(�k)

⎞
⎟⎟⎟⎟⎠
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where

γ1±(�k) =
3∑

i=1

ei�k·êi±2iθi ,

γ2±(�k) =
3∑

i=1

ei�k·êi±iθi , (24)

N (�k) = 3 − ηc(�k).

In terms of this set of new bases, H↑(�k) is represented as

H↑(�k)

=

⎡
⎢⎢⎣

m − n(�k) − 3
2 t‖ h(�k) 0

− 3
2 t‖ −m + n(�k) 0 h(−�k)

h∗(�k) 0 m + n(�k) − 1
2 t‖l∗(�k)

0 h∗(−�k) − 1
2 t‖l(�k) −m − n(�k)

⎤
⎥⎥⎦ ,

(25)

where for simplicity t⊥ is set to 0; n(�k), l(�k), and h(�k) are
expressed as

n(�k) =
√

3λ

Nk

ηs(�k), l(�k) =
∑

i

ei�k·êi ,

h(�k) = iλ

Nk

⎧⎨
⎩
(∑

i

ei�k·êi

)2

− 3

(∑
i

e−i�k·êi

)⎫⎬
⎭ .

(26)

In the absence of SO coupling, h(�k) = n(�k) = 0, the above
matrix of H↑(�k) is already block diagonalized. The left-up
block represents the Hamiltonian matrix in the subspace
spanned by the bottom band |φ1(�k)〉 and top band |φ4(�k)〉, and
the right-bottom block represents that in the subspace spanned
by the middle two bands |φ2,3(�k)〉. Apparently, the bottom and
top bands are flat as

E1,4 = ±
√(

3
2 t‖

)2 + m2, (27)

whose eigen wave functions are solved as[
|φ1(�k)〉
|φ4(�k)〉

]
=

[
sin α

2 cos α
2

cos α
2 − sin α

2

][
|A1(�k)〉
|B1(�k)〉

]
, (28)

where α = arctan 3t‖
2m

. As for the middle two bands, the spectra
can be easily diagonalized as

E2,3(�k) = ±
√

1
4 t2

‖η2
c (�k) + m2. (29)

The spectrum is the same as that in graphene at m = 0. The
eigen wave functions are enriched by orbital structures which
can be solved as[

|φ2(�k)〉
|φ3(�k)〉

]
=

[
sin β

2 cos β

2 eiφ

cos β

2 e−iφ − sin β

2

][
|A2(�k)〉
|B2(�k)〉

]
, (30)

where β(�k) = arctan[ t‖
2m

l(�k)] and φ(�k) = arg l(�k).

D. Appearance of flat bands

According to the analytical solution of spectra Eq. (16), flat
bands appear in two different situations: (i) In the absence of

SO coupling such that the bottom and top bands are flat with
the eigen energies described by Eq. (27); (ii) in the presence
of SO coupling, at λ = 3

4 t‖, the two middle bands are flat
with the energies E2,3(�k) = ± 3

4 t‖. In both cases, the band
flatness implies that we can construct eigenstates localized
in a single hexagon plaquette. The localized eigenstates for
the case of λ = 0 are constructed in Ref. [29], and those
for the case of λ = 3

4 t‖ were presented in Ref. [35]. Since
the kinetic energy is suppressed in the flat bands, interaction
effects are nonperturbative. Wigner crystallization [29] and
ferromagnetism [33] have been studied in the flat band at
λ = 0.

V. BAND TOPOLOGY AND BAND CROSSINGS

In this section, we study the topology of band structures
after SO coupling λ is turned on. Due to the sz conservation,
the Z2 topological class is augmented to the spin Chern class.
Without loss of generality, we only use the pattern of Chern
numbers of the sector s = ↑ to characterize the band topology,
and that of the s = ↓ sector is just with an opposite sign. The
Berry curvature for the ith band is defined as

Fi(�k) = ∂kx
Ay(�k) − ∂ky

Ax(�k) (31)

in which the Berry connection is defined as �Ai(�k) =
−i〈φi(�k)| �∇k|φi(�k)〉. The spin Chern number of band i can
be obtained through the integral over the entire first Brillouin
zone as

Cs,i = 1

2π

∫
FBZ

dkxdkyFi(�kx,�ky). (32)

A. Band crossings at �, K , and K ′

We have performed the numerical integration for spin
Chern numbers (Cs,1,Cs,2,Cs,3,Cs,4) for H↑(�k) as presented in
Fig. 1 based on Eq. (32). The phase boundary lines L1,2,3 are

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

m
/t|

|

||

B1
(1,0,0,-1)

A1
(1,-1,1,-1)

B2
(0,1,-1,0) C1

(0,0,0,0)

A2
(1,-1,1,-1)

C2
(0,0,0,0)

L1L2L3

FIG. 1. Phases with different spin Chern number patterns
(Cs1,Cs2,Cs3,Cs4) vs SO coupling strength λ and the sublattice
asymmetry parameter m. Due to the sz conservation and TR
symmetry, only those of the four s = ↑ bands are shown. Phase
boundaries L1,2,3 satisfy the level crossing conditions located at �,
K , and K ′, respectively. Their analytic expressions are λ2 − m2 =
( 3

4 t‖)2, λ = m, and λ m = ( 3
4 t‖)2, respectively. L1 and L3 intersect

at (λ,m) = ( 3
4 (

√
5 + 2), 3

4 (
√

5 − 2)) ≈ (1.54,0.36), and L2 and L3

intersect at (λ,m) = ( 3
4 , 3

4 ).
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associated with band touching, which occurs at high symmetry
points �, K , and K ′, respectively. The momenta of these points
are defined as (0,0), (± 4π

3
√

3
,0). Since the dispersions of H↑(�k)

are symmetric with respect to zero energy, the band crossing
occurs either between bands 2 and 3 at zero energy, or between
1 and 2, 3 and 4 symmetrically with respect to zero energy.

We first check the crossing at the � point. According to
Eq. (16), the energies of the two middle levels are

E2,3(�) = ±(
λ −

√
m2 + (

3
2 t‖

)2)
. (33)

The level crossing can only occur at zero energy with the
hyperbolic condition

λ2 = m2 + (
3
2 t‖

)2
, (34)

which corresponds to line L1 in Fig. 1.
The sublattice asymmetry parameter m and SO coupling

λ are different mass generation mechanisms. The former
breaks parity and contributes equally at K and K ′, while the
latter exhibits opposite signs. Their total effects superpose
constructively or destructively at K and K ′, respectively, as
shown in the spectra of the two lower energy levels at K and
K ′. At K ′ = (− 4π

3
√

3
,0), they are

E2,3(K ′) = ±(λ − m), (35)

and those at K = ( 4π

3
√

3
,0) are

E1,4(K) = ∓
√

(m − λ)2 + (
3
2 t‖

)2
,

E2,3(K) = ∓(m + λ).
(36)

Thus the level crossing at K ′ occurs at zero energy with the
relation

λ = m, (37)

which is line L2 in Fig. 1. Similarly, the level crossing at K

occurs when E2(K) = E1(K) leading to the condition

λ m = (
3
4 t‖

)2
, (38)

which is line L3 in Fig. 1.

B. Evolution of the topological band structures

The lattice asymmetry term m by itself can open a gap at K

and K ′ in the absence of SO coupling. In this case, the gap value
is m at both K and K ′. The lower two bands remain touched
at the � point with quadratic band touching. Nevertheless, the
overall band structure remains nontopological.

The SO coupling λ brings nontrivial band topology. Its
competition with the lattice asymmetry results in a rich
structure of band structure topology presented in Fig. 1, which
are characterized by their pattern of spin Chern numbers. There
are two phases characterized by the same spin Chern number
pattern (1,−1,1 −1) marked as A1 and A2, respectively; two
phases characterized by (1,0,0,−1) marked as B1 and B2; and
two trivial phases denoted as C1 and C2 (0,0,0,0).

Even an infinitesimal value of λ removes the quadratic
band touching between the band 1 and 2, and brings nontrivial
band topology. The line of m = 0 corresponds to the situation

investigated in the QAH insulator based on the px- and py-
orbital bands in the honeycomb lattice [32,35]. The current
situation is a 2D topological insulator with sz conserved, which
is just a double copy of the previous QAH model. At small
values of λ, the system is in the B1 phase. It enters the A2

phase after crossing the line L1 at λ = 3
2 t‖.

If the system begins with a nonzero lattice asymmetry
parameter m, it first enters the A1. If we increase SO coupling
strength λ by fixing m at different values, different band
topology transitions appear. To further clarify these transitions,
we plot the spectra evolutions with increasing λ while fixing
m = 0.3, 0.5, and 1 in Figs. 2–4, respectively. Only the spectra
along the line cut from K ′ to � to K in the Brillouin zone are
plotted. At small values of m as shown in Fig. 2, the gap first
closes at K ′, and then at �, and finally at K with increasing λ.
The sequence of phase transitions is A1 → B1 → A2 → C1.
At intermediate values of m shown in Fig. 3, the gap first
closes at K ′, then at K , and finally at � leading to a sequence
of phase transitions A1 → B1 → B2 → C1. At large values of
m as shown in Fig. 4, the gap first closes at K ′, then at K , and
finally at �. The sequence of phases is A1 → C2 → B → C1.

VI. REDUCED TWO-BAND MODELS AROUND
BAND CROSSINGS

In order to further clarify topological band transitions, we
derive the effective two-band Hamiltonians around the gap
closing points (�, K , and K ′) respectively in this section.

Since the crossing at the � point occurs at zero energy, we
consider the middle two states. We construct the two bases as

|φ2(�k)〉 = cos
α

2
|ψA,−(�k)〉 + sin

α

2
|ψB,−(�k)〉

|φ3(�k)〉 = − sin
α

2
|ψA,+(�k)〉 + cos

α

2
|ψB,+(�k)〉,

(39)

where α = arctan 3t‖
2m

. Right at the � point, these two bases
are the eigenvectors of the middle two bands with ener-
gies are E2,3(�) = ∓(

√
m2 + ( 3

2 t‖)2 − λ), respectively. As
λ →

√
m2 + ( 3

2 t‖)2, we construct the low-energy Hamiltonian
for �k around the � point by using |φ2,3(�k)〉 as bases:[〈φ2|H |φ2〉 〈φ2|H |φ3〉

〈φ3|H |φ2〉 〈φ3|H |φ3〉
]

=
⎡
⎣−λ +

√
m2 + (

3
2 t‖

)2 3
4 t‖(kx + iky)

3
4 t‖(kx − iky) λ −

√
m2 + (

3
2 t‖

)2

⎤
⎦ , (40)

which describes the band crossing of line L1 in Fig. 1. The
two-band effective model for the crossing at the K ′ point is just
what we have constructed in Eq. (42). It describes the crossing
at zero energy represented by line L2 in Fig. 1.

As for the band crossing at the K point, it occurs between
band 1 and 2, and between 3 and 4 symmetrically with respect
to zero energy (B2, C1, and C2 phases). For simplicity, we
only consider the effective two-band model at small values
of m. In this case, the band crossing is described by line L3

in Fig. 1 occurring at large values of λ � m. The on-site
energy level splitting between the states of (p+,↑) and (p−,↑)
is larger than the hopping integral t‖, and each of them
will develop a single band in the honeycomb lattice. The

075114-6



HONEYCOMB LATTICE WITH MULTIORBITAL . . . PHYSICAL REVIEW B 90, 075114 (2014)

K' K
1.5

0

1.5

E/
t

m/t =0.1

Cs=1 Cs=-1

Cs=1Cs=-1
(a)

K' K

1.5

0

1.5

m/t =0.3

E/
t

(b)

K' K

2

0

2

E/
t

m/t =1

Cs=1

Cs=0

Cs=0

Cs=-1
(c)

K' K
3

1.5

0

1.5

3
m/t =1.53

E/
t

(d)

K' K
3

1.5

0

1.5

3
m/t =1.61

E/
t

Cs=1

Cs=-1

Cs=1

Cs=-1
(e)

K' K
3

1.5

0

1.5

3
m/t =1.9

E/
t

(f)

K' K
4

2

0

2

4

E/
t

m/t =2.8

Cs=0

Cs=0

Cs=0

Cs=0
(g)

FIG. 2. The spectra along the cut of K ′-�-K in Brillouin zone. The spectra evolution is shown with fixed m/t‖ = 0.3 and increasing λ from
0.1 (a) to 2.8 (g), which passes phases A1, B1, A2, and C1. The pattern of spin-Chern numbers in the gapped states are marked. Parameters
of (b), (d), and (f) are located at phase boundaries and gaps are closed at K ′, �, and K points for (b), (d), and (f), respectively. Please note
the appearance of single Dirac cones for the sector of spin-↑, which is possible in 2D when two masses from sublattice asymmetry and SO
coupling compete.

bands of p± orbitals lie symmetrically with respect to zero
energy. Nevertheless, as shown in Refs. [32,35], the interband
coupling at the second-order perturbation level effectively
generates the complex-valued next-nearest-neighbor hopping
as in Haldane’s QAH model [5]. Our current situation is a TR
double copy and thus it gives rise to the Kane-Mele model.

To describe the above physics, we only keep the p+ orbitals
on each site in the case of large values of λ. Then the terms of
h11, h22, h21, and h12 in Eq. (8) become perturbations. By the
second-order perturbation theory, we derive the low-energy
Hamiltonian of (pA,+(�k), pB,+(�k)) bands as[〈ψA+|H |ψA+〉 〈ψA+|H |ψB+〉

〈ψB+|H |ψA+〉 〈ψB+|H |ψB+〉
]

=
[
m + mH (�k) − t‖

2 l∗(�k)
− t‖

2 l(�k) −m − mH (�k)

]
,

where

mH (�k) =
√

3

8

t2
‖
λ

sin ηs(�k). (41)

Around the K point, mH (K) = − 9
16

t2
‖
λ

. The band crossing

occurs when m + mH (�k) switches sign, which gives rise to
line L3 in Fig. 1.

The topological gap opens at the K ′ point between bands
2 and 3. According to Eq. (25), we only need to keep the
right-bottom block for the construction of the low-energy
two-band model. By expanding around the K ′ point, we have

[〈A2|H |A2〉 〈A2|H |B2〉
〈B2|H |A2〉 〈B2|H |B2〉

]

=
[

m − λ − 3
4 t‖(δkx + iδky)

− 3
4 t‖(δkx − iδky) −m + λ

]
, (42)

where δ�k = �k − �K ′, and thus the mass term is controlled
by m − λ. For completeness, we also derive the effective
two-band Hamiltonian for bands 2 and 3 around the K point
similarly, which yields the gap value m + λ. In the absence of
lattice asymmetry, the gap values at K and K ′ are both the SO
coupling strength.
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FIG. 3. The same plot as in Fig. 2 but for the evolution with fixed m/t‖ = 0.5 and increasing λ from 0.2 (a) to 2 (g), which passes phases
A1, B1, and B2 and C1. Gaps are closed at K ′, K , and � points in (b), (d), and (f), respectively.

Now let us look more carefully at the eigen wave functions
of the effective two-band Hamiltonian for bands 2 and 3 at K ′
and K points and check their orbital angular momenta. The
eigenstates are just |A2(K ′)〉 and |B2(K ′)〉 at K ′, and |A2(K)〉,
and |B2(K)〉 at K . In the bases of Eq. (5), we express

|A2(K ′)〉 =

⎡
⎢⎣

1
0
0
0

⎤
⎥⎦ , |B2(K ′)〉 =

⎡
⎢⎣

0
0
0
1

⎤
⎥⎦ ,

(43)

|A2(K)〉 =

⎡
⎢⎣

0
0
1
0

⎤
⎥⎦ , |B2(K)〉 =

⎡
⎢⎣

0
1
0
0

⎤
⎥⎦ .

All of them are the orbital angular momentum eigenstates with
Lz = ±1. Considering this is the sector with s = ↑, the gap is
just the atomic SO coupling strength λ in the absence of the
lattice asymmetry term m.

VII. LARGE TOPOLOGICAL BAND GAPS

The most striking feature of the these px-py systems is the
large topological band gap at K ′, K , and � points. In this
section, we analyze the origin of large topological band gaps
at these k points in the B1 phase (QSH phase, λ > m). For
the case of a single-component fermion QAH model studied
in Ref. [32], it has been analyzed that the gap values at the �,
�K , and �K ′ points are just the on-site rotation angular velocity
� in the absence of the lattice asymmetry term. The situation
in this paper is a TR invariant double copy of the previously
single component case, and thus the role of of � is replaced
by the on-site atomic SO coupling strength λ.

At the K ′ point, according to Eq. (43), the eigenstates for
the bands 2,3 are orbital angular momentum eigenstates with
Lz = ±1. The energy and corresponding eigenstates for bands
2 and 3 are

E2(K ′) = m − λ, |φ2(K ′)〉 = |ψA,+(K ′)〉,
E3(K ′) = λ − m, |φ3(K ′)〉 = |ψB,−(K ′)〉, (44)

�K ′ = 2(λ − m).

As shown in Fig. 5, the eigenstate for band 2 has Lz = +1
with the energy m − λ, which is of px + ipy type, and its
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FIG. 4. The same plot as in Fig. 2 but for the evolution fixing m/t‖ = 1 and increasing λ from 0.2 (a) to 2 (g), which passes phases A1, C2,
and B2 and C1. Gaps are closed at K ′, K , and � points in (b), (d), and (f), respectively.

wave function is totally on the A sublattice. In contrast, the
eigenstate for band 3 has Lz = −1 with the energy λ − m.
It is of the px − ipy type whose wave function completely
distributes on the B sublattice. The topological band gap is
thus 2(λ − m). If the sublattice asymmetry term vanishes, i.e.,
m = 0, the band gap is just 2λ.

Obviously, the atomic on-site SO coupling strength λ

directly contributes to the topological band gap, leading to
a large band splitting. It is because at the K ′ point, the
eigenstates of the system are also Lz eigenstates, which means
the topological band gap is the eigenenergy difference between
the SO coupling term szLz for Lz = ±1. It is easy to generalize
the analysis to the K point similarly.

At the � point, the Hamiltonian H (�k) preserves all the rota-
tion symmetries of the system, and thus the SO coupling term
szLz commutes with H (�k). The eigenstates simultaneously
diagonalize the SO coupling term and H (�k). The energy and
corresponding eigenstates for bands 1 and 2 at the � point are

E1(�) = −λ −
√

m2 + (
3
2 t‖

)2
,

|φ1(�)〉 = sin
α

2
|ψA,+(�)〉 + cos

α

2
|ψB,+(�)〉.

E2(�) = λ −
√

m2 + (
3
2 t‖

)2
,

|φ2(�)〉 = cos
α

2
|ψA,−(�)〉 + sin

α

2
|ψB,−(�)〉,

�� = 2λ. (45)

The eigenstates for bands 1,2 are the superpositions of
wave functions on both the A and B sublattices. However,
for band 1, the eigenstate is an Lz = −1 eigenstate, and
the eigenstate for band 2 is an Lz = 1 eigenstate (see
Fig. 5). As a result, the topological band gap �� is the
energy difference of the SO coupling term szLz, which
is 2λ.

We discuss the dependence of the topological gap values
on SO coupling strength in the B1 phase. Let us first consider
the gap between the lowest two bands. For the case without
lattice asymmetry, i.e., m/t‖ = 0, in the weak and intermediate
regimes of the SO coupling strength 0 < λ/t‖ < 3/(4

√
2), the

minimal gap is located at the � point as shown in Fig. 2(b).
In typical solid state systems, λ lies in these regimes, and
thus, typically, the topological gap can approach up to 2λ =
3/(2

√
2)t‖, which is a very large gap. If λ further increases,

then the minimal gap shifts from the � point to the K points,
and the value of the gap shrinks as λ increases. Similarly,
consider the topological gap between the middle two bands,
and for parameters m/t‖ = 0: as long as the SO coupling
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FIG. 5. (Color online) The topological energy gap at the high symmetry K ′, K , and � points for the B1 phase, denoted �K ′ , �K , and �� ,
respectively. �K ′ = �K = �� = 2λ in the absence of lattice asymmetry. The corresponding real space orbital configurations of the eigenstates
are of px ± ipy type (Lz = ±1). We denote the orbital angular momentum Lz = ±1 eigenstates as red (blue) counterclockwise (clockwise)
circles, as shown in the inset. At the K ′(K) point, the eigenstate for band 2 is of the px + ipy type completely located at the A(B) sublattice,
while for band 3 the eigenstate is of the px − ipy type at the B(A) sublattice. The phase factor for each site in the hexagonal plaquette is

ω = ei 2
3 π . At the � point, the eigenstates for band 1 and 2 are both superpositions of the wave functions at A and B sublattices, but with

opposite orbital angular momentum.

strength is in the B1 phase, the minimal gap is located at
the K(K ′) point, which can approach up to 2λ = 3 t‖.

VIII. QUANTUM ANOMALOUS HALL STATE

In this section, we add the Néel antiferromagnetic exchange
field term [Eq. (4)] to the Hamiltonian. This term gives rise to
another mass generation mechanism. Together with the atomic
SO coupling term of Lzσz, and the sublattice asymmetry term
[Eq. (3)] discussed before, we can drive the system to a QAH
state. A similar mechanism was also presented in the single-
orbital honeycomb lattice [47], and here we generalize it to the
px-py-orbital systems.

We consider the gap opening at the K and K ′ points, and
assume that bands 1 and 2 are filled. In the absence of the Néel
term [Eq. (4)], the system is in the trivially gapped phase A1

at m > λ, and in the QSH phase B1 at λ > m.
Let us start with the QSH phase B1 with λ > m > 0, and

gradually turn on the Néel exchange magnitude n > 0. The
energy levels for different spin sectors at the K ′ and K points

for the middle two bands are

E2,3,↑(K ′) = ∓(λ − m − n),

E2,3,↓(K ′) = ∓(λ + m − n),

E2,3,↑(K) = ∓(λ + m + n),

E2,3,↓(K) = ∓(λ − m + n).

(46)

The gap will not close for both spin-↑ and spin-↓ sectors at
the K point with increasing n, and thus we focus on the band
crossing at the K ′ point. At this point, the first band crossing
occurs in the spin-↑ sector at n = λ − m, which changes the
spin-↑ sector into the topologically trivial regime. Meanwhile,
the spin-↓ sector remains topologically nontrivial, and thus
the system becomes a QAH state. If we further increase n, the
second band crossing occurs in the spin-↓ sector at n = λ + m,
at which the spin-↓ sector also becomes topologically trivial.
In this case, the entire system is a trivial band insulator. The
QAH state can be realized for λ − m < n < λ + m. The band
crossing diagrams are shown in Fig. 6(a).

Similarly, we start from the A1 trivially gapped phase (0 <

λ < m), and gradually turn on the Néel exchange field n. The
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FIG. 6. (Color online) Diagrams of the energy level crossing
with increasing antiferromagnetic exchange field strength n for two
parameter regimes (a) 0 < m < λ and (b) 0 < λ < m. Red wavy
lines indicate the range of n for the system to be in a QAH phase
(|λ − m| < n < λ + m).

middle two energy levels for both spin sectors at the K ′ and
K points are

E2,3,↑(K ′) = ∓(m − λ + n),

E2,3,↓(K ′) = ∓(m + λ − n),

E2,3,↑(K) = ∓(m + λ + n),

E2,3,↓(K) = ∓(m − λ − n).

(47)

In this case, the spin-↑ sector remains in the trivially gapped
phase with increasing n, since there is no band inversion in
this sector [see Fig. 6(b)]. The first band crossing occurs in
the spin-↓ sector at the K point when n = m − λ, rendering
this sector topologically nontrivial, and then the whole system
goes into a QAH phase. The second band inversion occurs at
the K ′ point also in the spin-↓ sector at n = λ + m. Now the
spin-↓ sector is back into a topologically trivial phase, and
the whole system is a trivial band insulator for n > λ + m.
Similarly to the previous case, the QAH phase is realized at
−λ + m < n < λ + m.

There are three gap parameters in our model, the spin-
orbit coupling λ, the sublattice asymmetry term m, and the
Néel exchange field n. Combining the two situations discussed
above, we summarize the condition for the appearance of the
QAH state as follows:

|λ − m| < n < λ + m, (48)

which is also equivalent to |m − n| < λ < m + n, or |λ − n| <

m < λ + n. In other words, the three gap parameters λ, m, and
n can form a triangle. For the buckled honeycomb lattices, the
A and B sublattices are at different heights. The Néel exchange
field n can be generated by attaching two ferromagnetic
substrates with opposite magnetizations to the two surfaces,
and the sublattice asymmetry term m can also be generated
if the contacts with these two substrates are asymmetric.
In the parameter regime for the QAH state, it is easy to

check that the maximal topological gap is the minimum of λ

and m.

IX. CONCLUSIONS AND OUTLOOK

In summary, we have presented a minimal model to describe
the 2D topological insulator states in the honeycomb lattice
which have been recently proposed in the literature. The px

and py orbitals are the key, and thus their properties are
dramatically different from those in graphene. The atomic
level SO coupling directly contributes to the topological gap
opening, and thus the gap can be large. Due to the conservation
of sz, the band structures are a TR invariant doublet of the
previously investigated QAHE based on the p orbital in the
honeycomb lattice. The band topology is described by the spin
Chern numbers. Both sublattice asymmetry and the on-site
SO coupling can open the gap, and their competition leads to
a rich structure of topological band insulating phases. Due to
the underlying structure of Clifford algebra, the energy spectra
and eigen wave functions can be obtained analytically. Also,
the transition lines among different topological insulators are
also analytically obtained. Low-energy two-band models are
constructed around band crossings. Furthermore, with the help
of the Néel antiferromagnetic exchange field, the model can
enter into a QAH phase. This work provides a useful platform
for further exploring interaction and topological properties in
such systems.

In addition to a class of solid state materials, the model
constructed in this article can, in principle, also be realized in
ultracold-atom optical lattices. For example, in previous papers
by one of the authors and his collaborators (Refs. [30,35]), the
quantum anomalous Hall models were proposed for spinless
fermions of the px/py bands in the honeycomb optical lattices.
By this technique, each optical site is rotating around its own
center, which can be modeled as an orbital Zeeman term. The
quantum spin Hall model of Eqs. (1) and (2) is a time-reversal
invariant double of the anomalous quantum Hall model, which
in principle can be realized by the spin-dependent on-site
rotations of the honeycomb lattice, i.e., the rotation angular
velocities for spin-↑ and spin-↓ fermions are opposite to each
other. This is essentially a spin-orbit coupling term Lz Sz

and the rotation angular velocity plays the role of spin-orbit
coupling strength. In order to observe the topological phase,
we need the fermions population to fill the p-orbital bands.
Then, the phase diagram will be the same as in Fig. 1, by
replacing the spin-orbit coupling strength with the magnitude
of the angular velocity.

Note added. Near the completion of this work, we became
aware of Ref. [41] in which the low-energy effective model
of the 2D topological insulators on honeycomb lattice is also
constructed.
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