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Cooperative robustness to static disorder: Superradiance and localization in a nanoscale ring
to model light-harvesting systems found in nature
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We analyze a one-dimensional ring structure composed of many two-level systems, in the limit where only
one excitation is present. The two-level systems are coupled to a common environment, where the excitation
can be lost, which induces super- and subradiant behavior, an example of cooperative quantum coherent effect.
We consider time-independent random fluctuations of the excitation energies. This static disorder, also called
inhomogeneous broadening in literature, induces Anderson localization and is able to quench superradiance. We
identify two different regimes: (i) weak opening, in which superradiance is quenched at the same critical disorder
at which the states of the closed system localize; (ii) strong opening, with a critical disorder strength proportional
to both the system size and the degree of opening, displaying robustness of cooperativity to disorder. Relevance
to photosynthetic complexes is discussed.
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I. INTRODUCTION

Since the discovery that quantum coherences might have
a functional role in biological systems even at room tempera-
ture [1–5], there has been great interest in understanding how
coherences can be maintained and used under the influence of
different environments with competing effects. In particular,
much of recent research focused on one-dimensional nanos-
tructures, due to their relevance to molecular aggregates, such
as the J aggregates [6], natural photosynthetic systems [7],
bioengineered devices for photon sensing [8], and light-
harvesting systems [9].

Here we focus on a ringlike structure of two-level systems
coupled with nearest-neighbor tunneling amplitudes which
has been recently considered in literature [7–12]. Usually,
under low light intensity, in many natural photosynthetic
systems or in ultraprecise photon sensors the single-excitation
approximation can be used. In this case the system is equivalent
to a tight-binding model where one excitation can hop from
site to site; see Fig. 1.

Many photosynthetic organisms contain ringlike chloro-
phyll molecular aggregates in their light-harvesting com-
plexes, which are called LHI and LHII [13]. These complexes
have the purpose to absorb light and to transfer the excitations
to other structures or to a central core absorber, the reaction
center, where charge separation, necessary in the next steps
of photosynthesis, occurs. These complexes are subject to the
effects of different environments: (i) dissipative, where the
excitation can be lost; (ii) proteic, which induces static or
dynamical disorder. The efficiency of excitation transfer can
be determined only through a comprehensive analysis of the
effects due to the interplay of all those environments.

Here, in particular, we consider a system subject to the
influence of both a common decay channel where the excita-
tion can be lost, and a static disorder. The first environment
can be thought of as a model for the coupling of a molecular
aggregate to the electromagnetic field [11] (loss of excitation
by recombination) or for the coupling of the molecular
aggregate to a central core absorber (loss of excitation by

trapping). For many molecular aggregates, the single channel
approximation is appropriate to describe the coupling with the
electromagnetic field, since the wavelength of the absorbed
light is much larger than the system size (natural complexes
such as LHI and LHII typically span few tens of nanometers,
while the wavelength of the involved photon is hundreds of
nanometers). Moreover, it can also be considered as a good
approximation for the coupling to a central core absorber,
modeled for instance by a semi-infinite one-dimensional
lead [14,15].

The second environment consists of a protein scaffold, in
which photosynthetic complexes are embedded, that induces
fluctuations in the sites energies. The fluctuations which occur
on a time scale much larger than the time scale of the dynamics
are usually described as static disorder. By static disorder we
mean position dependent, but time-independent, fluctuations
of the site energies. The case of time-dependent fluctuations
of site energies has been considered in a separate paper [16].

It is well known that, when many sites are all coupled to
the same channel, we can have a superradiant behavior [17].
Superradiance implies the existence of some states with a
cooperatively enhanced decay rate (i.e., proportional to the
number of sites). Superradiance comes always together with
subradiance, that is the existence of states with a cooperatively
suppressed decay rate (i.e., smaller than the single-site decay
rate).

Though originally discovered in the context of atomic
clouds interacting with the electromagnetic field [18], in
the presence of many excitations, superradiance was soon
recognized to be a general phenomenon in open quantum
systems [17] under the conditions of coherent coupling with
a common decay channel. Most importantly, it can also
occur in the presence of a single excitation (the super of
superradiance [19]), entailing a purely quantum effect.

The functional role that superradiance might have in natural
photosynthetic systems has been discussed in many publica-
tions [5,8,20,21], and experimentally observed in molecular
aggregates [6,22]. Superradiance (or supertransfer) is also
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FIG. 1. (Color online) The ring model. One excitation can hop
between N sites coupled with nearest-neighbors tunneling transition
amplitude �. All sites are connected to a common decay channel,
where the excitation can escape, with an equal coupling strength γ .

thought to play an important role with respect to the transfer
of excitation to the central core absorber [5], and its effects on
the efficiency of energy transport in photosynthetic molecular
aggregates have been recently analyzed [23,24].

The origin of superradiance lies in the fact that the excitation
can be coherently spread over several sites, thus inducing a co-
operative effect. On the other hand, static disorder is expected
to destroy superradiance, since it induces localization [25],
which implies that excitons are localized on one site only, thus
hindering cooperativity. The main question we want to address
here is whether a critical disorder exists at which superradiance
and, thus, cooperativity are destroyed. The relation between
superradiance and localization have been already analyzed
in literature in different contexts [12,26–28]. In particular, in
Ref. [12] the case of weak coupling to the continuum (weak
opening) has been analyzed for one-dimensional systems. It
has been already analyzed also by some of the authors of
the present paper: in [27] the case of open one-dimensional
(1D) and 3D Anderson models in the strong opening regime
was considered. It was pointed out there that the sensitivity to
disorder can be very different for superradiant and subradiant
states: while the latter localize at the same critical disorder
of the closed system (i.e., a system with no coupling to
the continuum of states), the former localize at the critical
disorder for which superradiance is quenched. Interestingly,
though subradiant states essentially localize at the localization
threshold associated with the closed system, they display some
peculiar features due to opening, being neither fully localized
nor extended (hybrid states) [27]. In this paper we aim to study
both the regimes of weak and strong opening and their effects
on localization in one-dimensional nanostructures.

Even if it is easy to imagine that opening and disorder have
competing effects on the efficiency of energy absorption and
transfer, a deeper analysis is necessary to fully understand
their action. For instance, disorder decreases the efficiency
of the superradiant states in absorbing light or in transferring
excitations, but, at the same time, it can allow for energy
absorption and transfer from the subradiant states. Thus,
for these states, disorder is useful to enhance efficiency.
The latter effect is strongly related to the enhancement of
efficiency due to noise: the so-called noise-assisted transport,
discussed in [29,30]. Noise-assisted transport constitutes a
general phenomenon in quantum networks, even if its relation
with subradiance has never been stressed up to now, to the best
of our knowledge. The plan of the paper is the following:
in Sec. II we introduce the model, in Sec. III we derive
analytically the critical disorder strength needed to quench

superradiance, identifying the different regimes of weak and
strong opening. In Sec. IV we analyze in detail the relation with
localization, while Sec. V is devoted to study the consequences
of the previous findings on the system dynamics. A brief
discussion about the relevance to photosynthetic complexes
is given at the end of each section.

II. MODEL WITHOUT DISORDER

We considered a 1D chain of sites with periodic boundary
conditions, arranged to form a ringlike structure, as shown in
Fig. 1, where the excitation can hop from site to site. The model
is characterized by the following tight-binding Hamiltonian:

H tb = −�
∑
〈i,j〉

(|j 〉〈i| + |i〉〈j |), (1)

where the summation index 〈i,j 〉 runs over the pairs of nearest-
neighbor sites and � > 0 is the tunneling transition amplitude.
Here |j 〉 represents a state in which the excitation is at the site
j , while all the other sites are unoccupied. In terms of two-level
system states (|0〉,|1〉) it can be written as

|j 〉 = |0〉1|0〉2 . . . |1〉j . . . |0〉N .

The eigenvalues

Eq = −2� cos
2πq

N
with q = 1, . . . ,N (2)

and the eigenstates |ψq〉 of the system can be computed exactly.
Concerning the components of the eigenstate |ψq〉 on the site
basis |s〉, one has

〈s |ψq〉 = 1√
N

cos
2πsq

N

for q = 1, . . . ,N/2,N , and

〈s |ψq〉 = 1√
N

sin
2πs(N − q)

N

for q = N/2 + 1, . . . ,N − 1. The ground state, corresponding
to q = N and energy EN = −2�, is fully symmetric and
extended in the site basis:

|ψN 〉 = 1√
N

N∑
k=1

|k〉. (3)

The 1D Anderson model can be “opened” by allowing the
excitation to escape the system from any site into the same
continuum channel. This situation of “coherent dissipation”
can be met in many systems and it has been recently considered
in [27], where it has been shown to give rise to the following
effective non-Hermitian Hamiltonian (see also [15]):

(Heff)ij = (H tb)ij − i

2

∑
c

Ac
i

(
Ac

j

)∗ ≡ (H tb)ij − i
γ

2
Qij , (4)

where Ac
i are the transition amplitudes from the discrete state

i to the continuum channel c. In our case, we have a single
decay channel, c = 1, and equal couplings, A1

i = √
γ , so that

Qij = 1 ∀i,j .
The quantum evolution is given by the operator

U = e−iHeff t/� ,
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which is nonunitary, and gives rise to a loss of probability in
the decay channel. The complex eigenvalues of Heff can be
written as Er − i�r/2, where �r represent the decay widths
of the eigenstates. Usually, in molecular aggregates, energy is
measured in units of cm−1, corresponding to energy divided by
hc. In these units, time is measured in cm which corresponds to
the mapping t → 2πct (c 	 0.03 cm/ps is the speed of light).
In the following all units of energy will be given in cm−1 and
in order to have time in ps we need to divide it by 2πc.

Due to its specific structure, the operator Q has only
one eigenstate with a nonzero eigenvalue: this is the fully
extended state with eigenvalue equal to N . This eigenstate also
corresponds to the ground state of H tb, given in Eq. (3). All
the other eigenstates of Q are degenerate with null eigenvalue
and, since [Q,H tb] = 0, they can be chosen to match the
eigenstates |ψq〉, q < N , of H tb. This implies that only the
state |ψN 〉, Eq. (3), has a nonvanishing decay width equal
to the total decay width of the system: �N = Nγ . This is
the superradiant state. Note that the dependence on N of
that decay width is the hallmark of the cooperative nature
of superradiance. All the other states with zero decay width
are called subradiant. The full expression for the complex
eigenstates of the non-Hermitian Hamiltonian, Eq. (4), is given
in Appendix A; see Eq. (A2). Importantly, the superradiant
effect might explain the strong dependence on the initial state
of the efficiency of energy transfer to a central core absorber
discussed in Ref. [10].

Several features of the model above in absence of disorder
are quite atypical. Indeed, superradiance, as discussed in
many papers [17,31], is usually reached only above a critical
coupling strength with the continuum (in the overlapping
resonance regime) when

〈�〉/� � 1, (5)

where 〈�〉 is the average decay width and � is the mean level
spacing of the closed system. On the other hand, we are in
a superradiant regime for any γ > 0, even if the overlapping
resonance condition is not satisfied. Moreover, the widths of
the subradiant states are usually small, but not zero as in this
case. This is also due to the particular symmetric configuration
chosen, from which it follows that H tb and Q commute. Note
that such geometrically induced subradiant subspaces with
zero decay width are equivalent to the trapping-free subspaces
discussed in the literature [30].

Finally, let us notice that the presence of a superradiant
regime for any coupling strength to the continuum might
indicate a relation between structure and function in natural
complexes, and it might also suggest the use of ringlike
structures to exploit the superradiant behavior.

III. SUPERRADIANCE AND ANALYSIS OF DECAY
WIDTHS IN PRESENCE OF DIAGONAL DISORDER

The peculiar features discussed above disappear when we
introduce the diagonal disorder, described by adding to the
Hamiltonian, Eq. (4), the term

D =
N∑

j=1

εj |j 〉〈j |, (6)
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FIG. 2. (Color online) Average decay widths for a ring with
N = 32,� = 1 vs the disorder strength W for γ = 10−4 (circles),
γ = 10−3 (squares), and γ = 2 × 10−3 (crosses). Black symbols
(upper curve) refer to the average over disorder of the largest width
(the superradiant state). Red symbols (lower curve) refer to the
average over disorder of the mean subradiant width (mean taken over
the N − 1 smallest widths) 〈�sub〉. The dashed line plots the
perturbative result, Eq. (7), for 〈�sub〉. The horizontal dot-dashed line
indicates the value 〈�〉 = γ . The critical disorder strength, Eq. (11),
is indicated as the intersection between the line given by perturbation
theory and the horizontal line; see text for details.

where the random diagonal energies εj are taken uni-
formly distributed in [−W/2, + W/2], W being the disorder
strength. With the addition of this term our model becomes
equivalent to a 1D open Anderson model as considered
in Ref. [27].

The presence of static disorder on the site energies breaks
the symmetry of the system under rotations, inducing the width
of the superradiant state to decrease and the widths of the
subradiant states to increase (the total decay width Nγ is a
constant that does not depend on the degree of disorder W ),
so that all of the eigenstates can decay into the continuum
channel.

The effect of static disorder on the decay widths has been
analyzed in Fig. 2, where the width of the superradiant state
and the average width of all subradiant states are shown as a
function of the disorder strength W , for different parameter
values. As one can see, for small disorder, the effect on
subradiant states is much more evident than that on the
superradiant state. For large disorder, all widths approach the
value γ , corresponding to the decay width of an isolated site.
In this regime there is no collective behavior anymore and
superradiance is completely quenched.

For small disorder, it is possible to use perturbation theory
(see Appendix A) to obtain the mean decay width of the N − 1
smallest widths:

〈�sub〉 = γW 2

48�2(N − 1)

×
N−1∑
q=1

[(
cos

2πq

N
− 1

)2

+ N2γ 2

16�2

]−1

. (7)
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The sum in Eq. (7) can be well approximated in different
parameter regimes to give (see Appendix B)

〈�sub〉 =

⎧⎪⎪⎨
⎪⎪⎩

γW 2N3

96π4�2 , for Nγ

2 
 δEmin,

γ 1/2W 2

12�1/2N3/2 , for δEmin 
 Nγ

2 
 2�,

W 2

3N2γ
, for Nγ

2 � 2� .

(8)

Let us name weak opening the regime characterized by
Nγ/2 
 δEmin and strong opening the one in which Nγ/2 �
2�. The different regimes shown above can be understood if
we consider that

δEmin = EN−1 − EN 	 4�π2/N2

is the minimal nearest-neighbor energy distance; see Eq. (2).
In Ref. [12] a perturbative result was obtained in the regime
of weak opening, Nγ/2 
 δEmin, which agrees with our
findings. As one can see from Eq. (8), the average subradiant
width in any regime increases as W 2, but the dependence on
the system size N and on the degree of opening γ changes: in
the weak opening regime, the widths increase with N and γ ,
whereas, for very strong opening, they decrease with N and
γ .

In Fig. 2 the perturbative expression is shown as a dashed
line and agrees very well with numerical data. From Eq. (7)
one can define a critical disorder strength Wcr at which
superradiance is quenched, given by the condition

〈�sub(Wcr)〉 = γ, (9)

from which one gets

Wcr =
√√√√√√

48�2(N − 1)

∑N−1
q=1

[(
cos 2πq

N
− 1

)2

+ N2γ 2

16�2

]−1 . (10)

For W � Wcr, all of the widths become essentially the
same and equal to γ , while below Wcr they strongly depend
on the chosen state. Usually, the transition between these
two regimes, which corresponds also to a transition from
a noncooperative to a cooperative regime, is referred to as
superradiance transition (ST) in literature [17,31].

Even if the validity of Eq. (10) has been shown in Fig. 2
only in the weak opening regime, we checked that it gives an
excellent estimate of the disorder at which superradiance is
quenched also for strong opening.

From Eq. (10) it is possible to get an approximate expression
(see Appendix B) for the critical disorder strength Wcr in the
different regimes:

Wcr =

⎧⎪⎨
⎪⎩

√
96π2�N−3/2, for Nγ

2 
 δEmin ,√
12(γ�N3)1/4, for δEmin 
 Nγ

2 
 2�,√
3Nγ, for Nγ

2 � 2� .

(11)

The results contained in Eq. (11) are very interesting, since
they show that in some region of parameters (typically small
system size and weak opening) the critical disorder at which
superradiance is quenched is independent of γ (a quantity often
difficult to be experimentally determined), while it decreases
with the system size as N−3/2. This independence from γ

is also shown in Fig. 2 where we plotted data obtained with
different values of γ , for which Nγ/2 � δEmin. In particular,
for the largest value of γ considered in Fig. 2, γ = 2 × 10−3,
we have Nγ/2 	 δEmin. The existence of a regime (weak
opening) in which the critical disorder strength is independent
of γ could be surprising. Indeed, applying the overlapping
resonance criterion, Eq. (5), one would obtain Wcr ∝ γ , since
〈�〉 ∝ γ and � ∝ W . An explanation of this effect, due to
localization, will be given in the next section.

A second remarkable result is the linear dependence of
Wcr on N and γ in the strong opening regime. Since, on
increasing N , one always enters the strong opening regime,
it is possible to preserve the cooperative nature of superradiant
states up to arbitrarily large disorder. We may thus say that the
opening induces a cooperative robustness to disorder, as was
also recently found by some of the authors of this paper [27].

It is interesting to observe that also in the case of dynamical
disorder it was found [16] that the critical dephasing necessary
to destroy the cooperative superradiant effects is proportional
to both N and γ . Note that this regime was not analyzed in
Ref. [12], where it was stated that the critical disorder needed
to quench superradiance does not depend on the superradiant
decay rate.

From Eq. (11) we can infer that the dependence of Wcr on
the system size N is nonmonotone. Setting Nγ/2 = δEmin, we
can roughly estimate the N value at which Wcr has a minimum:

Ncr 	
(

8π2�

γ

)1/3

. (12)

To confirm the validity of the critical disorder strength Wcr,
computed above, as the value at which the ST occurs, we
computed the variance of the decay widths. Indeed, it is well
known [31] that, at the ST, the variance of the widths has a
maximum. The results of such a comparison are presented in
Fig. 3, showing a good agreement between the two estimates
of the ST.

Finally, it is interesting to estimate the value of Wcr for
the photosynthetic complexes LHI and LHII. In this case
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γ=0.001
γ=0.01
γ=0.1

FIG. 3. (Color online) Disorder strength at which the variance of
the decay widths have a maximum vs the number N of sites in the
ring for different values of the coupling strength γ , as indicated
in the legend. The numerical data (symbols) are compared with
the analytical expression (curves) for the critical disorder strength;
Eq. (10). Arrows indicate the size Ncr at which critical disorder is
minimal; see Eq. (12).
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� ≈ 600 cm−1 and N = 32, 16, respectively [5,13]. The
coupling with the electromagnetic field can be estimated from
the radiative decay time τ of a single molecule, which is of the
order of few nanoseconds [13]. Hence we get γ = 1/(2πcτ ) ≈
10−3 cm−1. On the other side, for the LHI complex, the
common decay channel can also represent the reaction center.
This coupling can be estimated to be γ ≈ 10−2 cm−1 from
the mean transfer time to the reaction center of the LHI
complex [13], as discussed at the end of Sec. V. Both these
couplings are very weak if compared to the energy scale of �,
so that we can assume that we are in a weak opening regime,
Nγ/2 
 δEmin, where Wcr does not depend on γ and it will
then be the same for both environments. We can thus use Wcr =√

96π2�N−3/2, see Eq. (11), getting Wcr ≈ 320 cm−1 for LHI
and Wcr ≈ 900 cm−1 for LHII. These values of disorder are
in agreement with the experimental observation that static
disorder in LHII complexes is two to three times larger than
the value of disorder in LHI complexes [22]. Those values
are also quantitatively compatible with the estimated ranges
of static disorder strength in natural photosynthetic complexes
(100–600 cm−1 for LHI complexes [10,22], 600–1400 cm−1

for LHII complexes [5,13,22]. To make a comparison with
the data contained in these references, one should take into
account that they considered Gaussian static disorder with a
standard deviation σ , so that W = √

12σ ). These estimates
might suggest that natural photosynthetic complexes operate
close to the ST.

IV. SUPERRADIANCE AND LOCALIZATION

In the previous section we analyzed how diagonal disorder
modifies the decay widths of the states. On the other hand,
it is well known that disorder in isolated tight-binding
models induces Anderson localization [25]. In 1D systems
any disorder strength induces localized eigenstates, |〈j |ψ〉| 	
exp(−|j − j0|/ξ ), where j labels the position of the sites on
the lattice and ξ is the localization length, measured in units
of intersite distance. The localization length is, in general, a
function of the disorder strength W and of the energy E. In
particular, it is well known that, for weak disorder and away
from the edges of the energy band, ξ ∝ W−2.

Therefore, it is possible to define a critical disorder Wd for
the localization effect to be important by the simple equation

ξ (Wd ) = N. (13)

Indeed, while any increase of the disorder strength will produce
eigenstates with a localization length smaller than the sample
size, decreasing W gives rise to eigenstates with a localization
length larger than the system size, i.e., effectively delocalized.

The interplay of disorder and opening can be studied by
means of the participation ratio

PR =
〈∑

i |〈i|ψ〉|2∑
i |〈i|ψ〉|4

〉
(14)

of the eigenstates |ψ〉 of Heff , given in Eq. (4), where 〈. . .〉
stands for the ensemble average over different realizations
of the static disorder. The PR is widely used to characterize
localization properties [32] and it clearly satisfies the bounds
1 � PR � N . For extended states, it increases proportionally
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FIG. 4. (Color online) Average participation ratio PR vs the
disorder strength W . Upper panel represents the weak opening
regime, namely N = 16,γ = 10−3,� = 1, while the lower panel
depicts the strong opening regime, N = 256,γ = 10−1,� = 1. In
both panels the blue open circles represent the behavior of the
superradiant state as a function of the disorder strength, while the red
full circles stand for the average PR of the subradiant states. Vertical
dashed lines represent in both panels the localization condition given
by Eq. (13) (red), and Wcr [blue; Eq. (11)].

to the system size N , while, for localized states, it is
independent of N .

Our aim is to compare the disorder strength at which
superradiance is quenched, Wcr, see Eq. (10), with the disorder
strength at which the states localize, Wd , see Eq. (13). To do
that, we analyze separately the PR of the superradiant state
(the state with the maximum decay width) and the average PR
of the other N − 1 states as a function of W .

The typical behavior of the PR as a function of the disorder
strength W has been analyzed in Fig. 4 in two different
situations: for weak opening (Nγ/2 
 δEmin, upper panel),
and for strong opening (Nγ/2 � 2�, lower panel). In both
cases, the PR of the superradiant state decreases roughly at
the ST, as given by Wcr, while the PR of subradiant states
decreases roughly at Wd .

To be more quantitative, we numerically computed, for the
superradiant state and for the subradiant states, the disorder
strength WPR at which their PR decreases by 3% with respect to
the value at zero disorder. To highlight the peculiar effects due
to opening, these results should be compared with those for the
closed system (γ = 0). For the closed system we cannot define
superradiant and subradiant states, but, since the localization
length depends on the energy level, we can compare states
of the open system with states of the closed system having
the same real energy. In particular, the superradiant state is
compared with the ground state of the closed system.

Results are shown in Fig. 5 for the superradiant state (upper
panel) and for the subradiant ones (lower panel) as a function
of the system size N . In this figure we fix γ and, by varying N ,
we switch from the weak opening regime (for small N values)
to the strong opening regime (for large N ). The Ncr value
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FIG. 5. (Color online) Disorder strength at which the PR de-
creases its value by 3% with respect to the value at W = 0, as a
function of the system size N for the superradiant state (upper panel)
and for the average PR over all the other states (lower panel). Circles
stand for the open system (γ = 0.001), crosses for the closed system
(γ = 0). Here is � = 1. In the upper panel the full curve stands for
the analytical Wcr, given by Eq. (11), rescaled by a factor 8 to fit
numerical data. In the lower panel a curve proportional to N−1/2 has
been drawn to guide the eye (for the explanation, see text). Vertical
dashed lines mark Ncr, see Eq. (12), and separate the weak opening
regime (left) from the strong opening regime (right).

which separates the two different regimes can be estimated
from Eq. (12), and has been indicated as a dashed vertical line
in both panels.

The opening does not modify the behavior of the subradiant
states if compared with the behavior of the closed system;
compare circles with crosses in the lower panel of Fig. 5.
In particular, for nonedge states of the closed system [33]
ξ 	 100/W 2, and, from Eq. (13), one gets that the disorder
strength at which states localize scales as N−1/2. The same
dependence on N is found in the presence of opening and it
has been indicated for the sake of comparison in Fig. 5, lower
panel.

Let us now analyze the behavior of superradiant states,
Fig. 5 upper panel. In the weak opening regime, N < Ncr, the
open and the closed models display the same behavior, while
in the strong opening regime, N > Ncr, the behavior is very
different: in this regime WPR decreases with N for the closed
model, while it increases with N for the open one.

Even if the behavior of the superradiant state of the open
system in the weak and strong opening regimes is very
different, it is always captured by the disorder strength at
which superradiance is quenched, Wcr; see Eq. (11). Indeed,
the disorder strength at which the superradiant state starts to
localize (phenomenologically described by WPR) scales with
the parameters as Wcr (compare full line with symbols in upper
panel of Fig. 5). This fact allows us to understand the scaling
of WPR with N in both regimes: WPR ∝ N−3/2 in the weak
opening regime, while WPR ∝ N in the strong opening regime.

Note that the dependence WPR ∝ N−3/2 is the same as that
of the disorder strength necessary to localize the edge states
of the closed system [34], for which we have ξ (W ) ∝ W−2/3

and, from Eq. (13), we obtain a disorder strength scaling as
N−3/2.

The different sensitivity of super and subradiant states to
disorder is far from being trivial. Due to the fact that the Q

matrix in Eq. (4) is a full matrix, the opening induces a long-
range hopping which contrasts localization, and one might
expect such long range to affect all states equally. On the
other hand, the correlated nature of the long-range hopping
implies that only superradiant states are affected, leaving the
subradiant states effectively decoupled from the environment
and thus behaving more similarly to the states of the closed
system. For more details see Ref. [27].

Summarizing we can conclude the following:
(i) the disorder strength necessary to localize the subradiant

states is the same of the corresponding value for the closed
system;

(ii) the disorder strength necessary to localize the superra-
diant states is proportional to the disorder strength necessary
to quench superradiance, Wcr;

(iii) in the weak opening regime, the quenching of superra-
diance is determined only by the localization properties of the
closed model, resulting in a Wcr independent of γ ;

(iv) in the strong opening regime, superradiance is
quenched at a critical disorder proportional to Nγ , as in
the case of time-dependent disorder [16], thus showing its
cooperative robustness to disorder;

(v) for the realistic parameters of natural photosynthetic
complexes, such as LHI and LHII (see the end of Sec. III),
we are in the weak opening regime, so that it is possible
to determine Wcr only by analyzing the localization prop-
erties of the closed system. This fact can be very useful
since the exact value of γ is not easy to be determined
experimentally.

V. DYNAMICS OF THE SURVIVAL PROBABILITY

In this section we aim at studying how the time evolution
of the survival probability P (t) (that is the probability of
finding the excitation in the system, initially prepared in some
state |ψ0〉) is modified by the presence of static disorder. That
quantity is given by

P (t) =
N∑

k=1

|〈k|e−iHeff t/�|ψ0〉|2. (15)

Let us choose |ψ0〉 = |ψN 〉, the fully extended state of
Eq. (3), for our first analysis. For W = 0 we clearly have
P (t) = e−Nγ t , since the fully extended state is the only one
with a decay width; see Eq. (A2). For W �= 0 the fully extended
state does not coincide with the superradiant state anymore,
and it should be written as a superposition of superradiant and
subradiant states. Using first-order perturbation theory (in the
disorder strength W ) we can derive an approximate expression
for P (t) valid for small time; see Appendix A, Eq. (A8):

P (t) ≈ c1e
−Nγ t + (1 − c1)e−�max

sub t . (16)

Equation (16) takes into account only the superradiant decay
and the fastest subradiant decay, �max

sub , which can be computed
from Eq. (A6) given in Appendix A, setting q = N − 1.
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FIG. 6. (Color online) Time evolution of the survival probability
starting from the fully extended state. We set N = 32, γ = 0.1,
� = 1, for different disorder strengths as indicated in the legend.
Numerical results are shown with symbols, while full curves show
the analytical expression, Eq. (16). The arrow shows the value of
t 
 obtained analytically by Eq. (17) for W = Wcr. For comparison,
both the exponential decay of the superradiant state for zero disorder
(dashed) and the decay at large disorder (dotted) are shown.

In Fig. 6 we compared numerical data for P (t) with the
analytical expression given in Eq. (16): the agreement is
excellent for disorder strength W < Wcr, where the decay is
well approximated by a biexponential function. From Eq. (16)
it is also possible to compute the time at which a change
in the decay occurs, t∗, by equating the two terms on the
right-hand side of Eq. (16). Dividing by 2πc in order to have
t∗ in picoseconds, we obtain

t∗ = 1

2πc
(
Nγ − �max

sub

) ln

(
c1

1 − c1

)
. (17)

Such a time, for one value of the disorder strength, is shown
with an arrow in Fig. 6. Note that t∗ can be considered as the
time up to which the decay is superradiant. As the disorder
increases, t∗ goes to zero and the decay of the extended state
becomes similar to the decay of independent sites, i.e., P (t) =
e−γ t .

The generality of our results can be assessed by observing
that the critical disorder at which superradiance is quenched
is an important threshold for the whole system dynamics and
not only for the superradiant state. To this end, let us consider
as initial state a random superposition of site states

|ψ0〉 =
N∑

k=1

ck|k〉,

ck being random complex coefficients such that
∑N

k=1 |ck|2 =
1. For such initial state, we compute the survival probability
P (t), for one realization of disorder. By changing the random
initial state and the random diagonal disorder, we can consider
the average survival probability 〈P (t)〉 and define the decay
time τ ≡ 1/� as

〈P (τ )〉 = 1/e.

These � values are reported in Fig. 7 as a function of W/Wcr

for different parameter values. For the sake of comparison

10
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10
1

10
2

W/W
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Γ/
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FIG. 7. (Color online) Inverse decay time of the average proba-
bility 〈P (t)〉, rescaled to the individual decay width γ , as a function
of the rescaled disorder strength W/Wcr. Different sets of values
have been considered: full circles are for N = 20, γ = 2.5, � = 0.5,
Wcr = 86.6; open circles are for N = 100, γ = 0.1, � = 0.1, Wcr =
17.32. The dashed red line represents 〈�sub〉 = γ .

we show, in the same figure, the analytical expression for the
average decay width of the subradiant states, see Eq. (10).
As one can see, up to a numerical constant, the agreement
is very good. In other words, the disorder strength necessary
to quench superradiance (obtained analytically imposing the
average decay width of the subradiant states, 〈�sub〉, to be equal
to the single site decay γ ) is also a valid tool in estimating the
decay time of the survival probability associated with generic
random initial conditions.

The problem of computing the survival probability of
the superradiant state in the presence of inhomogeneous
broadening was also considered in [35] for N two-level
systems. A biexponential behavior was numerically found for
any excitation number. For the case where only one excitation
is present, our results are compatible with the biexponential
behavior of the survival probability found in [35], and we
also give an approximate analytical expression for the survival
probability P (t).

Finally, in order to stress the relevance of superradiant
energy transfer in natural photosynthetic complexes, let us
consider the excitation transfer from the LHI complex to the
reaction center [5,13]. First of all, we point out that all models
used to study the dynamics of this complex are characterized
by a large inhomogeneity in the transfer time of different
energy eigenstates [5,10,13], which is, for instance, typical
of the superradiant regime. Thus, we reasonably assume
superradiance in transfer to be relevant in natural complexes.
We can estimate γ , representing the coupling to the reaction
center, from the following considerations. Using realistic
parameters as was done at the end of Sec. III, � ≈ 600 cm−1,
N = 32, we computed P (t) for the fully extended state of
Eq. (3), in the presence of a realistic value of the static disorder
W = 320 cm−1 (a large disorder corresponding to the critical
disorder at which superradiance starts to be quenched). We
choose γ = 0.01 cm−1, so that we have a transfer time [time
at which P (t) = 1/e] starting from the fully extended state of
≈35 ps, in agreement with experimental data [13]. Note that
a single occupied site would give a transfer time of 500 ps,
showing that, even in the presence of strong and realistic static
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disorder, superradiance is able to strongly enhance energy
transfer.

VI. CONCLUSIONS

We analyzed the interplay of superradiance, induced by
the coupling to a common decay channel, and localization,
induced by static disorder, in 1D ringlike structures, usually
used to model some natural light-harvesting complexes. The
common decay channel can represent both the coupling to the
electromagnetic field or to a central core absorber, such as
the reaction center in natural photosynthetic complexes. We
have shown that, for zero disorder, these structures are in a
superradiant regime for any value of the coupling strength to
a common decay channel. Above a critical disorder strength
superradiant effects decrease until, for very large disorder,
all of the states decay independently with the common width
γ , and cooperativity is completely lost. Our main purpose
was to determine the critical disorder at which superradiance
is hindered. Using a perturbative approach we determined
analytically such critical disorder and we related it first with
the localization properties of superradiant and subradiant states
and then to the system dynamics. We found that superradiance
can be quenched by disorder in different ways, depending
on the regime entailing either weak or strong coupling to
the continuum. These regimes are triggered by the parameter
Nγ/4�, which represents the ratio between the coupling
strength to the continuum, γ , and the unperturbed mean level
spacing in absence of disorder, 4�/N . When this ratio is small,
i.e., Nγ/4� 
 2(π/N )2, the critical disorder is independent
of the coupling strength with the external environment and it
is determined only by the parameters of the molecular chain,
since the opening is unable to affect the disorder-induced
localization. In this regime, the critical disorder decreases with
the size of the system, but, for large system size N → ∞, such
a regime becomes less and less feasible (to be in the weak
opening regime implies the condition N3 
 8π�/γ ). On
the other hand, for strong opening, Nγ/4� � 1, the critical
disorder increases with both the size of the system and the
coupling strength with the external environment. This is in
agreement with the results recently found in Ref. [16], where
the same ring structure has been analyzed in the presence of
dephasing (dynamical disorder) and the strength necessary to
destroy superradiance was found to be proportional to both γ

and N .
We also demonstrated that the critical disorder at which

superradiance is suppressed is close to the disorder at which
superradiant states localize [27]. Specifically, we found that, in
the weak opening regime, Nγ/4� 
 2(π/N )2, superradiance
is quenched at the same disorder at which the edge state of the
closed system, with real energy equal to that of the superradiant
state, localizes.

We have also found that, in the strong opening regime,
Nγ/4� � 1, superradiance is a manifestation of cooperative
robustness to disorder, in that the superradiant state localizes
at a disorder strength (proportional to the system size) much
larger than the one needed to localize the corresponding edge
state of the closed system. As for subradiant states, in any
regime, they begin their process of localization at the same
disorder strength at which the states of the closed system do.

Finally, we have shown the relevance of our findings
to natural photosynthetic complexes: (i) for the realistic
parameters of natural complexes, superradiance is quenched
at a disorder strength which is independent of the coupling
to the external environment (electromagnetic field or reaction
center), which is difficult to determine experimentally. Thus
our findings allow us to determine the critical disorder from
the localization properties of the closed system alone; (ii) the
critical disorder thus obtained is compatible with experimental
estimates, suggesting that natural systems operate close to the
superradiance transition; (iii) even in the presence of large and
realistic static disorder, superradiance can strongly enhance
energy transfer to the reaction center and light absorbtion.
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APPENDIX A: DECAY WIDTHS, A PERTURBATIVE
APPROACH

Perturbation theory is applied to the symmetric unperturbed
Hamiltonian,H tb − iγQ/2, in order to find the critical disor-
der strength Wcr at which superradiance is destroyed. Let us
rewrite the Hamiltonian given in Eq. (4) as

Heff = H tb − iγ

2
Q + D,

where H tb is the tight-binding Hamiltonian, Eq. (1), in the
absence of disorder and D = ∑

i εi |i〉〈i|, see Eq. (6), is a
diagonal matrix which contains the disordered site energies εi .

It is necessary to define the non-Hermitean “bra” as the
transpose of a ket

〈〈ψ | := (|ψ〉)t ,
while the standard bra is the adjoint

〈ψ | := (|ψ〉)†.
Indeed, given the right eigenvectors of a symmetric Hamilto-
nian |ψi〉, the left eigenvectors are 〈〈ψi |., that is

H |ψi〉 = Ei |ψi〉, and 〈〈ψi |H = Ei〈〈ψi |,
and we have the biorthogonality condition

〈〈ψi |ψj 〉 = δij .

Clearly, for real eigenstates we have 〈〈ψ | = 〈ψ |.
Matrix elements of the operators defined above, in the site

basis {|s〉,s = 1, . . . ,N}, are given by

Dss = εs, H tb
1N = H tb

ss+1 = −�, Qsr = 1, (A1)

with r,s = 1, . . . ,N . In Eq. (A1) � > 0, and −W < εs < W ,
are independent identically distributed random variables with
mean 0 and variance W 2/12.

Since [H tb,Q] = 0, it is convenient to study the whole
system on the basis of eigenstates of H tb, which are given by

〈s |ψq〉 = 1√
N

cos
2πsq

N
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for q = 1, . . . ,N/2,N , and

〈s |ψq〉 = 1√
N

sin
2πs(N − q)

N

for q = N/2 + 1, . . . ,N − 1, with eigenvalues

eq = −2� cos
2πq

N
.

The eigenvalues of the Hamiltonian, H tb − (i/2)γQ, are thus
given by

εq = −2� cos
2πq

N
− (iNγ/2)δqN , (A2)

that is, only the ground state acquires a decay width Nγ . Such
a state is called superradiant, and the others are subradiant.
Notice that |ψN 〉 and |ψN/2〉 are nondegenerate, while, for any
q = 1, . . . ,N/2 − 1, |ψq〉 and |ψN−q〉 span a two-dimensional
degenerate eigenspace.

When the disorder strength is turned on every state will get
an eigenenergy with a negative imaginary part (decay width).
Perturbation theory up to second order can be applied, for
sufficiently small disorder strength, to give

ε′
q = εq + 〈〈ψq |D|ψq〉 +

∑
q ′ �=q

〈〈ψq |D|ψq ′ 〉2

εq − εq ′

= εq +
N∑

s=1

εs〈s |ψq〉2

+
N∑

s,s ′=1

∑
q ′ �=q

εsεs ′ 〈〈ψq |s〉〈s |ψq ′ 〉〈〈ψq ′ |s ′〉〈s ′ |ψq〉
εq − εq ′

.

(A3)

For degenerate energy levels the first-order correction is given
by the eigenvalues of the 2 by 2 symmetric matrices,( 〈〈ψq |D|ψq〉 〈〈ψq |D|ψN−q〉

〈〈ψN−q |D|ψq〉 〈〈ψN−q |D|ψN−q〉
)

=
( ∑

s εs〈s |ψq〉2 ∑
s εs〈s |ψq ′ 〉〈s |ψq〉∑

s εs〈s |ψq ′ 〉〈s |ψq〉
∑

s εs〈s |ψq ′ 〉2

)
(A4)

while the second-order correction is
N∑

s,s ′=1

∑
q ′ �=q,N−q

εsεs ′ 〈〈ψq |s〉〈s |ψq ′ 〉〈〈ψq ′ |s ′〉〈s ′ |ψq〉
εq − εq ′

.

We are interested in the imaginary part of the perturbed
eigenvalues, and, since the eigenstates, |ψq〉, are real, first-
order corrections never contribute to those terms. Considering
now averages over disorder and writing 〈ε′

q〉 = δq − iγq/2,
with δq,γq real, we obtain the average decay widths for the
superradiant state,

γN = Nγ − γ
W 2

48�2N

N∑
s=1

N−1∑
q ′=1

1(
1 − cos 2πq ′

N

)2
+ N2γ 2

16�2

= Nγ − γW 2

48�2

N−1∑
q ′=1

1(
1 − cos 2πq ′

N

)2
+ N2γ 2

16�2

, (A5)

and, for the subradiant ones, q = 1, . . . ,N − 1,

γq = γW 2

48�2N

N∑
s=1

1(
cos 2πq

N
− 1

)2
+ N2γ 2

16�2

= γW 2

48�2

1(
cos 2πq

N
− 1

)2
+ N2γ 2

16�2

. (A6)

The maximum decay widths of the subradiant states are clearly
γ1 and γN−1, while the average of the subradiant widths is

〈�sub〉 = γW 2

48�2(N − 1)

N−1∑
q=1

1(
cos 2πq

N
− 1

)2
+ N2γ 2

16�2

. (A7)

We finally define the critical disorder Wcr as the one at which

〈�sub〉 = γ,

i.e., equals the single-site decay width γ .
Let us now apply first-order perturbation theory to the

superradiant state. For W = 0, the superradiant state is given
by the extended state, Eq. (3), while, for W �= 0, we can write

|SR〉 	 (1/
√

N )
N∑

k=1

|k〉 +
∑
q �=1

D1,q

ε1 − εq

|ψq〉.

From this expression we can compute the probability to be in
the superradiant state when starting from the extended state as

c1 = 1

1 + W 2

48�2N

∑N−1
s=1

1

[1 + cos(2πs/N )]2 + (γN/4�)2

.

(A8)

APPENDIX B: APPROXIMATE FORMULA FOR
PERTURBATIVE AVERAGE WIDTH

Let us rewrite Eq. (A7) in the form

〈�sub〉 = γW 2

48�2
Sa, (B1)

where we have defined

Sa = 1

N − 1

N−1∑
q=1

1(
cos 2πq

N
− 1

)2
+ a2

, (B2)

and

a = Nγ

4�
.

Equation (B2) can be put in integral form for sufficiently
large N , that is 2π/N 
 1, as

Sa = 1

2π

∫ 2π

0
dx

1

(cos x − 1)2 + a2

= (2a + 2
√

4 + a2)1/2

a3/2
√

4 + a2
. (B3)
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It is easy to show that Eq. (B3) has two different limits, namely

Sa =
⎧⎨
⎩

1/(2a3/2), for a 
 1,

1/a2, for a � 1.

(B4)

Nevertheless, substituting a sum with an integral works
only for very large N . For small N < 100, or, in general for a
sufficiently small a value, it is more convenient approximating
the sum with only two terms, namely those for which the
denominator in Eq. (B2) is small. In detail, one has

1 − cos(2π/N ) ≈ 2π2/N2 for a < acr = 2π2/N2. (B5)

This implies that, in this regime,

Sa = const ≈ N3/2π4.

On the other hand, for acr < a < 1 (for all those N values
for which acr < 1), one can approximate the sum with the
integral and use the asymptotic behavior given in Eq. (B4). To
summarize, we have the following behavior:

Sa =

⎧⎪⎪⎨
⎪⎪⎩

N3

2π4 , for a 
 2π2

N2
,

1
2a3/2 , for 2π2

N2 < a < 1,

1
a2 , for a � 1.

(B6)

These different regimes can be written in terms of physical
parameters as follows:

〈�sub〉 =

⎧⎪⎪⎨
⎪⎪⎩

γW 2N3

96π4�2 , for N3γ

8π2�

 1,

γW 2

12γ 1/2�1/2N3/2 , for 2π2

N2 
 Nγ

4�

 1,

W 2

3N2γ
, for Nγ

4�
� 1.

(B7)
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