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Strong interplay between electron-phonon interaction and disorder in low-doped systems
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The effects of doping on the spectral properties of low-doped systems are investigated by means of the coherent
potential approximation to describe the distributed disorder induced by the impurities and the phonon-phonon
noncrossing approximation to characterize a wide class of electron-phonon interactions that dominate the low-
energy spectral features. When disorder and electron-phonon interaction work on comparable energy scales, a
strong interplay between them arises, the effect of disorder can no longer be described as a mere broadening
of the spectral features, and the phonon signatures are still visible despite the presence of strong disorder.
As a consequence, the disorder-induced metal-insulator transition is strongly affected by a weak or moderate
electron-phonon coupling, which is found to stabilize the insulating phase.
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I. INTRODUCTION

In the past years, the development of more accurate methods
of investigations, such as angular resolved photoemission
spectroscopy (ARPES), combined with the fabrication of
novel materials such as high-Tc superconductors [1,2], colossal
magnetoresistance manganites [3], correlated oxides [4], topo-
logical insulators [5], and graphene [6] in different topological
conditions (from bulk, to surfaces and heterostructures, up to
single monolayers), has enabled us to gain a deep insight into
low-energy electronic and spectral properties. The continu-
ously increased measurement accuracy in experiments gives us
the opportunity to detect and study such low-energy features,
which in many cases were recognized as the fingerprint of the
electron-phonon interaction.

The possibility to tune the chemical potential by doping
offers a great potentially useful way to modify the ma-
terials’ electronic structures and properties. Very recently,
in low doping conditions, electron-phonon signatures were
successfully detected in the ARPES spectra of many different
systems, from an oxygen vacancies doped SrTiO3 surface [7]
or lightly bulk doped SrTiO3 [8,9], to monolayer pnictide
FeSe growth on SrTiO3 [10], from tridimensional anatase [11]
to Ba1−xKxBiO3 [12] and CuxBi2Se3 [13] superconductors,
up to Z2 topologically nontrivial materials such as Bi2Se3

and Bi2Te3 [13], as well as on quasi-two-dimensional layered
lightly doped Sr2TiO4 [14]. Such a rich variety of different
materials displaying common electron-phonon low-energy
features calls for a deeper understanding of the underlying
mechanism at play. However, once all these systems are
taken into account, and in particular when dealing with
surfaces, monolayers, and low-dimensional systems, the role
of disorder cannot be neglected. In fact, the growth processes
on substrates and/or the action of chemical doping imply the
presence of disorder, whose impact depends largely on which
energy scale one is focused on. For example, impurity bands
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can be formed close to the conduction band of the pristine
material as a consequence of the presence of the dopant
energy levels [14,15], or they can have magnetic origins as in
Mn-doped GaAs [16,17]. On the other hand, oxygen vacancies
on the substrate [7] may represent centers of scatterings for
carriers in the deposited film. Interestingly, in this sense, recent
ARPES experiments and ab initio theoretical works suggested
how charge carriers can be trapped by oxygen vacancies at
the LaAlO3/SrTiO3 (LAO/STO) interface [18] and the SrTiO3

surface [19,20], naturally introducing the role of disorder in
the understanding of the electronic properties of oxide-oxide
heterostructure interfaces and oxide surfaces, where confined
two-dimensional electron gases (2DEGs) should also undergo
superconducting phase transitions [21].

Usually disorder can be added perturbatively in the the-
oretical explanation of ARPES spectra as a weak source
of scattering leading to an intrinsic band linewidth. Within
this approach, interactions such as electron-phonon coupling
contribute to the low-energy properties of the spectrum,
and the disorder simply provides a further smearing of the
electron-phonon features. However, this is not the case when
disorder and electron-phonon interaction act on comparable
energy scales. For example, let us consider the case of an
intermediate electron-phonon coupling; in the very low doping
limit, the system is prone to polaron formation, and the pres-
ence of scattering centers may provide, in a synergic way, the
necessary energy to localize a small polaron [22–26]. Another
example is that of a low (but finite) electron density and weak
electron-phonon coupling. In this case, when disorder and
electron-phonon interaction are treated self-consistently, im-
purity and phonon contributions to electron scattering are not
additive when the Fermi energy is of the order of the phonon
frequency [27,28], and impurity scattering has a significant
nonlinear effect [29]. In this work, we approach the problem of
the interplay between disorder and electron-phonon interaction
starting from a weak electron-phonon coupling, going beyond
the self-consistent Born approximation used in Refs. [27–29]
by using the coherent potential approximation (CPA), thus
extending our treatment to the case of strong disorder. Previous
studies of models in this peculiar regime concentrated on
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the case of classical phonons in binary alloys [30] or, in the
same context, on the effects of electron-phonon interaction on
transport properties at high temperature [31]. Electron-phonon
interaction and strong disorder have also been studied in the
classical phonon case [32] within the context of the Falicov-
Kimball model of correlated electrons, for which the CPA is
the exact solution [33]. Noticeably, the Mott transition in the
Falicov-Kimball model can be described as a disorder-induced
metal-insulator transition (MIT) in the alloy context [33].
Here we address the single-particle properties, namely how
disorder and electron-phonon interaction modifies ARPES
spectra of lightly doped materials [34]. A proper quantum
treatment of the phonon is, in this case, crucial to explain the
low-energy features of ARPES spectra. The disorder-induced
metal-insulator transition is also studied as it depends on the
strength of the electron-phonon interaction.

The paper is organized as follows: In Sec. II, we discuss
the model Hamiltonians and the types of electron-phonon
couplings taken into account in this work. In Sec. III, we
explain how such models can be solved in the presence of local
disorder as introduced by an Anderson-type Hamiltonian, and
we discuss the fluctuation of the electron-phonon self-energy
due to disorder. In Sec. IV, we present the main results of
our work, discussing the interplay between electron-phonon
interaction and disorder to explain the features of the ARPES
spectra. We discuss also the electron-phonon dependence of
the disorder-induced metal-insulator transition. In Sec. V, we
draw our conclusions and make some additional remarks.

II. MODEL HAMILTONIANS

We consider in this work an Anderson-type Hamiltonian
for two-dimensional tight-binding electrons interacting with
dispersionless optical phonon modes of the general form

H = Hel + Hph + He-ph + Hdis. (1)

The electronic nearest-neighbor tight-binding part Hel =
−t

∑
〈i,j〉(c

†
i cj + H.c.) gives rise to a two-dimensional energy

dispersion εk = −2t(cos kx + cos ky); c
†
i and ci are the charge

carrier creation and annihilation operators, respectively. The
half-bandwidth D = 4t will be the energy unit throughout the
paper, and all k-vectors are given in units of π/a, where a is
the lattice spacing. We also choose the zero energy level ω = 0
to the position of the chemical potential.

The disorder part is assumed to be of the Anderson type,

Hdis =
∑

i

ξic
†
i ci , (2)

where ξi are disorder-independent random energies taken
according to the following disorder distributions:

(i) The bimodal Pi(ξ ) = xδ(ξ − Eb) + (1 − x)δ(ξ ) charac-
terizing a concentration of x impurities in the host material.

(ii) The Gaussian Pg(ξ ) = (1/
√

2σ 2) exp(−ξ 2/2σ 2),
where σ 2 is the disorder variance to mimic a conformational
disorder.

(iii) As the sum of two independent variables, one of which
distributed according to Pi , and the other one distributed
according to Pg .

For the free-phonon part, we assume a simple undispersed
Einstein phonon Hamiltonian Hph = ω0

∑
i a

†
i ai with a char-

acteristic phonon frequency ω0. We fix the value of the phonon
frequency in the adiabatic regime ω0/D = 0.05.

For the electron-phonon interaction part He-ph, we consider
three different kinds of models. The first two can be obtained
from the following density-displacement Hamiltonian:

He-ph = −
∑
i,j

gi,j c
†
i ci(aj + a

†
j ). (3)

The Holstein local (LOC) model is obtained when gi,j = gδi,j ,
whereas a general, even long-range, Fröhlich-type interaction
(NLOC) can be considered in more general cases. In the
spirit of our work, we focus our attention here on the two-
dimensional screened Fröhlich-type interaction. Let us con-
sider the long-wavelength limit of the Fourier transform of the
longitudinal-optic (LO) polar coupling [g2]i,j = ∑

k gi,kgk,j ,

g2(k) = 1

N

∑
R

e−ik·R[g2]i,i+R. (4)

If g2(k) is of the Fröhlich type, i.e., g2(k) ∝ 1/k2, after
summing over all possible values of kz, we get an effective
coupling that at small k behaves as g2(k) ∝ 1/k depending
only on the two-dimensional wave vector k [35]. Since in
our model electrons are free to have planar motions, we
next consider the action of the two-dimensional screening
of the in-plane carriers. This screening is independent of the
carrier density, and the effective coupling is thus replaced
by g2(k) → g2(k)/ε(k,ω = 0), where ε(k,ω = 0) = 1 + κ/k

and κ = 2m∗e2/�
2εr is the two-dimensional screening wave

vector. The large-k behavior of g2(k) is obtained restoring the
lattice symmetries by replicating the small-k form

g2(k) = C

NG

∑
G

|k + G|
|k + G| + κ

, (5)

where G is a reciprocal-lattice vector and NG is the number
of summed terms in Eq. (5). For our aims, we find that a
summation over the nearest-neighbor reciprocal vectors is
sufficient. The normalization constant C is chosen by fixing
the value of a coupling constant g,

g2 = 1

N

∑
k

g2(k). (6)

In both LOC and NLOC models, the dimensionless electron-
phonon coupling constant is defined in terms of g as [36]

λ = 2g2/ω0D. (7)

Another model that we consider in this work is the so-called
interaction with a phonon mode such as that occurring with
apical oxygens in layered perovskites [37], which we refer to
hereafter as the apical oxygens Hamiltonian (AO) [38]. The
form of the Hamiltonian is the same as in Eq. (1), but now
we consider several two-dimensional planes where electron
carriers are free to move (index α) unconnected by out-of-plane
hopping processes. The interaction between different planes
is introduced through the following AO electron-phonon
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coupling:

H BM
e-ph = − g√

2

∑
i.α

c
†
i,αci,α(xi,α+1/2 − xi,α−1/2), (8)

where xi,α+1/2 is the (dimensionless) displacement xi,α+1/2 =
(a†

i,α+1/2 + ai,α+1/2) of the interplane apical atom in the ith
site of the αth plane. Within this AO model, disorder variables
are chosen uncorrelated as before, and the Anderson term
now reads H BM

dis = ∑
i,α ξi,αc

†
i,αci,α . In the AO model, the

dimensionless electron-phonon coupling constant is defined
as in the LOC and NLOC models through Eq. (7).

III. METHODS OF SOLUTION FOR LOCAL AND
NONLOCAL ELECTRON-PHONON HAMILTONIANS

A. The CPA and the phonon-phonon noncrossing
approximation in the Holstein model

Here we introduce our approximations in the case of purely
local electron-phonon interaction (LOC). We use the CPA to
treat the local disorder. The CPA can be thought of as an
exact theory on an infinite coordination lattice [39]; for this
reason, it is therefore very similar to the single-site dynamical
mean-field theory (DMFT) [40,41]. As in DMFT, to solve
the LOC model we consider a single site embedded into a
self-consistent medium [41]. The single-site propagator G can
be expressed in terms of a local propagator which embodies the
average action of the environment [G0(ω)] and a self-energy
�(ω) [41]:

G(ω) = 1

G−1
0 (ω) − �(ω)

. (9)

The site propagator G can be expressed as an average over
disorder variable (hereafter a generic quantity A that depends
on disorder realizations is denoted by Â, while its average is
A = [Â]ξ ),

G(ω) =
[

1

G−1
0 (ω) − ξ − �̂e-ph(ω)

]
ξ

, (10)

where ξ is the local disorder variable and �̂e-ph(ω) is the
electron-phonon self-energy, which depends on the local
disorder variables.

Electron-phonon interaction in the LOC model can be
self-consistently taken into account within a CPA—or equiva-
lently DMFT—scheme at zero electron density [42]. At finite
electron density, we choose a self-consistent phonon-phonon
noncrossing approximation (PPNCA) for the electron-phonon
self-energy [43] [see the diagrams of type (a) in Fig. 1]:

�̂e-ph(ω) = −g2

β

∑
m

D0(ω − ıωm)Ĝ(ıωm) + �̂H , (11)

where D0(ω) is the free-phonon Green’s function while the
frequency-independent Hartree term of the electron-phonon
self-energy,

�̂H = −2g2

ω0
n̂, (12)

is expressed in term of the local density n̂, which is given
by n̂ = 1

β

∑
n Ĝ(ıωn)eiωn0+

. In this approximation, the phonon

FIG. 1. (Color online) Electron-phonon interaction diagrams.
The open straight line is the nonaveraged electron propagator, the
filled straight line is the disorder-averaged electron propagator, and
the wavy line is the phonon propagator.

propagator is not renormalized by the electron density fluc-
tuations; we therefore associate the phonon frequency with
that obtained by experiment, or we assume that the phonon
frequency renormalization is negligible at low electron density.

After Matsubara’s frequency summation, the PPNCA self-
energy is written as

�̂e-ph(ω) = g2
∫

dεÂ(ε)

[
b(ω0) + f (ε)

ω + ω0 − ε + ıδ

+ b(ω0) + 1 − f (ε)

ω − ω0 − ε + ıδ

]
+ �̂H , (13)

with b(ω0) and f (ε) referring to the Bose-Einstein and Fermi-
Dirac distributions, respectively, and Â(ε) = (−1/π )ImĜ(ε)
being the spectral function.

The averaged propagator is translationally invariant. It can
be expressed in terms of the local self-energy as G(k,ω) =
1/[ω − εk − �(ω)]. The averaged local propagator is thus

Gloc(ω) =
∫

dεN (ε)
1

ω − ε − �(ω)
, (14)

where N (ε) = ∑
k δ(ε − εk) is the noninteracting density of

states. The self-consistency condition requires the single-site
Green’s function (10) to coincide with the local lattice Green’s
function (14),

Gloc(ω) = G(ω). (15)

In this way, Eqs. (9), (10), (13), (14), and (15) define a
self-consistency loop to be iterated to get the self-consistent
local self-energy, which takes into account disorder at the CPA
level as well electron-phonon interaction coming only from
diagrams of type (a) in Fig. 1. We call this scheme PPNCACPA.
From the operative point of view, starting with an educated
guess for G0, we use Eqs. (10) and (13) to determineG, Eq. (15)
to obtain �, and Eq. (9) to obtain a new G0 for iterating the
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FIG. 2. (Color online) DMFT mapping of the AO model.
(a) Lattice model in which electrons move on the planes and interact
with the AO phonon. (b) Mapping of the lattice problem into a
single-chain single-site model.

procedure. This iteration scheme differs from DMFT due to
the approximate treatment of the electron-phonon interaction
trough PPNCA.

B. PPNCACPA in the AO model

To generalize PPNCACPA to the AO model, we have to
introduce the planar structure into our single-site model. We
have a chain of single-site models as depicted in Fig. 2.
The interaction between neighboring planes occurs through
the electron-phonon interaction [see Eq. (8)]. In the AO
model, we neglect the interplane hopping, and therefore the
self-consistent G0 is plane-diagonal. Equation (10) can be
generalized as

G(ω) =
[

1

G−1
0 (ω) − ξα − �̂α

e-ph(ω)

]
ξ

, (16)

where α is the plane index. Notice that after averaging, G does
not depend on the plane indexes.

Now we have to generalize Eq. (13) to the BM model.
Defining the upper and lower local phonon propagators as

D(±)(t) = −i〈T xi,α±1/2(t)xi,α±1/2(0)〉, (17)

the Fock and Hartree terms of the electron-phonon self-energy
take the form

�̂α
F (ω) = − g2

2β

∑
m

D+(ω − ıωm)Ĝα(ıωm)

− g2

2β

∑
m

D−(ω − ıωm)Ĝα(ıωm), (18)

�̂α
H = g2

2
[D+(0)n̂α − D−(0)n̂α+1]

+ g2

2
[D+(0)n̂α − D−(0)n̂α−1], (19)

where D(±)(iωn) are the local phonon propagators in the
Matsubara frequencies and n̂α = 1

β

∑
n Ĝα(ıωn)eiωn0+

is the
local density on a generic site of the plane α. Notice that n̂α still
depends on the disorder realization. Notice also that interplane
coupling occurs due to the Hartree term in the self-energy

Eq. (19). After Matsubara’s frequency summation, the Fock
contribution to the self-energy is written as

�̂α
F (ω) = g2

∫
dεÂα(ε)

[
b(ω0) + f (ε)

ω + ω0 − ε + ıδ

+ b(ω0) + 1 − f (ε)

ω − ω0 − ε + ıδ

]
, (20)

with Âα(ε) = (−1/π )ImĜα(ε) being the αth plane spectral
function. The scheme of iteration is basically the same as for
the Holstein (LOC) model with an important difference: we
have to iterate the self-consistency condition for an array of
planes. Adopting periodic boundary conditions, we need 64
planes to achieve convergence for the sets of parameters used
throughout the paper.

C. Generalization to nonlocal models
of electron-phonon interaction

Now let us consider a general nonlocal electron-phonon
interaction such as that of the model NLOC, Eq. (3). The
perturbation theory in terms of the electron-phonon coupling
constant gi,j can be written in the lattice space. This is shown
diagrammatically in Fig. 1. The diagram sets are divided into
two groups: (a) refers to local-type diagrams in which only
the [g2]n,n appears (see the discussion about the LOC model),
while (b) contains extra terms that include [g2]n,m for m �= n.
We divide our calculation into two steps.

In a first step, we implement the PPNCACPA previously
described for the Holstein (LOC) model, taking into account
the (a) diagrams for the electron-phonon interaction. We
use in this stage a coupling constant g2 = [g2]i,i . Within
such a treatment, we are taking into account disorder and
electron-phonon interaction at the local level. Now we include
the nonlocal part of electron-phonon interaction, including
diagrams of type (b) at the average level, i.e., we consider the
internal propagator averaged over disorder. Average restores
translational invariance, and the Hartree term [the tadpole
diagram in Fig. 1(b)], which is independent of frequency, can
be reabsorbed in the definition of the chemical potential. The
only relevant term is the Fock one averaged over disorder,
as depicted in Fig. 1(b) and highlighted by the blue arrow.
The self-energy thus takes into account both disorder and
electron-phonon interaction, while disorder and the local
part of the electron-phonon interactions [diagrams (a)] are
evaluated self-consistently; the nonlocal part is taken into
account non-self-consistently in a final stage. Therefore, this
approach should not be extended to the polaronic type of
couplings. However, due to the relevance of disorder in our
calculations, we have checked that the results do not depend
on the actual value of the screening wave vector provided that
κ > 0.001, and thus on the specific form of the nonlocal e-ph
coupling.

D. Alternative CPA schemes

To investigate the correlations in the one-particle spectra
between disorder and electron-phonon interaction, in the local
PPNCACPA loop we can compare two CPA schemes: the
one we are actually using, in which the electron-phonon
self-energy depends on local random potentials (CPA2), and a
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FIG. 3. Examples of diagrams neglected in the CPA1 scheme
for Gaussian-distributed disorder. (a) A correction that takes into
account disorder correlations in the Hartree part of the self-energy
entering in Eq. (10) within the CPA2 scheme but neglected in the same
expansion within the CPA1 scheme. The solid line represents the
self-consistent propagator G0, the wavy line the phonon propagator,
and the dashed line disorder insertion. (b) A disorder-induced vertex
correction appearing in the expansion of the Fock part of the local
electron-phonon self-energy.

simpler scheme, in which we average the e-ph self-energy
diagrams of type (a) on disorder (CPA1). In the case of
NLOC models, to take into account the nonlocality of the
electron-phonon interaction, we finally implement the second
stage of our approximation having the local self-energy from
CPA2 or CPA1 formulations. Notice that the CPA1 scheme, in
the absence of electron-phonon interaction, is usually referred
to as the virtual-crystal approximation [44]. The comparison
between the two schemes still gives us an idea of the relevance
of the electron-phonon self-energy fluctuations due to disorder
at different energy scales.

We notice that averaging the internal propagators appearing
in diagrams of type (a) shown in Fig. 1 means substituting the
internal electron propagators with their averages. The Hartree
contribution [the tadpole diagram in Fig. 1(a)] averages to a
frequency and k-independent value, thus reducing to a mere
shift of the chemical potential. The remaining contribution
is the Fock term, in which the internal propagator has been
averaged over disorder. This average procedure neglects (i)
correlations between the density and the disorder variable at
a given site, and (ii) disorder and electron-phonon correlated
scatterings. From a perturbative point of view, the diagrams
that contribute to these two mechanisms are depicted in Fig. 3.

We notice that, due to our strong-disorder approach, these
contributions are not included in the self-consistent Born
approximation approach of Ref. [27].

IV. RESULTS

Here we present results obtained using basically two kinds
of disorder. We first consider a dichotomic disorder (Pi

distribution) in which a percentage x = 5% of sites has a lower
energy Eb = −0.5 (in units of the half-bandwidth) than all
the other sites. This kind of disorder mimics the introduction
of impurities associated with doping. Toward that end, we
fix the filling factor to the same value x. We also consider
Gaussian-uncorrelated disorder (Pg distribution), which can
mimic a strong structural disorder, as usually happens in thin
films. Even though 5% of impurities seems to be a rather small
quantity, it can affect severely the lower part of the energy
spectrum, as can be seen in Fig. 4. Moreover, this is precisely

 0
 0.05
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 0.2
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 0.3

 0.35
 0.4

-0.3 -0.2 -0.1  0  0.1  0.2

A
(ω

)

ω

free
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FIG. 4. (Color online) DOS, A(ω), of the noninteracting system
(free) shifted to match the filling of the 5% doped system (dis). Unit of
frequency is D; the zero of frequency is set to the chemical potential.

the energy range in which electron-phonon interaction is
relevant (ω 	 ω0).

On top of this disordered system, we consider a weak
electron-phonon interaction λ = 0.22, which is the same in
all the considered models. To disentangle the separate action
of electron-phonon interaction and disorder, we show the
spectral function in the case of the LOC model in Fig. 5.
There the spectral function is compared along a cut on the kx

axis around the � point in the presence of electron-phonon
interaction only [panel (a)], in the presence of impurities
without electron-phonon interaction [panel (b)], and under
the action of both electron-phonon interaction and impurity
disorder in panel (c). It is immediately seen that the spectra
in panel (c) cannot be obtained by a simple broadening of
the spectra of panel (a). A complete redistribution of the
spectral weight is obtained under the action of a quite low
electron-phonon coupling in the presence of disorder. The
growing of an impurity band appears to be evident at the
bottom of the coherent electronic band with a merging around
the chemical potential. On the other hand, the action of such a
strong disorder does not prevent the typical fingerprints of the
electron-phonon interaction, such as the kinks at the phonon
frequency (see Appendix A). This result highlights the fact
that when disorder and electron-phonon coupling interact at
the same energy scales, as in the considered case, the action of
disorder cannot be taken into account as a simple broadening of
the spectral features in the absence of disorder, since disorder
and electron-phonon interaction work in a cooperative way.

In panel (d), we plot the spectra obtained using a Gaussian
disorder with σ 2 = 0.08. We have chosen the variance of
disorder requiring the same value of the Fermi kF as that
given by the 5% impurities. In this case, an energy-dependent
broadening can be seen in the picture while the phonon
signature, even weak, is still visible. Clearly the interplay of
impurities and distributed Gaussian disorder with electron-
phonon interaction is very different.

The scenario presented in Fig. 5 is rather general; indeed,
it holds also in the case of highly nonlocal electron-phonon
interaction. In Fig. 6, we have considered an electron-phonon
interaction of the kind in Eq. (5) with the screening k vector
κ = 10−3. Comparing the spectra in the absence of disorder
[Figs. 5(a) and 6(a)], we see that the enhanced forward
scattering present in the NLOC model broadens the low-energy
features around the � point. However, in the presence of
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FIG. 5. (Color online) The spectral function A(k,ω) for the LOC model. (a) Electron-phonon interaction only, λ = 0.22. (b) Disorder only.
(c) Electron-phonon interaction + disorder. (d) Electron-phonon interaction + Gaussian disorder; the color map (range of z) has been expanded
in this case to take into account the lower value of the spectral function.

impurities [Figs. 5(c) and 6(b)], the spectra look much more
similar even if phonon signatures are more marked in the
NLOC model. This is consistent with the relevance of such a
strong disorder at the highest binding energies. Increasing the
screening, the range of electron-phonon interaction decreases,
and the qualitative scenario becomes increasingly similar to
that of the LOC model. With the chosen values of parameters
at κ = 10−2, the spectra are almost indistinguishable from
those of Fig. 5.

A quantitative measure of the interplay between electron-
phonon and disorder effects can be probed by measuring the
deviation of the Fermi wave vector (kF ) from that predicted
by Luttinger’s theorem [45] at a given electron density. In
Fig. 7 (upper panel), the momentum distribution curve (MDC)
is obtained from the spectral function. Luttinger’s prediction
for kF coincides with the position of the peaks in the presence
of electron-phonon interaction only. Indeed, in this case the
damping at the Fermi energy is zero and the Fermi surface
area is conserved; thus the sole presence of electron-phonon
interaction does not lead to a Fermi vector reduction. Disorder
alone, even when strong as in our case, contributes to a
decrease of kF only by 10%, while the additional presence
of a relatively weak electron-phonon interaction dramatically
reduces kF by 60%. If one takes Luttinger’s theorem [45] for

FIG. 6. (Color online) The spectral function A(k,ω) for the
NLOC model. (a) Electron-phonon interaction only, λ = 0.22.
(b) Electron-phonon interaction + disorder.

granted in these conditions, the obtained electron density is far
from the nominal one given by the impurities’ concentration.
This evidence should be carefully taken into account for
the interpretation of experimental ARPES spectra, being
the fingerprint of a strong interplay between disorder and
electron-phonon interaction [14]. In the lower panel of Fig. 7, a
comparison is shown of the MDC curves for the LOC, NLOC,
and AO models. We see that the reduction of kF is less effective
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FIG. 7. (Color online) Upper panel: an MDC scan at Fermi
energy in the LOC model. (e-ph) stands for the nondisordered
system under the action of electron-phonon interaction only. (dis)
is the purely disordered system without electron-phonon interaction.
(e-ph+dis) is the system under the action of both electron-phonon
and disorder. Lower panel: an MDC scan at Fermi energy in the
LOC compared with the NLOC and AO model for the same value of
electron-phonon coupling, λ = 0.22, and the same disorder variables
x = 0.05,Eb = −0.5. Vertical arrows mark Luttinger’s theorem value
for kF .

075111-6



STRONG INTERPLAY BETWEEN ELECTRON-PHONON . . . PHYSICAL REVIEW B 90, 075111 (2014)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

|E
b|

λ

kF>0

kF=0
x=0.05
x=0.03

FIG. 8. (Color online) The phase diagram of the LOC model at
zero temperature for x = 0.03 and 0.05. Points are obtained at values
of parameters such that kF = 0. Dashed lines are linear fits of the
data. At a given value of λ, the increase of impurity concentration
stabilizes the conductive phase.

in the NLOC and AO models compared to the LOC one. We
will discuss the reason for this behavior below.

The cooperative action of electron-phonon and disorder
interactions is particularly evident in the disorder-induced
metal-insulator transition that occurs as a function of the
electron-phonon coupling λ. In this work, the disorder-induced
MIT is defined looking at the vanishing of the Fermi vector kF .
A vanishing kF is a precursor of a vanishing density of states
at the Fermi level, which in turn leads to an insulating state.
It is well known that, in a disordered system, increasing the
binding energy of the impurities will produce a metal-insulator
transition in which an impurity band detaches from the
conduction band [46]. Here we achieve the same phenomenon
using the synergistic action of electron-phonon interaction, as
is shown in Fig. 8 for two different impurity concentrations.

For a given value of Eb = −0.5, we report the density of
states (DOS), which clearly opens a gap at λ = 0.275 in Fig. 9
(upper panel). The vanishing of the Fermi surface occurs at a
lower value of λ, as is shown in the inset of the same figure.
The synergistic work of electron-phonon interaction originates
from the action of the Hartree term, Eq. (12), which provides
an electron-phonon-induced increase of the binding energy
which is proportional to the carrier density at a given site. This
is correlated with the presence of the impurity since the density
will be higher just at the impurity sites (see Appendix B). When
the electron-phonon interaction is nonlocal, this effect is less
marked, as can be seen in Fig. 9 (lower panel). For instance,
in the AO model, as the Hartree energy Eq. (18) does depend
on the density on nearest-neighbor planes along the chain, the
interplay between electron-phonon interaction and disorder
is less effective, as seen also in the smaller reduction of the
Fermi surface with respect to the LOC model (see Fig. 7, lower
panel).

Moreover, a further insight into the interplay between
electron-phonon and disorder interaction can be obtained by
the comparison of our results within the two CPA schemes
(see Sec. III). The DOSs and the spectra obtained by
CPA1 and CPA2 are compared in Fig. 10 (upper and lower
panels, respectively). We see how the interplay between e-ph
interaction and disorder affects the DOS below the Fermi
energy, just in the energy region in which both disorder and
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e-ph are present. Noticeably, phonon signatures appear much
more evident in the CPA2 scheme, and a large spectral weight
redistribution occurs at higher binding energies. Moreover,
we see that within the CPA1 scheme the effect of disorder is
largely dominant, as can be seen by comparing the spectrum
of Fig. 10 (lower left panel) and that obtained in the presence
of pure disorder [see Fig. 5(c)]. Since in CPA1 we average
the electron-phonon self-energy over the disorder variable,
we can ascribe the large discrepancies between the spectra
in Fig. 10 to the correlation between electron-phonon and
disorder effects in the self-energy. This issue can be analyzed
from the point of view of perturbative expansions. The
resummation in the CPA2 scheme of diagrams of type (a)
in Fig. 3, which take into account the correlation at the Hartree
level between electron-phonon and local disorder, leads to an
enhancement of the electron-phonon interaction effects on the
energy scale of the emerging impurity band (around 	 Eb from
the Fermi level). In contrast to CPA1, the CPA2 Hartree term
is correlated to the presence of the impurity leading to the λ

dependence of the disorder-induced metal-insulator transition
(see the discussion above and the upper panel of Fig. 9). For
this reason, as shown in Fig. 10, the impurity band within
CPA2 seems to be more marked than that in CPA1. However,
another aspect is clear from the comparison in Fig. 10: the
CPA2 impurity band is also much wider than that obtained
within CPA1, and, despite the strong disorder, prominent
phonon signatures are still evident on the impurity band. This
should be ascribed to the correlation between disorder and
electron-phonon self-energy at the Fock level diagrams of
type (b) in Fig. 3. In previous work, an interplay between
the electron-phonon interaction and disorder has been found
within the self-consistent Born approximation [27–29] in
which, despite the self-energy separating into electron-phonon
and disorder parts, nonadditivity in the electron-scattering time
is found due to the self-consistency condition. We remark here
on the difference in our strong-disorder approach in which
the self-energy appearing in Eq. (14) is no longer separable
into two contributions. We thus have analyzed the strong
fluctuations of the self-energy due to disorder rather than its
separability into electron-phonon and disorder parts.

V. CONCLUSIONS

In conclusion, in this work we have investigated the role
of the electron-phonon interaction in disordered systems, and
their strong interplay when the energy scales in which they
act are comparable. It is well known that trapping impurities
provide the necessary energy for the polaronic transition
localizing the polaronic state at weaker electron-phonon
coupling [23–26]. Here we have discussed this interplay at
finite electron density and weak electron-phonon coupling,
thus relying in our study on the PPNCA to deal with weak
electron-phonon interaction. We have developed a theoretical
method to combine the PPNCA with the CPA to study strongly
disordered systems, and we have extended that theory to the
apical oxygens model [38] and to a nonlocal electron-phonon
interaction characteristic of couplings with a crystal’s polar
modes. We focused our attention mainly on low-dimensional
systems such as quasi-two-dimensional or layered ones, since
in these cases the effect of disorder can in principle be larger

with respect to purely 3D systems. On the other hand, we
concentrated on low-doped systems in which the impurity band
can be very close to, and hybridizes with, the bottom of the
electronic one. This peculiar but quite common experimental
and theoretical evidence [7–9,14–17] allowed us to study when
disorder and electron-phonon interaction act in a cooperative
way, and the action of disorder cannot be included in a
perturbative way as a source of weak broadening of the spectral
features. On the contrary, impurity-type disorder strongly
affects the electronic structure giving rise to a significant
spectral weight redistribution. This could lead to a dramatic
Fermi surface reduction even at moderate electron-phonon
couplings, which in turn can be detected as a Luttinger’s
theorem violation [14] and eventually an electron-phonon
driven metal-insulator transition as the Fermi surface vanishes.
From a quantitative point of view, the strongest interplay
between electron-phonon and local disorder is found for the
local electron-phonon interaction (LOC model). Nonlocal
couplings studied in this work (AO, NLOC) both display a
less effective interplay with disorder as a consequence of the
interactions’ nonlocality.

The CPA used to approach the strong disorder regime is a
reasonable approximation for the DOS or the average spectral
function in three dimensions [47]. In our 2D (LOC,NLOC)
or (2+1) (AO) -dimensional systems, there are, however,
some deviations that can be treated within a nonlocal DCA
framework [48]. Generally speaking, the CPA overestimates
the disorder-induced gap. Going beyond the CPA, we expect
that the binding energy Eb needed to reach the MIT would
be slightly higher. Localization effects, absent in the CPA
approach, which are, however, beyond the present work, can be
relevant for transport properties in low-dimensional systems.
Their effects can be probed at the local level by anomalous
fluctuations of the local DOSs, which can be relevant to
tunneling experiments. Instead of the averaged DOS taken
into account in this work, one can consider the typical DOS
obtained as geometric averages of local DOSs [47]. As far as
local quantities are concerned, for the LOC model one can
generalize our self-consistency equations to the case of typical
quantities following along the lines of Refs. [47,49].

The PPNCA for the electron-phonon interaction used in our
work cannot be used to attack the polaronic regime, which can
be interesting to study, because of the recently found polaronic
resonances in single-layer high-Tc superconducting FeSe [10].
Also from a theoretical point of view, the interplay between
disorder and polaronic electron-phonon interaction could be
much different from that proposed in the present paper [38].
Toward that end, a beyond-NCA approach such as DMFT
should be useful also to include electronic correlations. A
cluster-DMFT approach could also be useful to include spatial
correlations, which we neglect in our local approach in the
LOC model case, overcoming in this way the well-known
problems of single-site DMFT in dealing with systems at low
dimensionality [50].
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APPENDIX A: SECOND DERIVATIVE
OF THE SPECTRAL FUNCTION

A commonly used technique to highlight subtle spectral
features is to take the second derivative of the spectral function
∂2

∂ω2 A(k,ω). In Fig. 11, we plot this function using CPA1 and
CPA2 iteration schemes. In both cases, the phonon’s signatures
are evident but a little bit more within CPA2. More importantly,
at higher binding energies, CPA1 spectra clearly show disorder
nondispersed features, while in CPA2 the phonon’s higher-
order resonances are clearly visible up to fourth order, even in
the presence of such a strong disorder.

APPENDIX B: ELECTRON-PHONON INDUCED
MOTT TRANSITION

Let us consider the bimodal disorder case Pi(ξ ) = xδ(ξ −
Eb) + (1 − x)δ(ξ ) in the LOC model. Let us consider only the
action of the Hartree term in the self-energy, Eq. (12), so that

the single-site Green function [Eq. (10)] reads

G(ω) = x

G−1
0 (ω) − Eb + λn1

+ 1 − x

G−1
0 (ω) + λn0

, (B1)

where

n1 = 1

β

∑
n

x

G−1
0 (ω) − Eb + λn1

eiωn0+
, (B2)

n0 = 1

β

∑
n

1 − x

G−1
0 (ω) + λn0

eiωn0+
, (B3)

where n1 is the electron density in the impurity site and n0

is the density everywhere else. In the atomic (zero hopping)
limit, we have n1 = 1 and n0 = 0, but due to the hybridization
of the impurity sites, n1 < 1 and n0 > 0. From Eqs. (B1)–(B3)
it is evident that as far as the electron-phonon interaction is
concerned, at the Hartree level Eb → Eb − λ(n1 − n0) and the
disorder-induced metal-insulator transition occurs when

|Eb| = |EMIT| − λ(n1 − n0), (B4)

with |EMIT| the binding energy at the impurity site needed to
detach the impurity band in the absence of electron-phonon
interaction. Equation (B4) explains the linear dependence
found for small λ for the disorder-induced metal-insulator
transition in Fig. 8. It is worth noting that this effect is absent
in CPA1, where the electron-phonon self-energy is mediated
and as a consequence there is no electron-phonon contribution
to the binding energy at the impurity site.
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P. Le Févre, G. Herranz, M. Bibes, N. Reyren, Y. Apertet,
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[33] J. K. Freericks and V. Zlatić, Rev. Mod. Phys. 75, 1333 (2003).
[34] It is worth noting that even a modest amount of impurities can

introduce strong disorder effects at the energy scale of the order
of the impurities’ binding energy.

[35] S. Das Sarma and B. A. Mason, Ann. Phys. (NY) 163, 78 (1985).
[36] Our definition of λ comes from the Eliashberg theory

[G. M. Eliashberg, Sov. Phys. JETP 11, 696 (1960)], for the
Holstein model, applied to a spin-degenerate (band filling
2) squared density of states, a good approximation for a
2D DOS at very low density, around the band’s bottom.
We can write λ = 2

∫ ∞
0 dω α2F (ω)/ω = 2

∫ ∞
0 dω N0g

2δ(ω −
ω0)/ω = 2g2N0/ω0, where N0 = 1/D is the density of states at
the Fermi level, and D is the half-bandwidth.
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