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Resonant dynamics of arbitrarily shaped meta-atoms
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Meta-atoms, nanoantennas, plasmonic particles, and other small scatterers are commonly modeled in terms
of their modes. However these modal solutions are seldom determined explicitly, due to the conceptual and
numerical difficulties in solving eigenvalue problems for open systems with strong radiative losses. Here these
modes are directly calculated from Maxwell’s equations expressed in integral operator form, by finding the
complex frequencies which yield a homogeneous solution. This gives a clear physical interpretation of the
modes, and enables their conduction or polarization current distribution to be calculated numerically for particles
of arbitrary shape. By combining the modal current distribution with a scalar impedance function, simple
yet accurate models of scatterers are constructed which describe their response to an arbitrary incident field
over a broad bandwidth. These models generalize both equivalent-dipole and and equivalent-circuit models to
finite-sized structures with multiple modes. They are applied here to explain the frequency-splitting for a pair
of coupled split rings, and the accompanying change in radiative losses. The approach presented in this paper is
made available in an open-source code.
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I. INTRODUCTION

Resonances are fundamental to many modern photonic and
electromagnetic systems, including metamaterials, nanoanten-
nas, and plasmonic and dielectric oligomers, all of which
seek to strongly manipulate scattering using small elements.
For example, the negative index of a metamaterial is usually
associated with a resonance in the magnetic polarizability
of the constituent meta-atoms. Typical nanoantenna designs
consist of coupled metallic rods operating near their reso-
nance. Fano resonances arise in plasmonic oligomers due to
interference between the modes of the coupled system. The
resonant nature of these systems makes it highly desirable to
create simple oscillator models to describe their dynamics.
Although not necessarily having dimensions much smaller
than the wavelength, the building blocks of these systems are
typically not large compared to the wavelength; thus they can
be adequately described by a small number of modes.

For metamaterials consisting of a large, three-dimensional
array, much effort has been dedicated to homogenization
approaches, whereby the metamaterial is approximated by a
continuous medium, and the system is described in terms of
average fields [1]. However, in many systems of interest, the
required criteria for homogenizability are not satisfied, either
because the meta-atoms are not sufficiently subwavelength,
the arrays are so small that boundary effects and radiation
losses are very strong, or the arrangement is not periodic. As
an alternative to homogenization, it is possible to consider the
fields of a metamaterial’s Bloch modes as the fundamental
degrees of freedom [2]; however this suffers from many of
the same limitations. In many cases the modes of individual
resonators form a much more convenient basis to study
the behavior of meta-atoms and resonant scatterers, since
the number of excited modes is typically small. For many
experimental configurations reported in the literature, the
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number of scatterers in the system is small enough that it
is feasible to explicitly describe the modal excitation of each
of them.

In this article, the modes of arbitrarily shaped resonant
particles are found and are used to construct simple oscillator
models. These models give a highly accurate description of
the particles over a very broad bandwidth and directly include
radiative effects. They satisfy causality, and can account for
the coupling between particles, which gives rise to hybridized
modes. Examples of applicable structures and their modes are
shown in Fig. 1. For all of these structures the fundamental
modes are plotted, except in Fig. 1(f), where a second-order
mode is shown. Routines to calculate the coefficients of the
oscillator model from the scatterer geometry are implemented
in an open-source software package OPENMODES [3].

This paper is organized as follows. In Sec. II, existing
approaches to find the modes of open resonators are discussed,
leading to the proposed approach which is presented in Sec. III.
In Sec. IV, this model is used to solve the problem of coupled
resonators, showing how the influence of multiple modes of
each uncoupled resonator can easily be taken into account in
the hybridization process. Appendix A gives details of the elec-
tric field integral equation (EFIE) operator used, Appendix B
gives general details of the numerical implementation, and
Appendix C outlines the procedure to find the singularities.

II. THE PHYSICS OF OPEN RESONATORS
AND THEIR MODES

The simplest approach to finding the modes of resonant par-
ticles is to illuminate the structure at a frequency corresponding
to a resonance, and observe the fields either through numerical
simulation, or with experimental techniques such as near-field
scanning microscopy [4]. These approaches work well if the
modes are greatly separated in frequency; however many
systems operate in a regime of overlap or interference between
different modes [5], and it is difficult to distinguish the contri-
bution of each mode to the total response. To develop a model
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FIG. 1. (Color online) Meta-atoms each showing charge (colors)
and current (arrows) distributions for one of their modes. (a)
Canonical spiral, (b) V antenna, (c) split-ring resonator, (d) sphere,
(e) horseshoe, and (f) twisted crosses.

for the resonances in meta-atoms or plasmonic structures, a
simple and appealing approach is to develop equivalent circuit
models [6–9]. This has the advantage of providing insight
and computational simplicity, and builds on well-established
results in antenna and microwave theory. However, such a
circuit model must be developed manually for each different
meta-atom type, and important physical phenomena such as
coupling to radiated fields are not adequately described by
lumped circuit elements.

Models which represent the particles by their dipole
moments have been constructed for meta-atoms, and these
can gives a reasonable description of the far-field coupling of
the fundamental modes, including radiation effects [10]. The
most well-studied case using dipole or multipole methods is
that of a sphere embedded in a uniform background, since
it has a multipole solution which describes the polarization
of each mode in closed form [11]. However, many practical
systems have resonators which are of much lower symmetry,
either through deliberate design or the presence of a perturbing
substrate, and the modes of complex-shaped resonators can
have significant contributions from many multipole terms
[12]. Particularly for near-field interaction effects, all of these
higher-order terms must be included in calculations; thus
the multipole approach loses its simplicity. To model such
systems effectively, analytical methods cannot be used to find
the eigenmodes, and some other solution must be found. For
plasmonic particles, it is possible to find the modes numerically
under the quasistatic approximation [13]. This approach makes
very strong assumptions about the subwavelength nature of the
particle, and radiation effects are neglected, although they may
be added back to the model as a perturbation [14].

In closed cavities, modes can be found by expressing
Maxwell’s equations in eigenvalue form, with the eigenvalues
corresponding to the resonant frequencies. However, meta-
atoms and nanoantennas are intrinsically open systems, which
radiate into the surrounding environment. Their modal near
fields are not strictly confined to any well-defined region of
space, and must somehow be disentangled from the radiating
fields. Particularly for plasmonic particles, there may also be
strong dissipative losses. Thus it is not appropriate to solve the
lossless problem and to treat radiative and dissipative losses as

a perturbation, since they can induce strong qualitative changes
in the response of a system [15,16].

In the language of Hamiltonian mechanics, these significant
losses mean that the system must be described by a non-
Hermitian operator. In fields such as quantum optics, open
systems have been studied using the “system and bath”
approach [17]. In this model, the system is partitioned into a
resonant system and a continuum of modes, and coupling terms
between the two are introduced. Although this description
is complete, one drawback is that the partitioning of the
system is not unique, thus the modes are not uniquely defined.
Additionally, it is necessary to include an infinite continuum
of plane waves into the calculations, which is somewhat
cumbersome, and cannot be considered as a simple oscillator
model. Similar models incorporating the complete spectrum of
plane waves have been utilized for metamaterials [18], under
the assumption that each meta-atom is described by a single
electric and magnetic dipole moment.

An alternative approach is to study the quasinormal modes,
which are self-consistent undriven solutions occurring at
complex values of frequency. They extend the familiar concept
of resonant modes to dissipative systems, and although such
modes are not orthogonal in the usual sense, in certain cases
they do satisfy orthogonality over an unconjugated inner
product [19]. Such modes seem to offer an intuitive description
for resonant systems; however, not only are they not well
confined, their fields actually diverge with increasing distance
from the resonator. This corresponds to temporal solutions as
t → ∞, where almost all energy has escaped from the cavity
into radiated fields [20]. By utilizing appropriate absorbing
boundary conditions this divergence can be handled [21,22];
however this spatially divergent field is an inconvenient
representation of a compact object. In Ref. [22] it was
shown that absorption, scattering, and emission effects can be
calculated from quasinormal modes, and it is noteworthy that
all the relevant formulas effectively integrate the polarization
current over the volume of the scatterer.

Integral equation approaches which solve for currents are
routinely used in scattering theory, and the singularities of
the scattering operator can also yield solutions [23], which
are essentially the same as quasinormal modes. In Ref. [24]
these were calculated based on a spherical harmonic decom-
position. This approach is well suited to modeling antennas
or scatterers separated by relatively large distances, and
all far-field radiation channels are explicitly incorporated.
However, spherical harmonics are is not suitable for modeling
the strongly varying near fields which couple meta-atoms
together, nor the influence of an inhomogeneous background,
and this also involves an arbitrary and nonphysical partitioning
of space into internal and external parts. For open resonators
which are uniform along one direction, a comprehensive theory
was presented in Ref. [25]; however this restriction excludes
many structures of practical interest.

The advantage of the scattering approach is that the solution
is given in terms of the conduction or polarization current
only within the resonant structure. This gives a more useful
description of the mode, since currents remain finite at complex
frequencies, in contrast to the corresponding fields which
diverge. The natural approach to solving for the current on
the resonator directly is to use integral equation approaches,
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known variously in the literature as the method of moments
[26,27], boundary element method, or integral equation
method. In these approaches, the current is expanded into a
finite number of basis functions, and a Green’s function is used
to calculate the interaction between all the current elements.
By solving the resulting impedance matrix, the solution can
be found for any external exciting field, and the radiation
boundary conditions are automatically taken into account.
Such approaches are well established for solving microwave
scattering problems, and more recently they have been ap-
plied successfully to dielectric and plasmonic nanostructures
[28–30]. It is important to emphasize that while these ap-
proaches use the terminology of impedance taken from circuit
theory, it was shown in Ref. [31] that it has an alternative
interpretation related to the local density of states.

Modes of the structure correspond to the singularities of
the impedance matrix in the complex plane, and these have
been found for dielectric resonators [32], and have been
used to describe the transient scattering of a radar pulse
from a target [33,34]. This approach can be understood as
applying analytical continuation to the eigenvalue expansion,
which provides a scalar description of the structure, but
which must be recalculated at each frequency of interest. In
Ref. [30] such an eigenvalue expansion was applied to the
impedance matrix in order to calculate the excitation and
coupling of plasmonic dolmen structures. In Ref. [35] the
properties of the Müller formulation of the surface integral
problem were studied in detail, and it was shown that the
singularities of the integral operator can yield the resonances
of plasmonic structures in both full-wave and quasistatic
regimes. In Ref. [36] the location of the singularities of
plasmonic structures in the complex frequency was related
to the quality factor and the stored energy in the near fields
of the structure. In the next section a procedure for finding
these singularities will be presented, and they will be used to
develop a simple oscillator model accounting for all excitation,
coupling, radiation, and interference effects.

III. MODELING A SINGLE ELEMENT

In this section a numerical model is constructed for an
individual resonant element. It is then shown how analyzing
the frequencies where the impedance matrix is singular yields
a compact model which is accurate over a broad bandwidth,
and describes each mode with quite simple dynamics.

A. The electric field integral equation

All dynamic quantities have implicit time dependence of
exp(st) with s = � + jω, and are related to time domain
quantities via a two-sided Laplace transform pair [34]. The
electric field Es scattered by an object is related to its induced
currents j via the electric field integral equation (EFIE):

Es (r,s) =
∫∫∫

�

G0(r − r′,s) · j(r′,s)d3r, (1)

where the free space dyadic Green’s function G0 is given by
Eq. (A1), and � is the volume of the object. For perfectly
conducting metals considered here, the tangential components
of the scattered field and incident field Ei cancel on the surface

n̂×Ei = −n̂×Es , the integration is over the object surface
∂�, and the resulting operator equation is denoted Ei = Z (j).
More general formulations can include polarization within
dielectrics or imperfect metals, through a volume [30] or
surface equivalent problem [37]. Furthermore, if a different
Green’s function is used in Eq. (1), background media can
be incorporated while still only solving for currents on the
scatterer, with layered media [38] being of particular interest.
Note that artificial magnetism due to circulating currents is
accounted for in Eq. (1) by the gradient of the electric field [39],
without requiring the additional terms used in some models
[10,18].

In Ref. [23] the properties of such integral operators are
discussed in detail, using the tools of functional analysis.
In particular the spectral properties of such operators are
discussed, which are relevant to the techniques used in this
section. Although many of the relevant proofs are not directly
applicable to Eq. (1), the uniqueness theorem means that
the solutions found are genuine physical properties which
are independent of the particular formulation of Maxwell’s
equations which is used. To solve the operator equation
numerically, the geometry is represented by a triangular
surface mesh and the current is expanded into basis functions
fn, each defined over an area Tn:

j (r) =
N∑

n=1

Infn (r) . (2)

To obtain a finite number of equations, the incident field is
weighted by the same set of basis functions,

Vn =
∫∫

Tn

fn (r) · Ei (r) d2r.

Applying the same procedures to Eq. (1) results in a matrix
equation which describes the full dynamics,

V(s) = Z(s) · I(s), (3)

where V and I are vectors of length N , while Z is the N×N

impedance matrix which approximates the operator Z , and is
defined in Eq. (A2).

The impedance matrix is closely related to the interaction
matrix in coupled-dipole models [10], but it has the advantage
of directly including both mutual and self-interaction effects.
It is sometimes useful to separate it into two parts according
to the dominant frequency dependence, which is equivalent to
separating the contributions of the scalar and vector potentials
in the Lorenz gauge,

Z (s) = sL (s) + 1

s
S (s) . (4)

In the limit γ |r| → 0 (where γ = s
√

εμ is the complex prop-
agation factor), these matrices correspond to the inductance
and elastance (the inverse of capacitance), respectively; hence
the symbols for the corresponding scalar quantities are used
[40]. Due to Lorentz reciprocity and the use of identical basis
and weighting functions, Z is a complex-symmetric matrix,
in the sense Zmn = Znm, but in general Zmn �= Znm (the bar
denotes complex conjugation).
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B. Modes as frequency-dependent eigenvectors

From the impedance matrix Z(s), a simple model can
be extracted at each frequency, by solving the eigenvalue
problem:

Z(s) · I(α) (s) = z(α) (s) G · I(α) (s) , (5)

where the eigenvalue z(α)(s) is a scalar impedance, and the
eigenvector I(α) (s) gives the corresponding current distribu-
tion. The matrix equation (5) is a numerical approximation of
the operator eigenvalue equation Z(j(α)) = z(α)I(j(α)), where
I is the identity operator. Since the basis and testing functions
are not orthonormal, the matrix form of the identity operator
is the Gram matrix [26,41] G, where Gmn = ∫

Tm

∫
Tn

fm (r) ·
fn (r) d2r. Some works [30,34] use the identity matrix for this
term; thus the eigenvalues may have have contributions related
to the mesh density, in addition to the those from the dynamics
of the physical system.

Once the eigenvectors are scaled such that they satisfy the
orthonormality relationship

∫∫
∂�

j(α) (r) · j(β) (r) d2r = I(α)T
(s) · G · I(β) (s) = δαβ, (6)

the impedance matrix has the decomposition [23]

Z(s) =
N∑

α=1

z(α) (s) I(α) (s) ⊗ I(α) (s) , (7)

where in practice only Ñ modes (1 � Ñ � N ) contribute
significantly to the response, and in many cases Ñ = 1 is
sufficient. An arbitrary current is decomposed into a series
of modes by the projection dyad I(α)(s) ⊗ I(α)(s) (without
complex conjugation), and the mode dynamics are given by
the impedance z(α)(s). This could be understood as the sum
of equivalent circuit responses; however it is important to
emphasize the role of the projection dyad, which has no
equivalent circuit counterpart. Due to the non-Hermitian nature
of the system, the projection of the incident field onto this dyad
can also contribute phase terms. Although counterintuitive,
this effect is completely physical and accounts for interference
between modes [42].

To give a detailed example of this model, a single ring split-
ring resonator (SRR) is considered, with inner radius 2.5 mm,
outer radius 4 mm, gap width 1 mm, modeled as a thin PEC
layer divided into 852 triangles. The dynamics of its first mode
are governed by the eigenvalue z(1)(s) plotted in Fig. 2(a). It can
be seen that the imaginary part of the impedance dominates,
corresponding to the reactive stored energy, while the real part
is much smaller, indicating that the radiation losses for this
mode are relatively low. This is confirmed by Fig. 2(b), which
shows the corresponding admittance 1/z(1)(s), more clearly
indicating the resonant nature of the mode and its relatively
high quality factor.

The main drawback of this eigenvalue expansion is that
it requires the full impedance matrix to be calculated and an
eigenvalue decomposition to be performed at every frequency;
thus it has the same computational requirements as a fully
numerical model.
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FIG. 2. (Color online) (a) Eigenvalue for the first mode of an
SRR, having dimensions of impedance, and (b) its inverse which has
dimensions of admittance, with a Lorentzian-like shape.

C. Modes as singularities of the operator equation

To develop a single model for a finite scatterer which is
accurate over a wide frequency range, z(α)(s) is extended
analytically into the complex s plane. Figure 3 extends the
eigenvalue in Fig. 2(a) in this manner. Its real and imaginary
parts are given by the heights of the surfaces, with the black
line indicating where they pass through zero. Clearly the
eigenvalue goes to zero at the intersection of these two curves.
At such frequencies, the impedance matrix Z is singular [34],
corresponding to a current solution which can be sustained
without any driving field [i.e., V = 0 in Eq. (3)]. In Ref. [43]
it was proven that for sufficiently smooth objects all such
singularities are poles, and it was observed that in practice they
are of first order, and no other terms are required to describe
the dynamics.

Since the impedance matrix Z has explicit dependence on
s, the root-finding problem is nonlinear in s and must be
solved using iterative methods. A procedure was developed
based on robust starting estimates, as detailed in Appendix C.
For the example presented here, the solution converged to
a relative accuracy of 10−8 within 10 iterations, making the
process quite efficient. The solution of this nonlinear problem
was empirically found to be more reliable than the solving
frequency-dependent linear eigenvalue problem in Eq. (5), in
the sense that it is much less prone to converge on a spurious
nonphysical eigenvalue. In Fig. 4(a) the singular points are

FIG. 3. (Color online) (a) Real and (b) imaginary parts of the first
eigenvalue of an SRR, plotted as a function of complex frequency.
The solid lines show where each part is zero. Their intersection gives
the complex eigenfrequency.
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FIG. 4. (Color online) (a) The complex singularities of a single
split-ring resonator which give the resonant frequencies, and (b) the
corresponding charge and current distributions.

shown for the first four modes of a split-ring resonator. It
can be seen that the higher-order modes have have larger real
parts of s(α), indicating that they have stronger radiative losses.
These singularities occur in complex-conjugate pairs, as the
system response is real in the time domain.

For each frequency s(α) corresponding to the resonance
of a mode, there is a vector I(α)(s(α)) which satisfies the
homogeneous equation. From this vector, the mode’s cur-
rent distribution j(α)(s(α),r) is calculated using Eq. (2), and
the charge distribution is given by q(α)(s(α),r) = − 1

s(α) ∇ ·
j(α)(s(α),r). The real parts of these surface charges (colors)
and currents (arrows) are shown in Fig. 1 for several different
structures. Despite the strong differences in geometry, it is
clear that the lowest-order modes of canonical spiral, V
antenna, sphere, and horseshoe all exhibit electric dipole-like
charge distributions. In Fig. 4(b) the first four modes of the
single split-ring resonator are shown, corresponding to the
singularities shown in Fig. 4(a). It can be seen that higher-order
modes exhibit increasing degree of spatial oscillation with
increasing order, similar to the case for simple closed cavities.

These current distributions are closely linked to the
frequency-dependent eigenvectors discussed in Sec. III B,
which can be regarded as their analytical continuation away
from the singular points in the s plane. In Ref. [44] it was shown
that careful normalization of the eigenvectors is required for
them to be analytic, and the normalization given in Eq. (6)
satisfies this requirement. For the well-studied case of a sphere,
the eigenvectors are frequency independent [33], although this
is not true in the general case.

D. The broadband model

The value in finding singularities in the complex s plane
is that they form a useful basis for modeling the dynamics of
the structures. By numerically evaluating dz(α)/ds at s = s(α),
and enforcing the impedance to be open circuit at s = 0, a
fourth-order model is fitted to each scalar impedance z(α):

z(α) (s) = z
(α)
−1

s
+ z

(α)
0 + z

(α)
1 s + z

(α)
2 s2. (8)

These terms are all real and can be interpreted as elastance
(inverse capacitance), ohmic dissipation, inductance, and
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FIG. 5. (Color online) Scalar admittance functions which de-
scribe the dynamics of the first four modes of a split-ring resonator.

radiative losses, respectively, and correspond directly to the
form of the inverse polarizability used in dipole models [10].
The advantage of this form is that the correct signs of all
terms can be enforced to guarantee a passive, causal response.
Many existing formulations express the admittance in terms
of residues of the poles [21,33,36] of Z−1. Such models can
be used instead of Eq. (8), but will be physically correct only
if the residue of the conjugate pole at s = s̄(α) and the zero at
the origin are correctly accounted for.

In Fig. 5 the scalar admittances 1/z(α)(s) are plotted
corresponding to the modes in Fig. 4. The resonant behavior
is clearly observable, and is similar to a series resonant
circuit, with the real part reaching the maximum and the
imaginary part crossing through zero at resonance. It can be
seen that the widths of the resonant peaks increase for the
higher-order modes, consistent with the increased values of
� at the singularities shown in Fig. 4(a). It is also clear that
the line shapes can be highly asymmetric, confirming that the
expression in Eq. (8) is more appropriate than simpler RLC
circuit or Lorentzian models.

While the frequency dependence of the eigenimpedances
z(α) is well characterized by Eq. (8), the analytic continuation
of the vectors I(α)(s(α)) is more subtle. Each I(α)(s) is an
analytic function of s, such that the same eigenvector can
be tracked as the frequency is varied. Since they represent
the Laplace transform of a real function, the currents must

obey the the conjugate symmetry relationship I(α)(s̄) = I
(α)

(s)
[45]. The normalization introduced in Eq. (6) eliminates the
arbitrary complex scaling factor on the eigenvectors, making
it meaningful to distinguish between their real and imaginary
parts. The conjugate symmetry of the eigenvectors requires
that the mode currents are real on the real s axis, including at
zero frequency. Therefore, the presence of a nonzero imaginary
part of I(α) implies that the modal current distributions cannot
be frequency independent. However, from a practical point of
view, all the current distributions shown in Figs. 1 and 4(a) have
imaginary components (not shown) which are much smaller
than the real parts, allowing their frequency variation to be
neglected with little loss of accuracy.
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Utilizing the vector I(α)(s(α)) and corresponding impedance
function z(α) (s), the response of the particle to an excitation
field vector V(s) is well approximated by

I(s) = Z−1(s) · V(s)

=
Ñ∑

α=1

1

z(α) (s)
I(α)(s(α))[I(α)(s(α)) · V(s)]. (9)

E. Verification

To verify the accuracy of the model, the solution obtained
from Eq. (9) is compared with the exact solution of Eq. (3).
The simplest quantity which characterizes the response is the
extinction efficiency, which shows the energy extracted from
the incident field by the scatterer. It is calculated as

Qext = η
∫∫

∂�
Ei (r) · j (r) d2r

πr2
o

∫∫
∂�

Ei (r) · Ei (r) d2r

= ηV (s) · I (s)

πr2
o V (s) · V (s)

, (10)

where η =
√

μ

ε
is the intrinsic impedance of the background

medium, and ro is the radius of the smallest sphere enclosing
the object [46]. The incident field is a plane wave described
by Ei (r) = Ei0 exp(−γ k̂ · r), where k̂ is the direction of
propagation. In contrast to the usual definition [47], both
the real and imaginary parts of extinction are retained. This
is done by analogy with circuit theory, where the complex
power delivered to a load is considered, with the real part
corresponding to the time-averaged power flow, and the
imaginary part corresponding to the reactive power flowing
periodically into and out of the circuit. In scattering theory,
the real part of this quantity is what is usually referred to as
extinction, and includes all power lost from the incident wave
due to scattering and dissipation processes. The imaginary
part corresponding to the reactance is generally not considered
in optical applications; however given its relationship to the
energy stored in near-fields [48], this quantity can yield useful
information for metamaterials and nanophotonic structures,
particularly where energy is to be extracted from an emitter.

As shown in the inset of Fig. 6(a), a plane-wave incident
upon an SRR is considered with its electric field polarized
at 45◦ to the gap, with propagation along the ring axis. In
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FIG. 6. (Color online) The contribution of each mode to the (a)
real and (b) imaginary parts of the complex extinction efficiency. The
inset gives the polarization of the incident wave.
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FIG. 7. (Color online) Total extinction efficiency calculated from
the model and compared with the direct calculation, showing the (a)
real and (b) imaginary parts.

Fig. 6 the contribution of each mode to the total extinction
is plotted, obtained by substituting Eq. (9) into Eq. (10). As
this example is for a lossless structure, the extinction can be
attributed entirely to scattering processes. It can be seen that
the line shapes follow the impedance given in Fig. 5, scaled
by the overlap between the mode and the incident field. The
fourth mode is essentially not excited, and this is consistent
with the current distribution shown in Fig. 4(b), which has
a quadrupolar type of distribution that does not couple to
normally incident plane waves. It is also clear that the modes
which dominate the scattering process are different from those
which dominate the reactive stored energy, which goes through
zero at the complex resonant frequency, but which can be quite
large at other frequencies.

In Fig. 7 the sum of these modeled contributions is
compared with the direct calculation of the complex extinction
efficiency. The model clearly gives very good agreement over
an extremely wide frequency band, well beyond any quasistatic
circuit limit, or the limit of homogenization if the meta-atom
were placed in a periodic array. This indicates that for this
structure the frequency dependence of the modal currents can
be neglected, while still maintaining good accuracy. It also
underlines a potential pitfall of using dipole moments as the
fundamental degrees of freedom, since modes 1 and 3 have
dipole moments parallel to the gap, but are clearly governed
by completely different dynamics.

The computational performance of both the direct calcu-
lation and the model are both dominated by performing the
integrations in Eq. (A2) to fill the impedance matrix, and for
the direct solution solving it for the incident field. The relative
performance of the direct solution and the model depends on
the number of modes, and the number of frequencies at which
the results are calculated. The results shown in Fig. 7 were
calculated using a computer with an i7-3740QM 2.7 GHz
quad-core CPU. Searching for the four singularities and fitting
the scalar model takes approximately 40 s, which enables the
extinction cross section to be calculated in 0.3 s. In contrast,
the naive approach of directly solving the system at 500
frequencies takes approximately 444 s.

IV. COUPLING OF OPEN RESONATORS

In plasmonic and dielectric oligomers, many interesting
effects arise due to coupling between closely spaced elements.
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Furthermore, the electromagnetic response of a metamaterial
can differ markedly from that of an individual meta-atom,
due to near-field interaction. The model of resonant scatterers
based on their complex singularities is an ideal tool to study
this coupling.

A. The coupled resonator model

The hybridization model has been highly successful in
describing the interaction of plasmonic resonators [49] and
meta-atoms [50,51]. In this model hybrid modes emerge due
to quasistatic interaction between the modes of elements.
A Lagrangian of the system is defined, accounting for the
stored energy in the inductance and capacitance of the
resonant elements, each of which is described by the excitation
of its fundamental mode. A procedure for calculating the
coefficients of interaction was given in Ref. [52], based
on quasistatic calculations of the stored energy. However
for many structures, interaction can be significant even at
long distances, where retardation becomes significant [53].
Retardation introduces a phase factor which can greatly change
the phase of the interaction constants [54–56], and makes all
stored energy quantities complex. This breaks the underlying
physical assumptions of a Lagrangian model, and physical
meaning can only be restored by including the full spectrum
of plane waves, as per the system and bath approach discussed
in Sec. II.

The difficulties arising from the use of the Lagrangian can
be avoided by instead using the EFIE operator of Eq. (1), which
is applicable to an arbitrary number of elements and which nat-
urally includes all retardation effects. The considerations for
modeling interaction between open resonators are essentially
identical to those for a single resonator discussed in Sec. II. The
procedure developed in Sec. III gives a compact description
of a single element, and needs to be extended to include
the interaction terms. By weighting the mutual parts of the
impedance matrix with the modes of the open resonators, clear
physical meaning can be given to the interactions coefficients,
along with a simple recipe for their calculation. The result is a
reduced matrix equation,

∑
i,m

[
sĽ

(m,n)
〈i,j〉 (s) + 1

s
Š

(m,n)
〈i,j〉 (s)

]
Ǐ

(m)
〈i〉 (s) = V̌

(n)
〈j〉 (s) , (11)

where the angle-bracketed subscript refers to the scatterer, and
the superscript refers to the mode number. The self-terms of
this reduced matrix are taken directly from Eq. (8), and the
mutual are weighted by the current vectors of the relevant
modes,

Ľ
(m,n)
〈i,j〉 (s) = I(m)

〈i〉 (s(m)) · L〈i,j〉(s) · I〈j〉(n)(s(n)),

and similarly for Š
(m,n)
〈i,j〉 . These coupling terms are similar to

those derived in Refs. [54–56], but here they are based on
well-defined modes, and an arbitrary number of modes can
be included in the coupling process. The source field in the
reduced model is also obtained by weighting with the mode
current vector,

V̌
(m)
〈i〉 (s) = I(m)

〈i〉 (s(m)) · V〈i〉(s).

After solving the reduced system, the current solution on each
scatterer will be a superposition of modal terms:

I〈i〉(s) =
∑
m

Ǐ
(m)
〈i〉 (s)I(m)

〈i〉 (s(m)).

While the inclusion of retardation effects into the coupling
coefficients increases the accuracy of the model, this comes
at the cost of making the coefficients Ľ and Š frequency de-
pendent. In Refs. [30,55] these coefficients were recalculated
for each frequency, which is accurate, but computationally
inefficient. In comparison to modeling the self-impedance
terms, the optimal model of the mutual impedance is more
dependent on the specific parameters of the system. For
large separation between the elements, retardation can result
in significant oscillation of the coupling coefficient with
frequency, which may be best accounted for via a multipole
expansion of j(α). On the other hand, for closely spaced
resonators, the effect of retardation can be relatively weak, so
a low-order polynomial can suffice to describe the interaction.

B. Verification

The example used to illustrate the coupling problem is a
broadside coupled SRR [57], consisting of two of the rings
studied in the previous sections, with the second ring rotated
by 180◦ relative to the first and separated by 2 mm. This system
is sufficiently simple that its singularities could easily be found
directly, using the same approach as for a single ring. However,
by considering the problem in terms of the modes of individual
rings, the physics of this hybridization process can be shown.
In Fig. 8 the coupling coefficients between the first mode of
each ring are shown. As these functions are very smooth, they
are each easily fitted by a fourth-order polynomial, which
requires the mutual part of the impedance matrix to be filled
at 2 different frequencies.

It can be seen that with increasing frequency, the imagi-
nary parts of these coupling coefficients generally becomes
more significant, although the increase is nonmonotonic. The
differing signs of the imaginary parts are consistent with the
real part of impedance being positive. The resulting extinction
of the broadside coupled SRR pair is calculated for a plane
wave polarized across the gaps, with the incident magnetic
field normal to the rings (recalling that the incident magnetic
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Ľ
(1,1)
<1,2> (nH)

FIG. 8. (Color online) The (a) capacitive and (b) inductive con-
tributions to the mutual coupling between a pair of identical SRRs in
broadside-coupled configuration.
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FIG. 9. (Color online) The (a) real and (b) imaginary parts of
the complex extinction spectrum for a broadside-coupled pair of
SRRs, comparing the model with the directly calculated results. For
reference, the extinction of a single SRR is also shown. The inset
gives the polarization of the incident wave.

field is included in the model implicitly through the gradient of
the electric field). Figure 9 shows the corresponding extinction
cross sections, comparing the model with a direct calculation,
and also comparing with a single SRR. As the polarization and
propagation directions of the incident wave are changed, the
fundamental mode of the single ring is excited more strongly
than in Fig. 6. The splitting of the fundamental mode is
clearly observable. More interestingly, the model shows that
the lower frequency mode, with parallel currents in each ring,
has an enhanced quality factor, corresponding to a reduction
in radiative losses, whereas the higher-frequency mode is
broadened, due to its increased radiation efficiency. These
effects are directly attributable to the imaginary parts of Ľ

(1,1)
〈1,2〉

and Š
(1,1)
〈1,2〉, shown in Fig. 8.

It can be seen that the model gives very good agreement
with the direct calculation. This agreement can be improved
by considering more than one mode on each of the rings. The
dominant mode of each ring is mode 1 shown in Fig. 4(b). It
is clear from inspection of mode 2 that it has quite different
symmetry to mode 1, and it was confirmed numerically that
it does not play a role in coupling between rings in this
configuration. However, mode 3 also has opposite signs of
the charges across the SRR gap just like mode 1, and it also
plays a role in the formation of the modes of the coupled
system. This is illustrated in Fig. 10, which gives a magnified
view of the lower frequency hybridized mode. It can be seen
that the additional mode further increases the accuracy of the
model, and clearly indicates the contribution of this mode to the
coupling process. It was found that the remaining discrepancy
is not remedied by increasing the number of modes in the
coupled model. Instead, it is due to the impedance of the single
ring being fitted near its resonance, whereas the resonances of
the coupled system are strongly shifted, to a region where the
fitting is less accurate. Improved accuracy would require a
robust approach to fit a higher-order model than Eq. (8) to the
data, and the frequency dependence of the current eigenvector
I (α) to be accounted for, which have not been achieved so far.
However, the accuracy of the existing approach is likely to
be sufficient for most applications, even if only the dominant
mode is considered.
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FIG. 10. (Color online) Improved accuracy of the model of a
broadside-coupled SRR when including an additional mode in the
calculation. Comparing the (a) real part and (b) imaginary part of the
models against the direct calculation.

V. CONCLUSION

In this paper, a technique was presented to describe the
physics of meta-atoms, (nano)antennas, and similar small
resonant particles. Using an integral operator approach allows
the radiation boundary conditions to be modeled efficiently,
and the modes of the system are found by searching for the
complex frequencies where this operator becomes singular. It
was shown that this approach remains physically meaningful
and accurate in regimes where dipole and quasistatic models
fail. The coupling of two rings to form a broadside-coupled
SRR was studied, showing that the coupling coefficients are
smooth, and can be calculated efficiently. The calculated
interaction constants were shown to model not only the
frequency splitting, but also the enhancement and suppression
of radiation losses for the two modes of the coupled system.
It was demonstrated that the model can readily incorporate
higher-order corrections due to additional modes of each
scatterer contributing to the coupled mode.
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APPENDIX A: DETAILS OF THE EFIE

The free space Green’s function appearing in the electric
field integral equation is given by

G0 (r) =
[
−sμI + 1

sε
∇∇

]
exp(−γ |r|)

4π |r| . (A1)

The electric field integral equation is tested and weighted
to obtain the impedance matrix Z(s). After algebraic
manipulation to transfer the gradient operations onto the
basis functions, the elements of the impedance matrix are
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given by [27]

Zmn =
∫∫

Tm

∫∫
Tn

(
sμfm(r) · fn(r′)+ 1

sε
[∇ · fm(r)][∇′ · fn(r′)]

)

× e−γ |r−r′|
4π |r − r′|d

2r′d2r, (A2)

where ε and μ are the permittivity and permeability of the
background medium.

APPENDIX B: IMPLEMENTATION DETAILS

The approach proposed in this paper is implemented in an
open source code [3]. Some essential details of the numerical
techniques and computational tools used are given here. The
geometry is created in boundary representation (B-rep) form,
and is converted to a triangular surface mesh using the package
GMSH [58]. Basis functions are then defined on the mesh,
using either rooftops [59], or loops and stars [60], which give
superior spectral properties for mesh elements which are small
compared to the wavelength.

The singularities of Eq. (A2) as r → r′ are integrable, and
are accounted for by subtracting the singular terms from the
Green’s function and integrating them separately [61,62]. The
remaining nonsingular integrals are computed using a fifth-
order symmetric integration rule [63].

The oscillator model given by Eq. (8) is fitted using the
nonnegative least-squares algorithm, which ensures that only
real coefficients of the correct sign appear in the fitting
polynomial [64]. The result is a fitted impedance function
where the real part is positive to satisfy passivity, and the
imaginary part increase with frequency in accordance with
Foster’s reactance theorem [65].

The code to implement these methods is written in the
PYTHON language, with the most computationally intensive
routines written in FORTRAN. It utilizes the scientific python
tools NUMPY, SCIPY, MATPLOTLIB, and IPYTHON [66–69].

APPENDIX C: SEARCH PROCEDURE FOR RESONANCES

Finding the zeros of Z(s) involves the solution of a
transcendental equation, and it is necessary to use iterative

techniques. The iterative search uses Newton iteration to find
the value of s which minimizes the functional [70]

F (s) = I(s) · Z(s) · I(s)

I(s) · [
d
ds

Z(s)
] · I(s)

.

The functional is evaluated numerically, with the derivatives
of Z approximated by the difference between subsequent
iterations.

A key requirement for successful application of iterative
methods is a good initial guess, and the approach presented
here was empirically found to be robust. The first step is
to decompose the impedance matrix, as per Eq. (4). These
matrices are evaluated at some arbitrary initial frequency si ,
and the linearized problem is obtained by neglecting frequency
variation of these matrices and solving for the homogeneous
solutions s̃(l) and Ĩ(l) of

S (si) · Ĩ(l) = −(s̃(l))2L(si) · Ĩ(l), (C1)

which is a generalized eigenvalue problem solvable by stan-
dard routines. However, Eq. (C1) has nonphysical solution at
s = 0 corresponding to the null space of the scalar potential
part of the impedance operator. These solutions can be
eliminated through the use of loop-star basis functions, which
decompose the current into loops (having zero divergence) and
stars (the remaining component which is almost irrotational)
[60]. Each vector and matrix is partitioned between loop (l)
and star (s) components, whereby the zero divergence of the
loop basis functions, Eq. (C1), becomes

[
0 0
0 Sss

][
Ĩl

Ĩs

]
= −(s̃(l))2

[
Lll Lls

Lsl Lss

][
Ĩl

Ĩs

]
. (C2)

First note that for s = 0, any solution with Ĩs = 0 will satisfy
this equation. These are the solutions to be eliminated, whereas
for the cases of physical interest Ĩl = −Lll

−1LlsĨs. This leads
to the eigenvalue problem

SssĨs = −(s̃(l))2[Lss − LlsLll
−1Lls]Ĩs,

which is solved to find the trial solution Ĩs and s̃(l), used to start
the Newton iteration procedure [70,71].
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