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Suppression of the Berezinskii-Kosterlitz-Thouless and quantum
phase transitions in two-dimensional superconductors by finite-size effects
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We perform a detailed finite-size scaling analysis of the sheet resistance in Bi films and the LaAlO3/SrTiO3

interface in the presence and absence of a magnetic field applied perpendicular to the system. Our main aim is
to explore the occurrence of Berezinskii-Kosterlitz-Thouless (BKT) and quantum phase transition behavior in
the presence of limited size, stemming from the finite extent of the homogeneous domains or the magnetic field.
Moreover we explore the implications thereof. Above an extrapolated BKT transition temperature, modulated by
the thickness d , gate voltage Vg , or magnetic field H , we identify a temperature range where BKT behavior occurs.
Its range is controlled by the relevant limiting lengths, which are set by the extent of the homogeneous domains or
the magnetic field. The extrapolated BKT transition lines Tc(d,Vg,H ) uncover compatibility with the occurrence
of a quantum phase transition where Tc(dc,Vgc,Hc) = 0. However, an essential implication of the respective
limiting length is that the extrapolated phase transition lines Tc(d,Vg,H ) are unattainable. Consequently, given
a finite limiting length, BKT and quantum phase transitions do not occur. Nevertheless, BKT and quantum
critical behavior is observable, controlled by the extent of the relevant limiting length. Additional results and
implications include: the magnetic-field-induced finite-size effect generates a flattening out of the sheet resistance
in the T → 0 limit, while in zero field it exhibits a characteristic temperature dependence and vanishes at T = 0
only. The former prediction is confirmed in both the Bi films and the LaAlO3/SrTiO3 interface as well as in
previous studies. The latter is consistent with the LaAlO3/SrTiO3 interface data, while the Bi films exhibit a
flattening out.
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I. INTRODUCTION

Over the last two decades, electrical transport measure-
ments of thin films near the onset of superconductivity
have been studied extensively [1–4]. Crucial observations
include: the sheet resistance in zero magnetic field remains
nearly temperature independent at the lowest attained temper-
ature [5,6] and remains ohmic below the expected normal state
to superconductor transition temperature Tc [7–9]; a magnetic
field applied perpendicular to the film generates a flattening
out of the sheet resistance in the T → 0 limit [10–13]; the
occurrence of a smeared Nelson-Kosterlitz jump [14] in the
superfluid density in the absence [15,16] and presence of a
magnetic field [17]. Interpretations of the saturation of the
sheet resistance in the T → 0 limit include the formation
of a metallic phase [10–12,18], the occurrence of quantum
tunneling of vortices [6,11], and the failure to cool the
electrons [19].

On the other hand, more than three decades ago, Beasley,
Mooij, and Orlando [20] suggested that the Berezinskii-
Kosterlitz-Thouless [21,22] (BKT) transition may be observ-
able in sufficiently large and thin superconducting systems.
They showed whenever the effective magnetic penetration
depth λ2D = λ2/d exceeds the sample size [Ws,Ls], where
λ is the magnetic penetration depth, d the thickness, Ws

the width, and Ls the length of the system, the vortices
interact logarithmically over the entire sample, a necessary
condition for a BKT transition to occur. Indeed, as shown
by Pearl [23], vortex pairs in thin superconducting systems
(charged superfluid) have a logarithmic interaction energy
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out to the characteristic length λ2D = λ2/d, beyond which
the interaction energy falls off as 1/r . Accordingly, as λ2D

increases the diamagnetism of the superconductor becomes
less important and the vortices in a thin superconducting film
become progressively like those in 4He films. Invoking the
Nelson-Kosterlitz relation [14] in the form λ2D = λ2(Tc)/d =
�2

0/(32π2kBTc), it is readily seen that for sufficiently low Tc’s,
the condition λ2D > [Ws,Ls] is in practice accomplishable.
Indeed, Tc = 1 K yields λ2D � 0.98cm. Additional limiting
lengths include the magnetic length LH ∝ (�0/H )1/2 associ-
ated with fields applied perpendicular to the film and in the
case of ac measurements Lf ∝ f −1/2 where f denotes the
frequency. Concentrating on dc measurements of the sheet
resistance one expects that the dimension of the homogeneous
domains Lh sets in zero magnetic field the smallest size so
that L = Lh = min[Ws,Ls,λ2D,Lh]. As the magnetic field
increases this applies as long as L < LH , while for L > LH the
magnetic field sets the limiting length. It controls the density
of free vortices n

F
, which determines the sheet resistance

(R ∝ n
F
) as well as the correlation length (ξ ∝ n−1/2

F
) at

and above Tc [24,25]. Accordingly, the correlation length
cannot grow beyond L. In this context it is important to
recognize that the finite-size scaling approach adopted here
is compatible with the Harris criterion [26,27], stating that
short-range correlated and uncorrelated disorder is irrelevant
at the BKT critical point, contrary to approaches where the
smearing of BKT criticality is attributed to a Gaussian-like
distribution of the bare superfluid stiffness around a given
mean value [28]. In this context it should be recognized that
irrelevance of this disorder applies to the universal properties,
while the nonuniversal parameters, including Tc and the vortex
core radius, may change. The finite-size effects stemming from
the limited extent of the homogeneous domains or the applied
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magnetic field have a profound influence on the observation
of the BKT behavior and have been studied intensely in
recent years [9,24,25,29,30]. On the other hand, over the
years, consistency with BKT behavior has been reported in
thin films [17,29–35], and in systems exhibiting interfacial
superconductivity [7–9,24].

Here we extend previous work [9,24,29,30] and analyze the
sheet resistance data of Bi films [6] and the LaAlO3/SrTiO3

interface [8,9] using the finite-size scaling formulas appro-
priate for the BKT transition, which include multiplicative
corrections when present [24,25]. These systems have been
chosen because the data comprise the low-temperature limit,
namely T � Tc where Tc is the extrapolated BKT transition
temperature attained in the limit of an infinite limiting
length L.

The paper is organized as follows. In Sec. II we sketch the
finite-size scaling behavior of the sheet resistance adapted to
the BKT critical point and present the correspondent analysis
of the thickness tuned Bi films and the gate voltage tuned
LaAlO3/SrTiO3 interface, in the presence and absence of a
magnetic field, applied perpendicular to the film or interface.
We observe remarkable consistency with the finite-size scaling
predictions. In the presence and absence of a magnetic
field we identify a temperature range above the extrapolated
Tc where BKT behavior occurs. This temperature range is
controlled by the relevant limiting length. In zero magnetic
field it is the extent of the homogeneous domains. It turns
out to decrease with the thickness d or gate voltage Vg

tuned reduction of Tc(d,Vg). The survival of BKT behavior
in applied magnetic fields implies a smeared sudden drop
in the superfluid stiffness at Tc(H ), where it adopts the
universal value given by the Nelson-Kosterlitz relation [14].
Recently, this behavior has been observed in MoGe and
InOx thin films by means of low-frequency measurements
of the ac conductivity [17]. Analogously, provided there is
a temperature range above Tc(d,Vg) where BKT behavior is
present, the smeared jump should also occur in zero field, as
observed in various films [15,16]. An essential implication
of the respective limiting length is that the extrapolated phase
transition lines Tc(d,Vg,H ) are unattainable. As a consequence
the occurrence of BKT transitions is suppressed and with
that the occurrence of quantum phase transitions in the limit
Tc(d,Vg,H ) → 0 as well. Nevertheless, in agreement with
previous studies [9,29,30,35], the lines Tc(d,Vg,H ) exhibit
the characteristic quantum critical properties. Additional im-
plications of finite-size scaling adapted to the BKT transition
include: the magnetic-field-induced finite-size effect generates
a flattening out of the sheet resistance in the T → 0 limit, while
in zero field it exhibits a characteristic temperature dependence
and vanishes at T = 0 only. The former prediction is confirmed
in both the Bi films and the LaAlO3/SrTiO3 interface, as
well as in previous studies [10–12]. The latter is consistent
with the LaAlO3/SrTiO3 interface data, while the Bi films
exhibit a flattening out. Finally we explore the limitations of
the quantum scaling approach [36].

II. THEORETICAL BACKGROUND AND DATA ANALYSIS

Since only the motion of free vortices dissipate energy,
the sheet resistance should be proportional to the free vortex

density [37]

R(T ) ∝ nF (T ). (1)

On the other hand, dynamic scaling predicts the relation-
ship [38]

R(T ) ∝ ξ−z
+ (T ), (2)

between the sheet resistance above Tc and the corresponding
correlation length [39]

ξ+(T ) = ξ0 exp

(
2π

bt1/2

)
,t = T/Tc − 1. (3)

z is the dynamic critical exponent, the amplitude ξ0 is related
to the vortex core radius and b is a nonuniversal parameter
related to the vortex core energy [9,40]. However, approaching
Tc from above, the aforementioned limiting lengths imply that
the correlation length ξ+(T ) cannot grow beyond L = Lh =
min[Ws,Ls,λ2D,Lh]. According to this a finite-size effect
becomes visible around T ∗ > Tc where

ξ+(T ∗) � L. (4)

This leads to a characteristic size dependence of the sheet
resistance [9,24,25,29,30]. Indeed, Eqs. (2) and (4) imply
that for z = 2 at T ∗ > Tc the sheet resistance adopts the size
dependence

σ (T ∗)

σ0
= R0

R(T ∗)
=

(
L

ξ0+

)2

. (5)

To illustrate the experimental situation we consider next the
sheet resistance data of Lin et al. [6] for Bi films of various
thickness and the heat conductance data of Agnolet et al. [41]
for a 23.42 Å thick 4He film. Both, the sheet resistance in thin
superconducting films and the heat resistance in 4He film are
supposed to be proportional to the to the free vortex density nF

so that according to Eq. (2) the respective conductance scales
of a homogeneous film with infinite extent scales for z = 2 as

σ (T )

σ0
= R0

R(T )
= exp(bRt−1/2), (6)

where

bR = 4π/b. (7)

Supposing that the BKT regime is attainable, bR is nearly
independent of film thickness, R0 and Tc adopt the appropriate
values, the data plotted as σ (T )/σ0 vs t−1/2 should then fall
on the single curve exp(bRt−1/2). In Fig. 1(a) we depicted
this plot for the Bi films. As t−1/2 increases and with that
Tc is approached the data no longer collapse, but run away
and flatten out at σ (T )/σ0 values, which increase with film
thickness d. This behavior points to a finite-size effect where
the correlation length ξ+(T ) cannot grow beyond the limiting
length L so that Eq. (5) applies. As a result the flattening
out is controlled by the ratio L /ξ0+ which increases with
film thickness and Tc. In Fig. 1(b) we plotted the thickness
dependence of R0 and of the extrapolated BKT transition
line Tc(d). Apparently the decrease of Tc with reduced film
thickness points to a quantum phase transition at a critical
thickness dc where Tc(dc) = 0.. Because the extrapolated
BKT transition temperatures are not attainable due to the
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(a)

(b)

FIG. 1. (Color online) (a) Normalized sheet conductance
σ (d,T )/σ (d) of Bi films of thickness d vs t−1/2 = (T/Tc − 1)−1/2

derived from Lin et al. [6]. The solid line is the BKT behavior
σ (d,T )/σ0(d) = exp(bRt−1/2) for a homogenous and infinite system
with bR = 5. (b) Thickness dependence of the extrapolated Tc

and R0.

limiting length L, it follows that these transitions, as well
as the possible quantum phase transition at Tc(dc) = 0 are
suppressed. Nevertheless, slightly above Tc, where the data
tend to collapse on the BKT line, BKT fluctuations are present.
This collapse attests to the consistency with the universal and
characteristic form of the BKT correlation length [Eq. (6)],
while the nonuniversal parameters Tc and R0 depend on the
film thickness d [see Fig. 1(b)]. The reduction of Tc and R0 is
attributable to disorder and quantum fluctuations. In particular,
the strength of disorder is expected to increase with reduced
film thickness d. To quantify this expectation we consider

kF l = (h/e2)/Rn, (8)

where kF denotes the Fermi wave number, l the electron
mean free path, and Rn the normal state sheet resistance.
As disorder increases the mean free path l diminishes, kF l

decreases, and the strength of disorder increases. In the Bi
films considered here kF l varies from 3.8 for d = 22.2 Å
to 17.4 for d = 23.42 Å. Accordingly, the strength of the
disorder increases substantially with reduced film thickness
or Tc. Nevertheless, it does not affect the universal BKT
properties but renormalizes the nonuniversal parameters.

FIG. 2. (Color online) Thermal conduction σth(T )/σth0 of a
23.42 Å thick 4He film vs t−1/2 with Tc = 1.2794 K taken from
Agnolet et al. [41]. The solid line is the BKT behavior σth/σth0 =
exp(bRt−1/2) with bR = 1.762 and σth0 = exp(−24.13954) =
3.283 × 10−11 W/K.

To classify the relevance of the finite-size effect in the Bi
films we show in Fig. 2 the corresponding scaling plot of the
thermal conductance of a 4He film. Although the data attain
the transition temperature rather closely there is now sign of a
flattening out up to t−1/2 � 13, while in the Bi films it sets in
around 0.4 � t−1/2 � 0.75 [Fig. 1(a)], depending on the film
thickness. Taking this dramatic difference as a generic fact, a
finite scaling analysis of the sheet resistance data appears to
be inevitable to uncover BKT behavior.

So far we considered finite-size effects occurring at and
above the transition temperature Tc. In Fig. 3 we depicted
R(d,T )/R0 vs Tc(d)/T for the Bi films derived from Lin
et al. [6]. As T approaches Tc(d) the data no longer collapse,
but run away from the BKT behavior and flatten out at
R(d,T )/R0(d) values, which decrease with film thickness d.

FIG. 3. (Color online) R(d,T )/R0 vs Tc(d)/T for the Bi films
derived from Lin et al. [6] The solid line is the BKT behavior
R(T )/R0 = exp(−bR(T/Tc − 1)−1/2) with bR = 5.
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The flattening out extending above Tc(d)/T > 1 points then to
a finite-size effect below Tc(d) as well. However, below Tc the
dynamic scaling relation (2) is no longer applicable because
the correlation length is infinite there owing to the divergence
of the susceptibility [22].

The BKT theory predicts that below Tc all vortices
are bound in pairs by the logarithmic vortex interaction,
whereupon the linear sheet resistance is zero. Instead there
is a nonlinear dependence of the voltage on current since
the current can unbind weakly bound pairs [37]. Contrari-
wise, in a finite sample there will be a population of
free vortices at and below the vortex unbinding transition
temperature Tc [25,32,33]. In this temperature regime the
linear relationship (1) between sheet resistance and free
vortex density still applies, while Eq. (2), relating the sheet
resistance to the correlation length [Eq. (3)], applies at and
above Tc only. To provide a rough estimate of the free
vortex density we note that at low temperatures the energy
change resulting from adding a single vortex in a system
of size L is given by �E = (J (T )/2)

∫ 2π

0 d�
∫ L

ξ0
RdR/R2 =

πJ (T ) ln(L/ξ0−) [42], where ξ0 is the vortex core radius and

J (T ) = �
2ρs(T )/2m = d�2

0/(16π3λ2(T )), (9)

denotes the superfluid stiffness at low temperatures (T � Tc).
An estimate for the free vortex density follows then from the
probability of finding a free vortex from the Boltzmann factor

P (T ) ∝ nF (T ) ∝ exp(−�E/kBT ) = (ξ0/L)πJ (T )/kBT . (10)

Using Eq. (1) we obtain,

R(T ) ∝ nF (T ) ∝ (ξ0/L)πJ (T )/kBT : T � Tc. (11)

Invoking the universal Nelson-Kosterlitz relation [14]

kBTc = π

2
J (T −

c ), (12)

the temperature range of validity is then restricted to T �
Tc = πJ (T −

c )/2kB . As it should be, for an infinite system, nF

is zero for T � Tc. But if the limiting length L is finite, the free
vortex density vanishes at zero temperature only. This implies
an ohmic tail in the IV characteristic below the extrapolated
Tc [7,32,33] and impedes a normal state to superconductor
transition at finite temperature in a strict sense. In this
context it is important to recognize that the standard finite-size
scaling outlined above neglects the multiplicative logarithmic
corrections associated with BKT critical behavior [25,43]. A
recent renormalization group treatment yields for z = 2 and
free boundary conditions [25]

R(T ) ∝
{

(ξ0/L)πJ (T )/kBT : L � ξ−(T )

(ξ0/L)2/ ln ((Llim/ξ0)/b0) : L � ξ+(T )
, (13)

where

ξ−(T ) = ξ0 exp

(
1

b|t |1/2

)
, (14)

is a diverging length below Tc [39]. With Eq. (3) it follows that
this thermal length is much smaller than the correlation length
ξ+(T ) for the same |t |, because

ξ+(t)/ξ0 = [ξ−(|t |)/ξ0]2π . (15)

(a)

(b)

FIG. 4. (Color online) (a) R(d,T )/R0(d) vs Tc and d derived
from the data shown in Fig. 3; (b) Estimates for the ratio L/ξ0 between
correlation length and vortex core radius without the multiplicative
logarithmic correction term (©) and with this correction for different
b0 values entering Eq. (16).

The parameter b0 is fixed by the initial conditions of the
renormalization group equations, [25] while the derivation of
Eq. (11) identifies ξ0 as vortex core radius. Furthermore, there
is the upper bound b0 < L/ξ0− because R(T ) > 0. Taking
the multiplicative logarithmic correction into account Eq. (5)
transforms with Eq. (13) to

R(Tc)

R0
= σ0

σ (Tc)
=

(
ξ0

L

)2 1

ln[(L/ξ0)/b0]
, (16)

valid at T � Tc.
Given R(Tc)/R0 and b0, estimates for Llim/ξ0− are then

readily obtained. Figure 4(a) depicts the Tc and d dependence
of R(Tc)/R0 derived from Fig. 3, and the resulting Tc

dependence of Llim/ξ0− is shown in Fig. 4(b) for b0 = 0.05,0.1
and 1 in comparison with the neglect of the multiplicative
logarithmic correction. These b0 values satisfy the lower bound
b0 < L/ξ0 resulting from the requirement, R(d,Tc)/R0(d) >

0. Furthermore, b0 = 0.05 is comparable to b0 ≈ 0.07, derived
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from large-scale numerical simulations [25]. Striking features
include the substantial decline of the ratio between limiting
length and vortex core radius, L/ξ0, with decreasing Tc, and
the comparably low L/ξ0 < 80 values. Indeed, the runaway is
controlled by the magnitude of L/ξ0. The 4He data shown in
Fig. 2 do not exhibit a sign of flattening out up to σth(T )/σth0

= 1010, yielding with Eq. (5) the lower bound L/ξ0 � 105.
According to this, the runaway observed in Fig. 1(a) and Fig. 3
stems from a limiting length L where the ratio L/ξ0 decreases
with film thickness. Nevertheless, there is a temperature range
where consistency with BKT behavior is observed, but in a
strict sense a normal state to superconductor BKT transition is
suppressed. As a consequence, there is also no film thickness
driven quantum phase transition where the phase transition line
Tc(d) ends at Tc(dc) = 0 vanishes at a critical film thickness
dc, as could be anticipated from the thickness dependence of
the extrapolated Tc shown in Fig. 1(b).

An essential issue left is the elucidation of the limiting
length Lmin. In principle the magnetic-field-induced finite-size
effect offers a direct estimate. A magnetic field applied
perpendicular to the film leads to the limiting length [24]

LH =
(

�0

aH

)1/2

, (17)

where a ≈ 4.8 fixes the mean distance between vortices.
It prevents the divergence of the correlation length at the
extrapolated Tc. In analogy to Eq. (5) the sheet resistance
is then expected to scale as

R(H,Tc) = 1

σ (H,Tc)
= f

L2
H

= af H

�0
, (18)

for z = 2 and low fields applied perpendicular to the
film [24,25]. In contrast to the zero-field scaling form (13),
this law holds below Tc as well and the additive correction to
the leading power law dependence is weak [25]. The magnetic
field induced finite sets then the limiting length as long
as LH ∝ H−1/2 < L whereby LH increases with decreasing
field and approaches L. Here a runaway from the scaling
behavior (18) sets in at H ∗ providing for L the estimate

L =
(

�0

aH ∗

)1/2

. (19)

In Fig. 5 we depicted the magnetic field dependence of the
sheet conductivity of the 23.42 Å thick Bi film at T = 0.1 K
and 0.2 K where the latter is close to the extrapolated Tc. Even
though the data are rather sparse we observe in a intermediate
magnetic field range consistency with the predicted linear and
nearly temperature-independent field dependence of the sheet
resistance. Now, we focus on the low field behavior of the
conductivity shown in Fig. 5. The run away from the 1/H

dependence of the sheet conductivity occurs around H = 0.01
T � H ∗, yielding with Eq. (19) for the limiting length the
estimate

L � 208 Å. (20)

With Lmin/ξ0 � 32, taken from Fig. 4(b), we obtain for the
magnitude of the radius of the vortex core radius

ξ0 � 6.5 Å. (21)

FIG. 5. (Color online) Sheet conductivity σ of the 23.42 Å thick
Bi film vs magnetic field H at T = 0.1 K and 0.2 K derived from
Lin et al. [6]. The solid line is Eq. (18) in the from σ = σ̃ /H where
σ̃ = 1.15 × 10−4 (
−1T). The dashed line is Eq. (21) with σ 0 =
4.12 × 10−4 
−1 and a = 2.25 T−1. The arrow indicates that this
data point marks the zero-field value of the sheet conductivity.

The deviations from the finite-size scaling behavior at higher
fields are not unexpected because with increasing magnetic
field the BKT regime is gradually left and he isotherms
cross around H = Hc � 0.4 T, signaling the occurrence of
a magnetic field driven quantum phase transition. In addition
Eq. (18) captures the leading field dependence only. In the
field range where it applies the plot σ vs 1/H shown in Fig. 5
also reveals a nearly temperature-independent coefficient of
proportionality σ̃ . It implies that the temperature dependence
of the sheet resistance at fixed field flattens out, as observed in
the 23.42 Å thick Bi film, [6]. Analogous behavior was also
observed in MoGe films [11] and Ta films [12] in a field
range where the magnetic-field-induced finite-size scaling
approach is no longer applicable. Indeed, in the MoGe films the
temperature-independent sheet resistance obeys the empirical
form [11]

σ (H ) = σ 0 exp(−aH ). (22)

In the present case it applies according to Fig. 5 at best
above the critical field only. The unusual empirical form was
attributed to dissipative quantum tunneling of vortices from
one insulating patch to another.

As the estimates for Lmin and ξ0 stem from rather sparse data
a reliability check is inevitable. For this purpose we consider
the temperature dependence of the correlation length ξ+
[Eq. (3)] of the 23.42 Å thick Bi film in terms of ξ+(T ) vs t−1/2

with ξ0 = 6.5 Å shown in Fig. 6. As ξ+ growth with increasing
t−1/2 it approaches the limiting length L = 208 Å at t−1/2 �
1.38, the range where in this film the run away from BKT
behavior occurs [see Fig. 1(a)]. Accordingly, we established
for the 23.42 Å thick Bi-film reasonable consistency between
the estimates for the vortex core radius ξ0 and the limiting
length L, derived from the magnetic-field-induced finite-size
effect, and the observed zero-field behavior of the sheet
resistance. Unfortunately, this estimation of ξ0 and L is
restricted to this film because the magnetic field dependence
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FIG. 6. (Color online) Correlation length ξ+ =
ξ0 exp(2π (bt)−1/2) vs t−1/2 of the 23.42 Å thick Bi film with
ξ0 = 6.5 Å and 2π/b = bR/2 = 2.5. The dashed line marks
L = 208 Å. The crossing point at t−1/2 � 1.38 corresponds to
Tc/T � 0.66.

of the sheet resistance appears to be missing for the other
films. In any case, the rather small limiting length L = 208 Å
points to an inhomogeneous film, with homogeneous patches
of dimension L = Lh.

In this context it should be kept in mind that there is the
Harris criterion [26,27], stating that short-range correlated and
uncorrelated disorder is irrelevant at the unperturbed critical
point, provided that ν > 2/D, where D is the dimensionality of
the system and ν the critical exponent of the finite-temperature
correlation length. With D = 2 and ν = ∞, appropriate for
the BKT transition [22], this disorder should be irrelevant.
Given the irrelevance of disorder, the reduction of the ratio
L/ξ0 with reduced film thickness or transition temperature
[see Fig. 4(b)] is then attributable to: (i) increasing vortex
core radius ξ0 with reduced Tc combined with a thickness-
independent L; (ii) a limiting length L, which decreases with
film thickness combined with a Tc-independent ξ0; (iii) a
thickness dependence of both, L and ξ0, such that the ratio
L/ξ0 decreases with reduced transition temperature. Because
the vortex core radius is known to increase with reduced Tc

as ξ0 ∝ T
−1/z
c with z = 2 [44,45], we are left with options

(i) and (iii). In order to discriminate between these options
we estimate ξ0(Tc) from the respective data for the 23.42 Å
thick Bi film, namely ξ0 = 6.5 Å and Tc = 0.41 K, yielding
ξ0 = gT

−1/2
c with g = 4.19 ÅK1/2. The rough estimates for

the thickness and Tc dependence of L shown in Fig. 7 are then
readily obtained from the L/ξ0 values depicted in Fig. 4(b). In
spite of the small total thickness increment of 1.18 Å there is a
strong thickness dependence of L, ranging from 50–200 Å.
Direct experimental evidence for superconducting patches
with an extent of 100 Å embedded in an insulating background
stems from scanning tunneling spectroscopy investigations on
TiNi [46] and InOx [47] films. However, it should be kept in
mind that transport measurements are sensitive to the phase
and tunneling experiments to the magnitude of the order pa-
rameter. Furthermore, scanning SQUID measurements at the
interface LaAlO3/SrT iO3 uncovered superconducting regions

FIG. 7. (Color online) Tc and film thickness dependence of the
limiting length L of the Bi films derived from the L/ξ0 estimates
shown in Fig. 4(b) for b0 = 0.05 and ξ0 = gT −1/2

c with g =
4.19 ÅK1/2.

occupying only a small fraction of the areas measured. In addi-
tion there are magnetic regions with patches of ferromagnetic
regions coexisting with a higher density of much smaller scale
domains of fluctuating local magnetic moments [48].

To explore the finite-size scenario further we turn to the
interface between LaAlO3 and SrTiO3, two excellent band
insulators. It was shown that the electric-field effect can be used
to map the phase diagram of this interface system revealing,
depending on the gate voltage, a smeared BKT transition, and
evidence for quantum critical behavior [8,9]. Here we revisit
the analysis of the temperature and gate voltage dependence
of the sheet resistance data by invoking the approach outlined
above. In Fig. 8(a) we depicted R(Vg,T )/R0 vs Tc(Vg)/T and
in Fig. 8(b) the gate voltage dependence of the extrapolated
transition temperature Tc and amplitude R0. As Tc(Vg)/T

increases Fig. 8(a) uncovers a flow to and away from the BKT
behavior. As Tc(Vg)/T decreases for fixed Tc the BKT regime
is left, while the rounding of the transition leads with increasing
Tc(Vg)/T to a flow away from criticality. Nevertheless, in an
intermediate Tc(Vg)/T regime the data tend to collapse on the
characteristic BKT line. Thus, in analogy to the Bi films, the
collapse attests again to consistency with the universal and
characteristic form of the BKT correlation length [Eq. (6)],
while the nonuniversal parameters Tc and R0 depend in the
present case on the gate voltage [see Fig. 8(b)]. Their reduction
points to the occurrence of a gate voltage tuned quantum
phase transition around Vg � −100 V where the extrapolated
transition temperature vanishes. Using Eq. (8) we find that
kF l varies from 8.5 at Vg = 80 V to 13.7 for Vg = +80 V.
Accordingly, disorder is present; its strength is comparable to
that in the Bi films but increases only slightly by approaching
the extrapolated quantum phase transition. In any case, it does
not affect the universal BKT properties but renormalizes the
nonuniversal parameters.

To unravel the consistency of the rounded transitions with
a finite-size effect, we invoke Eq. (16) to estimate the ratio
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(a)

(b)

FIG. 8. (Color online) (a) Normalized sheet resistance
R(Vg,T )/R0(Vg) vs Tc(Vg)/T of the LaAlO3/SrTiO3

interface at various gate voltages derived from Caviglia
et al. [8]. The solid line marks the BKT behavior
R(Vg,T )/R0(d) = exp(−bR(T/Tc − 1)−1/2) for a homogenous
and infinite system with with bR = 3.43. (b) Gate voltage
dependence of the extrapolated transition line Tc(Vg) and R0(Vg).
The solid and dashed lines indicate the approach of Tc and R0 to the
extrapolated quantum phase transition.

Lmin/ξ0 . Figure 9(a) shows the Tc and d dependence of
R(Vg,Tc)/R0(Vg) derived from Fig. 8(a). The resulting Tc

dependence of L/ξ0− is shown in Fig. 8(b) for b0 = 0.05
and 0.1 in comparison with the absence of the multiplicative
logarithmic correction. Note that b0 = 0.05 is comparable
to b0 ≈ 0.07, derived from large-scale numerical simula-
tions [25]. In analogy to the Bi films, important features
include the substantial decline L/ξ0 with decreasing Tc, and the
comparably low values of L/ξ , namely L/ξ0 < 100 compared
to the lower bound L/ξ0 � 105 emerging from the 4He data
shown in Fig. 2. According to this and in analogy to the Bi
films the runaway from BKT behavior as observed in Fig. 9
is attributable to a limiting length L where the ratio L/ξ0

decreases with reduced Tc. Nevertheless, there is a temperature
range where consistency with BKT behavior is observed, but in
a strict sense a normal state to superconductor BKT transition
is suppressed.

An independent confirmation of the finite-size scenario
demands the magnitude of L, allowing to determine ξ0 and

(a)

(b)

FIG. 9. (Color online) (a) R(Vg,T )/R0(Vg) vs Tc and gate voltage
Vg of the LaAlO 3/SrTiO3 interface derived from the data shown
in Fig. (8); (b) Estimates for the ratio L/ξ0 between correlation
length and vortex core radius without the multiplicative logarithmic
correction term (©) and with this correction for different b0 values
entering Eq. (16).

with that the temperature dependence of the correlation length
ξ+(T ), as well as ξ+(T ∗) = L, where the runaway from BKT
behavior should occur. Given the previous estimate derived
from the magnetic-field-induced finite-size effect [24]

L � 490 Å, (23)

for a LaAlO3/SrTiO3 interface with Tc � 0.21 we obtain with
L/ξ0 � 100, taken from Fig. 9(b), for the vortex core radius
the value

ξ0 � 4.9 Å. (24)

The resulting temperature dependence of the correlation length
is shown in Fig. 10 in terms of ξ+(T ) vs t−1/2. As the
correlation length cannot grow beyond L the runaway from
BKT behavior should occur around the crossing point between
ξ+(T ) and L at t−1/2 � 2.69 corresponding to Tc/T � 0.88.
A glance at Fig. 8(a) reveals that around this value the data
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FIG. 10. (Color online) Correlation length ξ+(T ) =
ξ0 exp[2π/(bt1/2)] vs t−1/2 of the LaAlO3/SrTiO3 interface
with Tc � 0.21 K for ξ0 = 4.9 Å and 2π/b = bR/2 = 1.72. The
dashed line marks L = 208 Å. The crossing point at t−1/2 � 2.69
corresponds to Tc/T � 0.88.

of the LaAlO3 /SrTiO3 interface at gate voltage Vg = 80 V
(Tc � 0.2 K) run away from the BKT behavior. This agreement
reveals that magnetic field and zero-field finite-size scaling
yield consistent results. On this ground is the smeared BKT
transition in both the Bi films and the LaAlO3/SrTiO 3

interface attributable to a finite-size effect stemming from
a limiting length L. In the samples with highest Tc its
dimension is L � 208 Å in the Bi films and L � 490 Å in
the LaAlO3/SrTiO3 interface.

Next we turn to the finite-size behavior below the ex-
trapolated transition temperature. Here the limiting length
L prevents the thermal length ξ−(|t |) from diverging. But
compared to ξ+(|t |) the thermal length is much smaller for
the same |t | [Eq. (15)]. For this reason L � ξ−(T ) is expected
to hold already slightly below Tc. In this regime the sheet
resistance is controlled by the free vortex density where
Eq. (13) rewritten in the form

ln[R(T )] = r − s(T )

T
, s(T ) = πJ (T )

kB

ln
L

ξ0
(25)

applies. Accordingly, the coefficient s(T ) controls deviations
from the 1/T temperature dependence. At zero temperature
the superfluid stiffness given by Eq. (9) is fixed by the
magnetic penetration depth in terms of J (T = 0) ∝ d/λ2(T =
0), expected to vanish as J (T = 0) ∝ d/λ2(T = 0) ∝ Tc [29].
On the other hand, approaching Tc from below, the superfluid
stiffness tends according to Eq. (12) to J (T −

c ) = 2kBTc/π

. In addition in both the Bi films [Fig. 4(b)] and the
LaAlO3/SrTiO3 interface [Fig. 9(b)] ln(L/ξ0) decreases with
reduced Tc. As a consequence the magnitude of s(T ) is
expected to decrease with reduced Tc. In Fig. 11, showing
ln(R) vs 1/T of the LaAlO3/SrTiO3 interface for various gate
voltages, we observe that this supposition is well confirmed.
On the other hand, in the temperature regime of interest
the data exhibit jitter masking the characteristic temperature
dependence of the superfluid stiffness in s(T ) [14]. Indeed,

FIG. 11. (Color online) ln(R) vs 1/T of the LaAlO3/SrTiO3

interface for various gate voltages. The straight lines are Eq. (25):
dashed line: Vg = −60 V with r = 5.64 and s(T ) = 0.044 K;
dash-dot-dot line: Vg = −20 V with r = 8.78 and s(T ) = 0.87 K;
full line: Vg = +20 V with r = 9.06 and s(T ) = 1.4 K; dotted line:
Vg = +60 V with r = 9.8 and s(T ) = 1.7 K. The beginnings of
the lines mark the respective 1/Tc. The dash-dot line marks the
BKT behavior (6) at Vg = −20 V with R0 = 44 k
, bR = 3.43 and
Tc = 0.119 K.

the straight lines, corresponding to the nearly temperature-
independent s(T ) ≈ 2Tc ln(L/ξ0), describe the data quite well.
To evidence the smeared BKT transition we included in Fig. 11
the characteristic BKT temperature dependence (6) in terms
of the dash-dot-dot line. Additional confirmation of this finite-
size scenario below Tc stems from the observation of an ohmic
regime at small currents [7] because it uncovers according
to Eq. (1) the presence of free vortices. The important
implication then is: although BKT behavior is observable in
an intermediate temperature regime above the extrapolated Tc,
in a strict sense a BKT transition does not occur. It is smeared
out and the sheet resistance vanishes at zero temperature only
because Eq. (25) reduces in the zero-temperature limit to

R(T ) = r exp −
(

πJ (T = 0)

kBT
ln

Llim

ξ0

)

= r

(
ξ0

Lmin

) πJ (T =0)
kB T

. (26)

Contrariwise, the sheet resistance of the Bi films shown in
Fig. 3 does not exhibit a significant temperature dependence
below T ≈ Tc/2 down to T ≈ Tc/10. To disentangle the
scaling regimes below Tc more quantitatively, we note that
the plot R(T )/R0 vs Tc/T should exhibit a crossover from a
temperature-dependent to a temperature-independent regime
at T ∗ where the diverging length ξ−(T ) equals the limiting
length Lmin. According to Eqs. (13) and (14) T ∗ follows from

L

ξ0
= ξ−(T ∗)

ξ0
= exp

(
1

b(1 − T ∗/Tc)1/2

)
. (27)

To estimate T ∗ we show in Fig. 12 the temperature dependence
of ξ−(T ) in terms of ξ−(T )/ξ0 vs T/Tc for the Bi films and
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FIG. 12. (Color online) ξ− (T )/ξ0 =exp[1/(b(1 − T/Tc)1/2)] vs
T/Tc for the Bi films with 1/b = bR/4π � 0.398 and the
LaAlO3/SrTiO3 interface with 1/b = bR/4π � 0.273. The dash dot
and dotted lines mark the minimum value of L/ξ0. L/ξ0 � 3.8 for the
Bi films [Fig. 4(b)] and L/ξ0 � 5 for the LaAlO3/SrTiO3 interface
[Fig. 9(b)].

the LaAlO3/SrTiO3 interface. Noting that the minimum value
of L/ξ0 in the Bi films is around 3.8 [Fig. 4(b)] and in
the LaAlO3/SrTiO3 interface around around 5 [Fig. 9(b)]
it becomes clear that in both systems T ∗ is close to and
slightly below Tc. As a result, the temperature regime where
ξ−(T ) > Llim holds is restricted to temperatures very close to
Tc only, while the regime where ξ−(T ) < L applies sets in
slightly below Tc. It is the regime where the sheet resistance
adopts the characteristic temperature dependence given by
Eq. (25). A glance at Fig. 11, showing ln(R) vs 1/T of
the LaAlO3/SrTiO3 interface, uncovers agreement with this
temperature dependence, while the sheet resistance of the Bi
films shown in Fig. 3 does not exhibit a significant temperature
dependence below T ≈ Tc/2. Taking the saturation of the sheet
resistance in the Bi films for granted it implies the breakdown
of the BKT behavior below Tc, while it applies above Tc.
The breakdown may then be a clue that below Tc a process
is present, which destroys BKT behavior. On the other hand
we have seen that the LaAlO3/SrTiO3 interface data is at and
below Tc remarkably consistent with the predicted finite-size
BKT behavior. However, the absence of BKT behavior below
Tc is inconsistent with measurements of the superfluid stiffness
[15–17], uncovering a smeared Nelson-Kosterlitz [14] jump
near Tc and the presence of superfluidity down to the lowest
attained temperatures. Given the odd behavior of the Bi films
it should be kept in mind that a failure to cool the electrons in
the low-temperature limit also implies a flattening of the sheet
resistance [19]. On the other hand it has been argued that in the
present case the measuring currents are far too low for heating
to be the cause of flattening [6].

Finally, to explore the implications of a magnetic-field-
induced finite-size effect below Tc we depicted in Fig. 13(a)
the temperature dependence of the sheet resistance of a
LaAlO3/SrTiO3 interface with Tc � 0.19 K at various mag-
netic fields. Although the data exhibit jitter in the low field

(a)

(b)

FIG. 13. (Color online) (a) Temperature dependence of the sheet
resistance of a LaAlO3 /SrTiO3 interface with Tc � 0.19 K at various
magnetic fields applied perpendicular to the interface taken from
Reyren et al. [49] The solid lines are fits to the BKT form (6) of the
sheet resistance with bR = 3.43 yielding for Tc and R0 the estimates
shown in Fig. 14; (b) Sheet conductivity vs H at T = 0.05 K. The
solid line is the empirical form (22) with σ 0 = 6.79 
−1 and a =
0.099 mT−1. The dashed line is Eq. (18) in the from σ = σ̃ /H where
σ̃ = 8 (
−1 mT).

limit the predicted saturation of the sheet resistance in the
T → 0 limit [Eq. (18)] is well established. On the other
hand, considering the isotherm shown in Fig. 13(b), the
consistency with the finite-size behavior (18) is restricted
to low temperatures and low fields. Above H = 30 mT a
crossover to the empirical form (22) can be surmised as
the crossing point of the isotherms around Hc = 110 mT is
approached. This crossing point is the direct consequence of
the fact that in the covered T range R decreases with decreasing
T for H < Hc, increases with decreasing T for H > Hc, and
is T independent at Hc. Noting that the scaling form (18)
presumes that density fluctuations are small [25], which is
true for large limiting lengths LH = (�0/aH )1/2, but not for
small, it becomes clear that the applicability of this approach
is limited to the low field limit. Another essential feature
emerging from Fig. 13(a) is the shift of the sheet resistance
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FIG. 14. (Color online) Estimates for Tc and R0 resulting from
the fits to the BKT form (6) of the sheet resistance included in
Fig. 13(a). The solid line is Tc = T0(Hc − H )zν with T0 = 3 ×
10−5 (KmT)1/zν , Hc = 110 mT, zν = 1.92 ± 0.1 and the dashed
line is R0 = R0c + R(Hc − H )2ν with R0c = 0.96 k
, R =
0.106 
 mT1/2ν , and 2ν = 2.78. These lines indicate the approach to
the extrapolated quantum critical point.

curves to lower temperatures with increasing magnetic field.
This behavior uncovers the pair-breaking effect of the magnetic
field leading in a mean-field treatment to a reduction of Tc0

according to Tc0(H = 0) − Tc0(H ) ∝ H [50–52]. Adopting
the finite-size point of view this behavior relies on the fact
that an applied magnetic field sets an additional limiting
length LH = (�0/aH )1/2, giving rise to a smeared BKT
transition at a fictitious BKT transition temperature Tc(H )
below Tc(H = 0). Contrariwise, in the standard finite-size
effect one attains Tc in the L → ∞ limit only. To quantify this
option we performed fits to the characteristic BKT form (6) of
the sheet resistance. A glance at Fig. 13(a) reveals, in analogy
to the zero-field case [Fig. 8(a)], agreement in an intermediate
temperature range below Tc(H ).

Given the consistency with the BKT expression (6) and
Fig. 13(a) estimates for the fictitious lines Tc(H ) and R0(H )
are readily obtained and shown in Fig. 14. Tc(H ) extrapolates
to zero around Hc = 110 mT where the isotherms cross. This
behavior suggests a magnetic-field-induced quantum phase
transition where superconducting behavior is lost at zero
temperature and the amplitude R0 approaches the critical
value R0(Hc) � 1 k
 which is close to the normal state
sheet resistance at T = 0.5 K. We note that Tc(H ) has
properties compatible with a quantum critical point, where
Tc = T0(Hc − H )zν applies [36]. z is the dynamic and ν the
critical exponent of the zero-temperature correlation length.
The power law fit included in Fig. 14 yields zν = 1.92 ± 0.1.
It is interesting to note that this value is comparable with
transport studies including MoGe [11], Nb0.15Si0.85 [53],
InOx [54], and LaAlO3/SrTiO3 interface [55] samples, though
these studies have limited their analysis to exclude resistance
data showing flattening in the zero temperature limit. In any
case, BKT behavior occurs in an intermediate temperature
range only. The extrapolated BKT line Tc(H ) is not attainable
because the magnetic-field-induced finite-size effect [Eq. (18)]
generates, as observed in Fig. 13(a), the flattening out of

the sheet resistance in the T → 0 limit. Nevertheless, the
established survival of BKT behavior in a magnetic field
applied perpendicular to the film also implies a smeared
sudden drop in the superfluid stiffness at Tc(H ), where the
superfluid stiffness adopts the universal value given by the
Nelson-Kosterlitz relation (12). Recently, this behavior has
been observed in MoGe and InOx thin films by means of low-
frequency measurements of the ac conductivity [17]. Although
the low frequency f = 20 kHz implies an additional limiting
length, namely Lf ∝ f −1/2, the magnetic field dependence of
the blurred Nelson-Kosterlitz jump has been clearly detected
and the power law fits to Tc(H ) yielded for zν the estimates
1.25 ± 0.25 for MoGe and 1.3 ± 0.4 for InOx .

Lastly we consider the limitations of the quantum scaling
form [36]

R(H,T ) = RcG(x), x = Hc − H

T 1/zν
, (28)

applicable close to the quantum critical point. G(x) is a scaling
function of its argument and G(0) = 1. It is essentially a finite-
size scaling function. Indeed at finite temperatures it is the
divergence of the zero-temperature correlation length ξ (T =
0) ∝ (Hc − H )−ν cut off by the thermal length LT ∝ T −1/z so
that x ∝ [LT /ξ (T = 0)]1/ν ∝ (Hc − H )/T 1/zνT . The data for
R(H,T ) plotted vs x = (Hc − H )/T 1/zν should then collapse
on a single curve. On the other hand BKT behavior uncovered
in Fig. 13(a) implies the scaling form (6) rewritten in the form

R(H,T ) = R0(H ) exp(−bR/(T/Tc(H ) − 1)1/2), (29)

where Tc(H ) = T0(Hc − H )zν is the transition line shown in
Fig. 14. Noting that

T

Tc(H )
= 1

T0xzν
, (30)

BKT behavior leads with Eqs. (28) and (29) to the explicit
scaling form

R(H,T ) = R0(H ) exp(−bR/((T0x
zν)−1 − 1)1/2), (31)

valid for any T/Tc(H ) = (T0x
zν)−1 > 1 where the universal

critical behavior is entirely classical. The scaling plot R(H,T )
vs z = (Hc − H )/T 1/zν obtained from the LaAlO3/SrTiO3

interface sheet resistance data shown in Fig. 13(a) is depicted
in Fig. 15(a). For comparison we included the BKT scaling
form (31). Apparently, the data do not collapse on a single
curve because the amplitude R0 exhibits a pronounced field
dependence (see Fig. 14) and the sheet resistance flattens out
for large and small values of the scaling argument z. For fixed
Hc − H this reflects the observed flattening out of the sheet
resistance in the low- and high-temperature limits [Fig. 13(a)].
A glance at Fig. 15(b) reveals that an improved data collapse
is achieved by taking the field dependence of the amplitude
R0 into account. Clearly, the flattening out for small and
large z values remains. Noting that for fixed Hc − H small
z values are attainable at rather high temperatures only, the
respective saturation reflects the fact that in this temperature
regime BKT fluctuations no longer dominate. On the other
hand large scaling arguments require the incidence of the zero-
temperature limit where the magnetic-field-induced finite-size
effect leads to a flattening out in the temperature dependence
and with that in the z dependence of the sheet resistance in
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(a)

(b)

FIG. 15. (Color online) (a) Scaling plot R(H,T ) vs z = (Hc −
H )/T 1/zν with Hc = 110 mT, zν = 1.92, and bR = 3.43. The
solid lines mark the respective BKT scaling form (31) with R0(H )
taken from Fig. 14 and T0 = 2 × 10−5 (KmT)1/zν . (b) Scaling plot
R(H,T )/R0(H ) vs z = (Hc − H )/T 1/zν . The solid line is the BKT
scaling form (31).

the z → ∞ limit. Furthermore, the field dependence of the
amplitude R0 (Fig. 14) also implies that the quantum scaling
form holds in a unattainable regime close to quantum criticality
only (R0 → R0c).

III. SUMMARY AND DISCUSSION

We analyzed sheet resistance data of thin Bi films [6]
and the LaAlO3/SrTiO3 interface [8,49] near the onset of
superconductivity to explore the compatibility with BKT
behavior. On the Bi films the onset temperature has been
tuned by the film thickness, while on the LaAlO3/SrTiO3

interface the gate voltage and the magnetic field, applied
perpendicular to the interface, acted as tuning parameter.
Noting that BKT behavior involves the transition from a
low-temperature state in which only paired vortices exist to
a high-temperature state in which free vortices occur, we
demonstrated that finite-size-induced free vortices below Tc

prevent the occurrence of a BKT transition in a strict sense.
This does not mean, however, that the BKT vortex-unbinding

mechanism does not occur and is not observable. Indeed our
finite-size analysis revealed that BKT behavior is present in an
intermediate temperature range above the extrapolated BKT
transition temperature. This temperature range depends on the
magnitude of the limiting length L while the extrapolated tran-
sition temperature corresponds to the limit L → ∞. Limiting
lengths include the effective magnetic penetration depth λ2D =
λ2/d, the dimension Lh of the homogeneous domains in the
sample, the magnetic length LH ∝ (�0/H )1/2, and in the case
of ac measurements Lf ∝ f −1/2. L = min[λ2D,Lh,LH ,Lf ]
controls the density of free vortices n

F
, which determines the

sheet resistance (R ∝ n
F
) as well as the correlation length

(ξ ∝ n−1/2
F

) at and above Tc. In this temperature range the
limiting lengths prevent the correlation length to diverge.
Concentrating on the dc sheet resistance we analyzed the
data using finite-size scaling formulas appropriate for the BKT
transition [24,25].

The main results for zero magnetic fields include: Above
Tc we observed in an intermediate temperature range consis-
tency with the characteristic BKT behavior and a thickness-
dependent or gate-voltage-dependent BKT transition temper-
ature Tc [Figs. 1(a) and 8(a)]. However, in analogy to finite
systems, the measured sheet resistance does not vanish at Tc.
In this context it should be kept in mind that there is the
Harris criterion [26,27], stating that short-range correlated and
uncorrelated disorder is irrelevant at the unperturbed critical
point, provided that ν > 2/D, where D is the dimensionality of
the system and ν the critical exponent of the finite-temperature
correlation length. With D = 2 and ν = ∞, appropriate for
the BKT transition [22], this disorder should be irrelevant.
Accordingly, the nonvanishing sheet resistance at Tc points
to a finite-size-induced smeared BKT transition. Invoking the
finite-size scaling formula for the sheet resistance at Tc we
obtained estimates for the Tc dependence of the ratio between
the limiting length and the vortex core radius, namely L/ξ0

[Figs. 3(b) and 9(b)]. Striking features included the substantial
decline of L/ξ0|max ≈ 102 with decreasing Tc and in compar-
ison with L/ξ0 � 105 in 4He the low value of L/ξ0|max. This
difference and the Tc dependence of L/ξ0 imply enhanced
smearing of the BKT transition with reduced Tc as observed
[Figs. 1(a), 3, and 8(a)]. To disentangle the Tc dependence
of the limiting length L and the vortex core radius ξ0 we
invoked the magnetic-field-induced finite-size effect allowing
us to estimate the limiting length directly from magnetic field
dependence of the sheet conductivity at fixed temperature
below Tc [24]. Unfortunately, in both the Bi films and the
LaAlO3/SrTiO3 interface, the necessary data is available for
the samples with highest Tc only. For the 23.42 Å thick Bi
film we obtained L � 208 Å, ξ0 � 6.5 Å [Eqs. (20) and (21)]
and for the LaAlO3/SrTiO3 interface with Tc � 0.21 K
the estimates L � 490 Å, ξ0 � 4.9 Å [Eqs. (23) and (24)].
These values for the extent of the homogeneous domains are
comparable with the dimension of the superconducting patches
emerging from scanning tunneling spectroscopy investigations
on TiNi [46] and InOx [47] films, as well as with scanning
SQUID measurements at the interface LaAlO3/SrT iO3 [48].
To disentangle the Tc dependence of L and ξ0 we used
the empirical relationship ξ0 ∝ T

−1/z
c with z = 2 [44,45],

revealing that the extent of the homogenous domains decreases
substantially with reduced Tc (Fig. 7). Accordingly the
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enhanced smearing of the BKT transition with reduced Tc

was traced back to the reduction of the limiting length L and
the increase of the vortex core radius ξ0 with decreasing Tc.

In the low-temperature limit and zero magnetic field we
observed on the LaAlO 3/SrTiO3 interface consistency with
the characteristic finite-size scaling form (25) while the Bi
films do not exhibit a significant temperature dependence
below T ≈ Tc/2. Taking the saturation of the sheet resistance
in the Bi films for granted it implies the breakdown of BKT
finite-size scaling below Tc, while it applies above Tc. The
breakdown may then be a clue that below Tc a process is
present, which destroys BKT behavior. On the other hand
we have seen that the LaAlO3 /SrTiO3 interface data is
at and below Tc remarkably consistent with the predicted
finite-size BKT predictions. In addition, an absence of BKT
behavior below Tc is also incompatible with measurements
of the superfluid stiffness [15–17], uncovering a smeared
Nelson-Kosterlitz [14] jump near Tc and the presence of
superfluidity down to the lowest attained temperatures.

Subsequently we explored the implications of the magnetic-
field-induced finite-size effect. Considering the temperature
dependence of the sheet resistance at various magnetic fields,
applied perpendicular to the interface of LaAlO3/SrTiO3, we
observed in an intermediate temperature range remarkable
consistency with the characteristic BKT form (6) [Fig. 13(a)].
Fits yielded the fictitious transition line Tc(H ) extrapolating
to zero at Hc � 110 mT where a quantum phase transition is
expected to occur (Fig. 14). Indeed, Tc(H ) revealed properties
compatible with a quantum critical point, near which Tc =
T0(Hc − H )zν applies [36]. z is the dynamic and ν the critical
exponent of the zero-temperature correlation length. A power
law fit yielded zν = 1.92 ± 0.1. However, this extrapolated
line is not attainable because the magnetic-field-induced finite-
size effect [Eq. (18)] generates the observed flattening out
of the sheet resistance in the T → 0 limit [Fig. 13(b)]. This
feature has been observed in the 23.42 Å thick Bi film as
well [6]. The survival of BKT behavior in applied magnetic
fields also implies a smeared sudden drop in the superfluid
stiffness at Tc(H ), where it adopts the universal value given
by the Nelson-Kosterlitz relation (12). Recently, this behavior
has been observed in MoGe and InOx thin films by means of
low-frequency measurements of the ac conductivity [17].

A key question our analysis raises is whether the homo-
geneity of two-dimensional superconductors can be improved
to reach the quality of 4He films. Analyzing the sheet resistance
data of Bi films and the LaAlO3/SrTiO3 we have shown that
the data are consistent with a finite-size effect attributable
to the limited homogeneity of the samples. The limited
length of the homogenous domains impedes the occurrence
of a BKT and quantum phase transitions in the strict sense
of a true continuous phase transition. However, this strict
interpretation of the definition of a continuous phase transition
does not imply that the BKT vortex-unbinding mechanism is
not observable and the reduction of the extrapolated Tc does
not reveal properties compatible with a quantum critical point.

Indeed, notwithstanding the comparatively small dimension
of the homogeneous domains, our finite-size analysis revealed
reasonable compatibility with BKT and quantum critical point
behavior. However, the reduction of the limiting length with
decreasing Tc is an essential drawback (Fig. 7). Furthermore,
considering the expected magnetic field tuned quantum phase
transition in the LaAlO3/SrTiO3 interface, it was shown that
the standard quantum scaling form (28) of the sheet resistance
applies very close to the unattainable quantum critical point
only (Fig. 15). Indeed, combining the BKT expression for
the sheet resistance with the quantum scaling form of the
extrapolated transition line Tc(H ), we derived the explicit
scaling relation (31) uncovering the limitations of the standard
quantum scaling form. Its main drawback was traced back to
the neglect of the magnetic field dependence of the critical
amplitude R0, which varies substantially by approaching the
critical value R0c (Fig. 14).

Finally it should be noted that the finite-size scaling
approach adopted here is compatible with the Harris crite-
rion [26,27], stating that short-range correlated and uncorre-
lated disorder is irrelevant at the BKT critical point, contrary
to approaches where the smearing of the BKT transition is
attributed to a Gaussian-like distribution of the bare superfluid-
stiffness around a given mean value [28]. The irrelevance of
this disorder implies that the universal BKT properties still
apply, while the nonuniversal parameters, including Tc, the
vortex core radius ξ0, and the amplitude R0, may change.
Contrariwise, the relevance of disorder at the extrapolated
quantum phase transition, separating the superconducting and
metallic phase, depends on the universality to which it belongs.
The relevance of disorder is again controlled by the Harris
criterion [26,27]: if the zero-temperature correlation length
critical exponent fulfils the Harris inequality ν > 2/D = 1
the disorder does not affect the quantum critical behavior.
Conversely, if ν < 2/D = 1 disorder is relevant and affects
the nonuniversal parameters R0 and Tc in the BKT form (2)
of the sheet resistance and in particular the reduction of Tc.
In the magnetic field tuned case, the field dependence of
R0 and Tc is attributable to Cooper-pair breaking. However,
another important feature of the of LaAlO3/SrTiO3 interface
is the large Rashba spin orbit interaction, which originates
from the broken inversion symmetry. It has been shown that
its magnitude increases with reduced Tc [56], suggesting
that pair breaking occurs in zero magnetic field as well.
Indeed, torque magnetometry measurement revealed that the
LaAlO3/SrTiO3 interface has a magnetic moment, which
points in the plane, and has an onset temperature that is at
least as high as 40 K and persists below the BKT transition
temperature [57].
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