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Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany

(Received 15 May 2014; revised manuscript received 8 August 2014; published 25 August 2014)

Projected entangled pair states (PEPS) are a promising ansatz for the study of strongly correlated quantum
many-body systems in two dimensions. However, due to their high computational cost, developing and improving
PEPS algorithms is necessary to make the ansatz widely usable in practice. Here we analyze several algorithmic
aspects of the method. On the one hand, we quantify the connection between the correlation length of the PEPS
and the accuracy of its approximate contraction and discuss how purifications can be used in the latter. On the
other hand, we present algorithmic improvements for the update of the tensor that introduce drastic gains in the
numerical conditioning and the efficiency of the algorithms. Finally, the state-of-the-art general PEPS code is
benchmarked with the Heisenberg and quantum Ising models on lattices of up to 21×21 sites.
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I. INTRODUCTION

As an ansatz for the wave function of a quantum many-body
system, projected entangled pair states (PEPS) [1] represent
the natural generalization of matrix product states (MPS) to
higher dimensions. MPS are by now well established as a
numerical tool; they constitute the variational class on which
the density matrix renormalization group (DMRG) is based
upon [2,3] and, nowadays, DMRG is considered numerically
exact for systems comprising hundreds of quantum particles
in one dimension.

PEPS have the potential to reproduce this success in higher
dimensions. This is particularly interesting for problems that
cannot be tackled otherwise, e.g., two-dimensional fermionic
or frustrated systems where quantum Monte Carlo methods are
hampered by the notorious sign problem. First PEPS results
for such problems in condensed matter as the t-J model or the
Kagome antiferromagnet compare well to the best currently
known results achieved by other means [4–6]. However, the
significantly higher computational cost of PEPS algorithms
compared to MPS restricts the feasible simulations to PEPS
tensors with much smaller dimensions, and the results are
still far from the level of convergence attained in the one-
dimensional case.

In the last years, significant conceptual and algorithmic
progress has been made, e.g., Refs. [7–15]. Many of the nu-
merical studies have focused on systems in the thermodynamic
limit, for which the iPEPS [9] ansatz can be used. In such case,
the translational invariance of the system is exploited to reduce
the number of variational parameters to the few tensors in a
small unit cell. However, the nontranslationally invariant finite
PEPS ansatz is also of great importance. On the one hand,
by avoiding a predefined unit cell it allows a more unbiased
approach to the thermodynamic limit, when combined with
finite size scaling (although, also, a systematically increased
unit cell in iPEPS can be expected to produce more and more
unbiased results [5,6]). On the other, it is the proper ansatz
for problems that are intrinsically nontranslationally invariant,
such as the simulation of current optical lattice experiments
that are being carried out in inhomogeneous traps. In exchange,
the price to pay is a more involved implementation and longer
running times that scale with the system size.

The original PEPS algorithms [1,16] can cope with
the nontranslationally invariant situations [17–20], but a

straightforward implementation attains only small tensor
dimensions, and is not enough to explore the power of the
ansatz. In order to reach larger dimensions (i.e., comparable to
those used in present iPEPS calculations) and to approach the
optimal ground-state approximations for them, it is necessary
to take into account and to optimize the cost and stability of
every stage of the algorithms, which is only feasible through
a thorough understanding of the various possibilities. Only
then it will be possible to adopt the optimal strategies for the
particular problem at hand.

In this paper, we aim at a global understanding of the
algorithmic aspects of finite PEPS, both at the physical and
technical level. We address the two fundamental ingredients
of PEPS algorithms, namely the environment approximation,
i.e., the approximate contraction of the tensor network (TN),
and the tensor update. In a previous work [21], we focused
on the environment approximation. We studied the physical
significance and limitations of various contraction strategies,
and introduced the cluster scheme, which unifies previous
methods and gives rise to a new contraction algorithm with
a trade-off between precision and computational cost. Here,
we extend the analysis of the environment approximation
to provide new insight into the convergence of the cluster
strategy by relating it to the correlation length of the system.
Additionally, we show how the environment approximation
can be kept exactly positive with the help of purifications.
Regarding the tensor update, we investigate the effect of
restricting the variational parameters to a reduced tensor [12], a
technique used often in the case of iPEPS and characterized by
a lower computational cost. Via the reduced tensor we derive
new numerical methods, namely suitable gauge choices, which
significantly enhance the stability of the update algorithm.
These gauge choices admit also a generalization to cases where
the full tensor needs to be updated.

Furthermore, we benchmark the state-of-the-art finite PEPS
algorithms using the Heisenberg Hamiltonian and the quantum
Ising model with transverse field. By presenting converged
finite PEPS results for lattice sizes typically considered in the
context of finite size scaling, we not only assess the validity
of the ansatz, but enable a systematic comparison to other
methods and implementations.

The rest of the article is structured as follows. In Sec. II,
we briefly present the basic notation and concepts common
to PEPS algorithms. The algorithmic details regarding the
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FIG. 1. (Color online) A PEPS on a 5×5 square lattice. Physical
indices are depicted pointing down, and virtual ones connect tensors
in the plane.

convergence of the cluster scheme, the use of positive en-
vironments and the strategies to improve the tensor update are
discussed in Sec. III. Section IV collects the numerical results
corresponding to our best PEPS ground-state approximations
for the benchmark models. Finally, in Sec. V, we summarize
our conclusions.

II. NOTATION AND PRELIMINARY CONCEPTS

For completeness, we introduce here the main concepts that
will be used throughout this paper. Reviews on PEPS and more
general TN methods can be found in the literature [16,22].

Given a quantum system of N particles, with dimensions
dl and local Hilbert space bases {|sl〉}dl

sl=1 (for l = 1, . . . N), a
PEPS [1] is a state of the form

|ψPEPS〉 :=
∑

s1,s2,...,sN

F
(
A

s1
1 A

s2
2 . . . A

sN

N

)|s1s2 . . . sN 〉,

where F denotes the contraction of a TN formed by the
tensors A

sl

l . Figure 1 shows the two-dimensional square lattice
geometry with open boundary conditions and size N = L×L

considered throughout this work. In this geometry, to each
lattice site l corresponds a tensor A

sl

l with one physical index
sl for its physical degree of freedom and up to four virtual
indices connecting neighboring tensors. The dimension of
the virtual indices, called bond dimension D, restricts the
maximum possible block entropy of the state according to
an area law.

PEPS algorithms for finding ground states can be classified
in two types, namely, variational minimization of energy
and imaginary time evolution. With only minor changes, the
second one allows also the simulation of real time evolution.
Both kinds of algorithm can be formulated in terms of the
minimization of a certain cost function by varying the tensor
parameters.1 This minimization is realized in practice by
means of an alternating least squares (ALS) scheme, in which
one sweeps over the tensors and updates them one after
another, each time choosing the components that minimize
the cost function under the constraint that all the other tensors
are fixed.

Throughout this paper we focus (almost exclusively) on the
imaginary time evolution. In this case, it is customary to use a

1We remark that the initial time-evolution method [23–25] works
slightly different, and the basis of this work is rather given by
Ref. [26].

Suzuki-Trotter approximation of the evolution operator where
the Hamiltonian is split into parts containing only mutually
commuting terms. The cost function to be minimized is then
the distance d(|ψ〉) = |||ψ〉 − Ô|φ〉||2, where |φ〉 is the initial
PEPS, Ô is an operator representing one (or more) Trotter
gates, i.e., the exponential of one (or several) such Hamiltonian
terms [16], and |ψ〉 is the resulting PEPS. During the ALS
sweeping, the tensor for site l is the one that minimizes

d(Al) =: �A†
l Nl

�Al − �A†
l
�bl − �b†l �Al + const. (1)

It is given by the solution of the linear system of equations
Nl

�Al = �bl , i.e., �Al = N−1
l

�bl , where the norm matrix Nl results
from the norm TN 〈ψ |ψ〉 by leaving out the tensor A∗

l in the
bra and Al in the ket, and �bl results from the TN 〈ψ |Ô|φ〉 by
leaving out A∗

l in the bra. This procedure can be iterated for
the necessary number of steps to reach the desired total (real
or imaginary) time.2

Two main parts, namely, the environment approximation
and the tensor update, constitute the building blocks of this
algorithm and will be often referred to in the rest of this
article. The first notion corresponds to the exact or approximate
evaluation of the effective matrix (Nl) and vector (�bl) that
determine the local equation to be solved for the tensor at a
given site. The second term denotes the solution of the vector
equation and the corresponding change of the PEPS with the
updated tensor.

Some strategies developed in the context of iPEPS can
also be applied to the finite case, and we will do that in
the following. The most widely used iPEPS method, due to
its efficiency and stability, is the simple update (SU) [8], in
which the environment is assumed to be separable and then
the tensors are updated via simple SVD. As we showed in
Ref. [21], the SU works equally with finite PEPS but produces
results with limited accuracy. The full update (FU) [9,12] is
based on a more accurate approximation of the environment,
in closer analogy to the original finite PEPS algorithm [1,16],
but differing from it in the fact that Trotter gates are not applied
simultaneously, so that the environment for the update of one
gate does only require the norm contraction around that gate.
We will in the following use the term FU in the context of
finite PEPS to denote the sequential application of Trotter
gates together with the full contraction of the norm TN, as in
Ref. [21].

III. ALGORITHMIC ASPECTS

In this section we analyze several distinct aspects of finite
PEPS algorithms, regarding both the environment approxima-
tion and the tensor update.

2In the direct minimization of the energy, the cost function to be
minimized is E(|ψ〉) = 〈ψ |Ĥ |ψ〉/〈ψ |ψ〉 over the PEPS |ψ〉. For an
update during the ALS sweeping, the tensor at position l is set to
Al minimizing E( �Al) = �A†

l Hl
�Al/ �A†

l Nl
�Al , which can be found as the

lowest eigenstate of the generalized eigenproblem Hl
�Al = λNl

�Al .
Here, the matrix Hl is defined from the TN 〈ψ |Ĥ |ψ〉, in which one
leaves out the tensor Al in the ket and A∗

l in the bra, and Nl is the
norm matrix.
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FIG. 2. (Color online) Original contraction [1,16] of the norm
TN for a PEPS with bond dimension D. The product of a bulk row
with a boundary MPO of bond dimension D′ is approximated by a
new boundary MPO of the same dimension, at a cost O(dD6D′2) +
O(D4D′3).

In particular, for the environment approximation we show
how the success of the cluster scheme introduced in Ref. [21]
is deeply connected to the correlation length of the state. We
also discuss the feasibility and the cost of explicitly keeping a
positive environment by making use of purification MPO.

For the tensor update, we propose gauge choices for each
possible update scheme, and show how they improve the
numerical stability of the algorithms. We additionally discuss
how the reduced tensor, originally introduced in the context of
iPEPS [12], can similarly be used in the finite case to speed up
the computations. The normalization of the tensors is another
factor that can improve the stability of the method.

While part of this section is significantly technical, the con-
siderations exposed here are relevant for the implementation of
any (finite) PEPS algorithm. Furthermore they have also clear
physical implications, especially in the case of the environment
contraction.

A. Environment approximation

In the imaginary time algorithm, the update of one tensor
at lattice site l involves the contraction around that tensor of
the norm TN 〈ψ |ψ〉 and of the TN 〈ψ |e−τĤx |φ〉 for a certain
subset of (mutually commuting) Hamiltonian parts Ĥx . The
first contraction leads to the norm matrix Nl and the second
to the vector �bl from which the new tensor for that lattice
site follows as �Al = N−1

l
�bl . The original algorithm [1,16]

includes the complete e−τĤx , i.e., all (mutually commuting)
Trotter gates, in the TN 〈ψ |e−τĤx |φ〉 and thus requires two
independent environment approximations, one for 〈ψ |ψ〉 and
one for 〈ψ |e−τĤx |φ〉. However, in the following we adopt the
strategy from Ref. [21]. If Trotter gates are applied one by one,
and only the tensors on which a given gate acts are modified,
then it suffices to consider the environment approximation of
the norm TN alone, and, starting from this environment, the
vector �bl is constructed from the exact contraction of a single
Trotter gate.3

As in the original algorithm [1,16], we can approximate
the environment of a PEPS row (column) with the help of
boundary MPO. By identifying two opposite sides of the
PEPS TN with boundary MPO, the action of intermediate
rows (columns) on those is successively approximated by new
boundary MPO, as shown in Fig. 2 for the norm, until the
tensors of interest are reached. The approximation accuracy

3In an efficient implementation of this algorithm, we only store and
update the boundary MPO for the rows and columns of the norm TN,
and the contraction for the vector �bl is performed on the fly.

FIG. 3. (Color online) Cluster environment of a bulk row for
cluster size δ = 1. The contraction outside the cluster is achieved by
means of a separable positive boundary MPO in the way explained
in Ref. [21] with computational cost O(dD5). Then the cluster
is contracted with the help of a general boundary MPO of bond
dimension D′, which, in this case, can be found with O(dD5D′2)
operations.

of this method, used also in the FU and the cluster scheme,
is ultimately determined by the boundary bond dimension
D′ of the boundary MPO, and its efficiency is dictated by
the leading computational cost O(dD6D′2) + O(D4D′3). In
typical calculations, the boundary bond dimension for a certain
approximation precision scales as D′ ∝ D2 independent of the
system size, such that the original contraction [1,16] has the
overall cost O(D10).

1. Accuracy of the cluster contraction

The cluster update (CU) introduced in Ref. [21] allows a
trade-off between precision and efficiency in the environment
approximation. The SU and the FU are special cases of this
procedure, which naturally interpolates between them in both
accuracy and computational cost. Because clusters are not only
useful for the tensor update but equally for the computation
of expectation values, they realize a unifying framework for
PEPS contractions.

A cluster is defined as a set of tensors comprising the
considered ones and their neighborhood up to a distance called
cluster size δ. The idea is to approximate the environment
outside the cluster very roughly and inside with more precision.
In the context of finite PEPS algorithms, in which the TN is
contracted row by row, it is reasonable to define a cluster as
the considered row and its neighboring rows up to the distance
δ. Figure 3 shows an example cluster of size δ = 1 around
a central row in the bulk of a PEPS. We employ a separable
positive boundary MPO for the contraction outside the cluster,
which has a cost O(dD5), while the cluster itself is contracted
using a general boundary MPO of bond dimension D′ > 1,
which in this case requires O(dD5D′2) operations [21]. The
precision and efficiency of the approximation are determined
by the cluster size and D′. The separable positive boundary
MPO produces for cluster size δ = 0 an environment approx-
imation equivalent to the SU one [21].

We previously observed [21] that the contraction error
decreases exponentially with the cluster size for PEPS ground-
state approximations of the Heisenberg model. This property,
which justifies the usability of clusters, is ultimately related
to a finite correlation length of the system, as we appreciate
here with the help of the quantum Ising model. This model
becomes critical in the thermodynamic limit at transverse field
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FIG. 4. (Color online) Relation between cluster error and corre-
lation function in the Ising model on a 21×21 lattice. (a) Cluster
error (main plot) and correlation function (inset) for observable
σZ , for D = 2 (open symbols), 3 (filled symbols), and B = 2.0
(triangles), 2.5 (squares), 2.8 (circles). (b) Characteristic cluster size,
δ0, vs correlation length, ζ , for several values of B ∈ [2, 4], for
observable σZ with D = 2 (plusses), 3 (crosses), and for σX with
D = 2 (triangles), 3 (circles).

B ≈ 3.044, and, thus, by varying B we can create states with
different correlation lengths.

We have analyzed the cluster contraction error of a local
observable acting on the center of the lattice, εα(δ) := |〈σα〉δ −
〈σα〉|/|〈σα〉|, for α = X,Z, where 〈σα〉δ is the approximated
contraction using cluster size δ, and 〈σα〉 the result of contract-
ing the full TN. The behavior of this quantity can be compared
to the correlation function, Gα(x) := 〈σα

l σ α
l+x〉 − 〈σα

l 〉〈σα
l+x〉,

for two sites separated by a distance x along the central
column of the lattice. All contractions were performed with
large enough D′ = 100 such that the contraction error was
independent of D′.4 We observe in Fig. 4(a) that the decrease
of the contraction error is always steeper for a faster decaying
correlation function. In order to make this statement more

4The dependence of the cluster contraction on D′ was already
investigated previously [21].

FIG. 5. (Color online) Norm environment for a single site of a
5×5 PEPS. Because each PEPS tensor A from Fig. 1 is contracted
with its complex conjugate A∗ over the physical index, an exact
contraction of this norm TN would give a positive Hermitian norm
matrix N . For large PEPS, an exact contraction of N is not feasible,
and the original contraction approximation [1,16] based on general
boundary MPO, shown in Fig. 2, does not keep the positivity.

precise, we can fit the decay of the error to an exponential
function of the cluster size, εα(δ) ∝ exp(−δ/δ0), and obtain a
characteristic cluster size δ0. Correspondingly, we can extract
a correlation length ζ from a similar fit of the correlation
function Gα(x) ∝ exp(−x/ζ ). After having calculated δ0 and
ζ for several PEPS,5 we plot δ0 as a function of ζ in Fig. 4(b)
and conclude that δ0 ≈ ζ .6 This demonstrates an extremely
clear quantitative connection between the cluster contraction
error for a given cluster size and the correlations in the state.

2. Positive environment

The exact norm environment, resulting from an exact
contraction of 〈ψ |ψ〉 around one (or several) site(s), is positive
by construction, as can be seen in Fig. 5. Although this
positive characteristic is considered a desirable property for
the environment approximation, in general it is not respected
by the approximated contractions. Nevertheless, it is possible
to use schemes that maintain it. In particular, the single-layer
(SL) algorithm was introduced in Ref. [14] as a way to improve
the environment approximation of the SU while preserving its
efficiency and numerical stability. The SL method performs
the norm contraction by means of transformations in the ket
alone [14]. Then the boundary is described by a purification
MPO [26], defined via a MPS of virtual bond dimension D′′
and physical dimension D×d ′ in such a way that the MPO
results from tracing over the purification bonds of dimension
d ′. Approximating the environment in the SL way and then
updating the tensors as explained in Ref. [14] ensures a stable
algorithm, but as seen in Ref. [21] the error in the environment
approximation can be several orders of magnitude above that

5We determine δ0 via the two values of εα(δ) at δ = 2 and 4, and ζ

via the two values of Gα(x) at x = 4 and 8.
6The slight deviation of Fig. 4(b) from the exact diagonal for larger

ζ is due to the fact that they correspond to B ≈ 3.0 where both
εα(δ) and Gα(x) decrease rather polynomially and thus δ0 as well
as ζ depend more strongly on the two values from which they were
determined.
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FIG. 6. (Color online) Positive contraction of the norm TN for
a PEPS with bond dimension D. The product of a bulk row with a
boundary purification of virtual bond dimension D′′ and purification
bond dimension d ′ is approximated by a new boundary purification
of the same dimensions. Each update of a tensor A constitutes
a nonlinear problem, and solving the linearized equations costs
O(dD6D′′4) + O(D4D′′6) + O(d ′3D3D′′6) where d ′ � DD′′2.

of the original contraction [1,16], and it can depend strongly
on the system size.

Several factors can cause these accuracy limitations. Even
if there exists a good positive MPO approximation for the
boundary with moderate bond dimension D′ (as observed for
gapped systems [27]), it does not necessarily follow that D′′
is small [28,29] and hence it is not clear a priori that fixing
the maximum D′′ produces an accurate approximation for the
environment. Moreover, as argued in Ref. [21], by operating
on a single layer, the scheme does not find the most general
purification with given bond D′′. Here we want to address the
question wether the accuracy limitations of the SL algorithm
are due to the description of the boundary as purification or
wether they are due to the specific operations proposed in
Ref. [14] to determine that boundary purification.

One way to allow for a more general purification is to
formulate an algorithm in the double-layer picture in the
following way. Given the MPS bond dimension, D′′, and the
purification bond, d ′, we write a purification MPO [26] by
using in the lower layer the complex conjugated tensors from
the upper layer. The problem of approximating the boundary
after the contraction of one further row of the PEPS norm TN is
then formulated for this structure instead of the general MPO,
as sketched in Fig. 6. The local equations result from replacing
the single tensor of the general MPO by the structure consisting
of Al and A∗

l . Following the standard ALS procedure, we
sweep over the sites l, and for each site solve the corresponding
optimization problem for Al . However, in this case the cost
function to be minimized is no longer quadratic, but quartic in
the variables of a tensor at site l, and its minimum corresponds
to the solution of nonlinear equations, in contrast to the linear
equations encountered in the original contraction [1,16] of
Fig. 2. The nonlinear equations for Al have to be solved
iteratively. We describe and benchmark several options in
Appendix A.

We compare this scheme to the original [1,16] and the SL
algorithm based on the norm contraction of the same PEPS
used in the previous analysis of Ref. [21]. The results are
shown in Fig. 7. For a fixed purification bond d ′, we observe
that the relative error of the norm decreases fast as a function
of D′′. The comparison of the 11×11 to the 21×21 lattice
[Fig. 7(a)] shows that, similar to the original algorithm [1,16],
the error does not have a strong dependence on the system
size. On the other hand, with growing d ′, the curves tend to
converge to the error of the original contraction [1,16]. This
effect can be observed already with small purification bonds for
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FIG. 7. (Color online) Relative error of the norm contraction
using boundary purification MPO, for SU Ising ground-state approx-
imations. (a) B = 3.0 and D = 2 on lattices of size 21×21 (main
plot) and 11×11 (inset). (b) B = 1.0 and D = 4 on a 11×11 lattice.
For reference, we show the error of the SL method with maximum
d ′ = DD′′2 (open circles) and of the original algorithm [1,16] (filled
circles). Our purification contraction was performed with d ′ = 1
(triangles), 2 (squares), and 3 (diamonds), and D′′ = √

D′.

B = 1.0 [Fig. 7(b)]. These results suggest that the error in the
SL method is mainly due to the restricted class of purifications
it can attain, and not to the description of the boundary as a
purification with small bond D′′.7

From the discussion above, we conclude that it is possible
to efficiently find a (close to) optimal general purification by
means of the solution of nonlinear equations. In the context
of PEPS contractions, this technique improves the SL scheme
significantly, but given its higher computational cost compared
to the original contraction [1,16], resulting from the iterative

7Although our conclusions are based on PEPS from the SU, because
we had thoroughly analyzed exactly the same PEPS with the SL
algorithm in Ref. [21], we clearly expect similar improvements for
PEPS from the FU (in particular the ground state of the quantum Ising
model at B = 1.0, away from criticality, should be well approximated
by the SU and thus Fig. 7(b) should only change slightly for the
corresponding FU PEPS).
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FIG. 8. (Color online) Six environment tensors of a nearest-
neighbor tensor pair. They form a periodic boundary MPO with
virtual bond dimension D′ and physical dimension D. It is constructed
with O(dD6D′2) + O(D4D′3) operations, resulting from the optimal
search for a boundary MPO and the contraction of the environment
up to the tensor pair.

routines (see Appendix A), it is not a practical option. Hence, in
the following, all our cluster and full contractions will be based
upon the original contraction algorithm [1,16] and thus make
use of general boundary MPO as shown in Fig. 2. Nevertheless,
the procedures analyzed here may be useful for other problems
where the question of numerically optimizing a purification
MPO appears, such as for the description of one-dimensional
thermal states or open systems.

B. Tensor update

Once the environment is computed, the actual update of the
tensors takes place by solving the appropriate local equations.
It is also possible to use simplifications of this step which
render a more efficient and stable algorithm.

For the update of a pair of neighboring tensors, the
environment can be approximated in general by a MPO with
periodic boundary conditions, as illustrated in Fig. 8. A first
simplification of the tensor update procedure comes from
sequentially processing the Trotter gates, as described above,
and changing only the tensors on which each gate acts. Then
all the update operations on the pair are performed with a fixed
environment.

The computational cost of the tensor update can be greatly
decreased by restricting the update to the reduced tensor [12].
This reduced tensor update minimizes the cost function (1)
for the full tensors exactly only in the case of a separable
environment [21] as, e.g., in the SU, but it is worth studying its
performance in a more general situation. In any case, it allows
to work with larger bond dimensions, which might compensate
for the smaller number of variational parameters.

Another major difference between MPS and PEPS concerns
the conditioning of the effective norm matrix Nl . For MPS
with open boundary conditions, a gauge transformation8 can
be chosen such that Nl = 1, which guarantees the stability of
the tensor update. Although this is impossible for PEPS, we
will show how a proper gauge choice and tensor normalization
drastically improve the stability of the algorithm.

8In a PEPS, for any pair of neighboring tensors that are connected
via a virtual index, an arbitrary matrix M can be contracted with
one tensor and the matrix M−1 with the other in such a way that
the state does not change. This establishes the analog of a (local)
gauge freedom. Throughout this article, the matrix M is called gauge
matrix or gauge transformation in accordance with Ref. [16], and the
term gauge fixing or gauge choice refers to the process of choosing a
specific matrix M .

FIG. 9. (Color online) A QR decomposition of the left full tensor
AL generates the left reduced tensor aL as the R. Similarly, a LQ
decomposition of the right full tensor AR gives the right reduced
tensor aR as the L. The initial dD4 variational parameters of the
full tensor are decreased to the d2D2 variational parameters of the
reduced tensor.

1. Reduced tensor

Before performing the update under a nearest-neighbor
Trotter gate, the tensor for a lattice site can be decomposed into
the contraction of two tensors, in such a way that one of them
carries the physical index and the virtual bond corresponding
to the link on which the two-site gate acts, i.e., all the indices
directly affected by the gate. This tensor is called the reduced
tensor [12], and can be obtained from the full tensor by means
of a QR decomposition, as sketched in Fig. 9.

In the reduced tensor update, only the components of such
reduced tensor are modified during the update procedure, while
the remaining part of the full tensor is left unchanged. These
remaining parts of both tensors in the pair are contracted
with the periodic MPO of Fig. 8 to get the environment
for the reduced tensor pair, Nred, shown in Fig. 10. Due to
the approximate contractions, this reduced environment is in
general not positive, neither is it Hermitian, but its positive
approximant can be constructed in two steps [30]. First, we
compute the optimal Hermitian approximant Ñred := (Nred +
N

†
red)/2. Second, from its eigendecomposition Ñred = U�U †

we obtain the positive approximant as U�+U †, where �+
results from � by setting all negative eigenvalues to zero.
Finally, the environment is written as X̃X̃† in terms of its
square root X̃ := U

√
�+.

The computational cost of the contractions for the periodic
boundary MPO (Fig. 8), needed in both the reduced and
the full tensor update, reads O(dD6D′2) + O(D4D′3). The
construction of Nred (Figs. 9 and 10) is only slightly more
expensive with O(d4D4D′2) + O(d2D6D′2) + O(d2D4D′3)
operations. Its eigendecomposition requires O(d6D6). In the
complete update of the reduced tensors via the sweeping of
the ALS scheme, all further operations have lower compu-
tational cost. Notice that in the case of the full tensors, the
contraction of the norm environment for a single tensor needs

FIG. 10. (Color online) Environment tensor Nred of a reduced
nearest-neighbor tensor pair and its closest positive semidefinite ap-
proximant X̃X̃† constructed as explained in the text. The contractions
are characterized by the leading computational cost O(d4D4D′2) +
O(d2D6D′2) + O(d2D4D′3) and the computation of the positive
approximant requires additionally O(d6D6) operations.
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O(D8D′2) + O(D4D′3) operations while the eigendecompo-
sition of the norm matrix has the cost O(d3D12).

In order to study wether the reduced tensor limits the
accuracy of the method, we considered imaginary time
evolution of the Heisenberg model on 4×4 and 10×10 lattices,
and compared the final energies from the reduced tensor update
to the ones from the full tensor update. We found that, while
for the small bond dimensions D = 2 and 3 the full tensor
update produced better energies, for D = 4 the energies of both
approaches were already very similar. This can be appreciated
by comparison of the results in Appendix C (obtained with
the reduced tensor) to the full tensor results published in
Refs. [1,18].

Because the reduced tensor update is less costly, we could
reach larger bond dimensions than with the full tensor update,
and, in the end, obtained the lowest energies with the reduced
tensors. Therefore the reduced tensor update was used for the
results presented in this paper.

2. Gauge fixing

In the case of MPS, it is possible to keep up a canonical
form of the tensors during their updates with the help of a local
gauge fixing, and that ensures the stability of the algorithm
and optimizes its performance [16]. In the case of PEPS, there
exists neither such a canonical form nor any means to locally
gauge away the norm matrix. Nevertheless, using the gauge
freedom, it is possible to improve the conditioning of the norm
matrix and positively affect the precision and stability of the
method, as we describe in the following.9

We propose a gauge fixing that is inspired by the one-
dimensional case with open boundary conditions. In that case,
the norm tensor can be reduced to the identity by (partially)
imposing the canonical form of the MPS, achieved by QR
(or LQ) decomposition of each tensor after its update [16].
Alternatively, for an arbitrary MPS, it is always possible to
reduce the norm matrix to the identity by taking the square
roots of the unconnected left and right environment halves and
absorbing part of their QR (LQ) decompositions in the tensor
to be updated.

In the case of PEPS, it is not possible to ensure an identity
norm matrix by means of QR or LQ decompositions after
the tensor update. Hence we adapt the second possibility
and obtain the gauge transformations from the environment
before the tensor update, namely from the norm tensor itself,
such that the norm matrix is better conditioned. Because this
gauge fixing can be combined with any of the environment
approximations described previously, we propose a precise
scheme for each case.

When the environment of the tensor pair is separable, i.e.,
D′ = 1 in Fig. 8, it decomposes into six positive semidefinite

9A recent alternative approach for an improved imaginary time
evolution is presented in Ref. [31], in which the authors propose a
“quasicanonical form” that arises as fix point of the SU performed
with nearest-neighbor identity gates, and in which they demonstrate
how that form allows an efficient and stable imaginary time evolution
with projected entangled pair operators (PEPO) in the context of
iPEPS.

FIG. 11. (Color online) Gauge fixing on the environment tensor
of the reduced tensor pair, when the environment is nonseparable.
(a) We perform a QR and LQ decomposition on X̃ from Fig. 10
independently of each other (notice that we have shortened here the
horizontal open indices of X̃ compared to Fig. 10). (b) Contraction
of X̃ with L−1 and R−1 gives the final square root of the environment
tensor X. (c) In order to leave the state unchanged, the left and right
reduced tensors aL and aR from Fig. 9 have to be contracted with
the gauge transformations L and R as shown here, which gives the
starting tensors ãL and ãR for the update explained in Fig. 12.

matrices, which can be determined by the algorithm in
Ref. [21]. We compute the square roots of these matrices
and absorb them in the tensor pair. After contraction of the
tensor pair with the Trotter gate, a SVD is performed to
find the new tensors, and finally these are multiplied by
the inverses of the previous square roots. This procedure
coincides with the SU [8] in which the λ matrices surrounding
the tensor pair are substituted here by the square roots of
the environment matrices corresponding to each link. Since the
positive separable environment of the tensor pair is obtained
with O(dD5) operations, the leading cost of the complete
update isO(d6D3) + O(d2D5), under the assumption d � D2.

When the environment of the tensor pair is nonseparable,
and we restrict the update to the reduced tensor, we propose the
gauge fixing from Fig. 11. By taking R and L from independent
QR and LQ decompositions of the same X̃ from Fig. 10,
we treat both virtual bonds of the environment equally, such
that both reduced tensors will experience similar condition
numbers in the linear equations of the following sweeping.10

After we have obtained the desired better-conditioned square
root of the environment tensor, X, in order to leave the state
unchanged, the left (right) reduced tensor has to be contracted
with L (R) over its left (right) virtual index.

After our gauge fixing has been applied, the actual update
takes place in three steps. First, the tensors are initialized using
a SVD as shown in Fig. 12(a). This step coincides with the SU.
If the environment is separable, the cost function is already
minimal. In any other case, we can anticipate good starting

10We also explicitly checked the resulting condition numbers when
first a QR and then a LQ, or the other way round, or only a single
decomposition is applied. In these cases, one tensor always encounters
better condition numbers than the other in the linear equations of the
following sweeping.
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FIG. 12. (Color online) Initial and final steps of the reduced
tensor update. (a) Initialization: before we update the reduced tensors
by sweeping, we apply a SVD to their joint contraction with the
Trotter gate, and keep only the D largest singular values in �. Splitting
� gives the initial tensors aL := U

√
� and aR := √

�V for the ALS
procedure. (b) Final form: after convergence of the ALS sweeping,
we put the two tensors on an equal footing.

tensors that are closer to the minimum of the cost function.
Second, we optimize the tensors by means of the standard
ALS sweeping, in which each tensor update is followed by the
standard gauge fixing [16], i.e., the left (right) tensor is QR
(LQ) decomposed along its right (left) virtual bond. Third, a
gauge choice is made on the internal link of the converged pair
as shown in Fig. 12(b).

We have observed that our gauge choices improve the
condition number of the norm matrix by several orders of
magnitude in all studied cases. This statement is quantified
by the results in Table I, which compares typical condition
numbers found in the simulation of the Ising and Heisenberg
models with and without our gauge fixing. Strictly speaking,
the condition number of the norm matrix Nl provides only
an upper bound for the final error of the solution �Al to the
linear system of equations [32]. Therefore a large condition
number does not imply low accuracy, but a small condition
number implies high accuracy of the solution. In practical
computations with finite PEPS, when our gauge transforma-
tions are not used, instabilities can occur (e.g., as reported
in Ref. [14]) that we have never encountered after our gauge
fixing.

TABLE I. We show the mean condition number of the norm
matrix with its standard deviation in the reduced tensor update without
our gauge fixing, using only the positive approximant, and with our
gauge fixing during the FU imaginary time evolution of D = 2 (a)
and D = 4 (b) PEPS of size N = 11×11 for the Ising model and of
size N = 10×10 for the Heisenberg model. The values were obtained
averaging over 10 time steps and all tensors in the lattice.

(a) Model Positive approximant Gauge fixing

B = 1.0 Ising (2 ± 3)×107 1.1 ± 0.1
B = 3.0 Ising (2 ± 3)×103 1.6 ± 0.1

Heisenberg (8 ± 5)×10 1.08 ± 0.02

(b) Model Positive approximant Gauge fixing

B = 1.0 Ising (9 ± 205)×1013 (1 ± 3)×104

B = 3.0 Ising (4 ± 158)×1013 (5 ± 6)×102

Heisenberg (3 ± 2)×104 5 ± 3
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FIG. 13. (Color online) Mean value of the relative change
εd (u) := |d(u) − d(u − 1)|/|dinit| of the cost function d , Eq. (1), after
consecutive update sweeps u over a tensor pair computed with respect
to the initial value of the cost function dinit, for the D = 4 reduced
tensor update setting of Table I. We compare the FU evolution without
our gauge fixing using only the positive approximant (open symbols)
to the same propagation with our gauge fixing (filled symbols), for a
11×11 Ising model at B = 1.0 (circles) and 3.0 (squares), and for a
10×10 Heisenberg model (triangles).

We can also investigate the effect of our gauge fixing on the
convergence of the ALS sweeping, which can be gathered from
Fig. 13 for the update of the reduced tensor. Most remarkably,
in the presence of the gauge transformations, already the
initial SVD drastically reduces the cost function Eq. (1), by
a value that in all considered cases is larger than the one
attained after one sweep without the gauge transformations.
Furthermore, the final total reduction of the cost function
is also larger with our gauge fixing than without. Because
the relative change of the cost function in Fig. 13 always
decreases faster in the presence of our gauge transformations,
we conclude that the latter accelerate the convergence of the
ALS scheme. Our results indicate that a simplified tensor
update consisting of the combination gauge fixing and SVD
only, without the ALS sweeps, might be successful. Indeed,
for the Ising model, the cost function after our gauge fixing
and SVD is already smaller than after ten sweeps without
our gauge fixing. However, the sweeping can further decrease
the cost function, and this is revealed most evidently for the
Heisenberg model.

So far, we assumed that the update is performed on two
directly neighboring tensors, after applying on them one of
the Trotter gates of a nearest-neighbor Hamiltonian. The dis-
cussion can be extended to the update of more distant tensors,
as would appear in the case of Hamiltonians with long-range
interactions. However, for n nonadjacent reduced tensors the
dimension of the norm matrix is typically (d2D2)n×(d2D2)n,
and its diagonalization, even for two tensors, is not desirable.
A further simplification is to choose the gauge transformations
from the local environment of a single tensor, since the norm
matrix in this case has size d2D2×d2D2. By means of a
numerical simulation we confirmed that such a local gauge
choice can produce condition numbers comparable to the ones
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obtained from the gauging of the environment of the pair.11

Moreover, we found that the gauge matrices L and R computed
from the local norm tensors of each separate tensor in the pair
can also be applied to the pair environment, and then we can
follow the update procedure of Fig. 12. Thus we expect that
local gauge choices similarly improve the tensor update in
the case of general long-range interactions, where the tensor
initialization and final form in Fig. 12 will be given by their
analogues from TEBD [23].

While the discussion here is focused on the reduced tensors,
in Appendix B we derive an efficient gauge fixing for the
full tensors. This gauge fixing equally improves the condition
number of the norm matrix and the convergence of the ALS
sweeping in the tensor update of the full tensors. Because
all our gauge transformations are derived from and applied
to the norm TN alone, they do not explicitly depend on the
operator whose action on the PEPS is approximated. We would
therefore expect that our gauge choices similarly improve the
original time evolution algorithm [1,16] in which the action
of projected entangled pair operators (PEPO) on PEPS is
approximated.12

3. Stability issues

The previously described gauge choices guarantee a better
conditioned norm matrix. For the stability, precision, and
efficiency of the algorithms, especially when the environment
approximation is very rough (e.g., by using small clusters or
boundary bond dimensions), also the following factors need
to be taken into account.

(1) For PEPS, the matrices Nl are not exactly Hermitian
and positive semidefinite. The advisable strategy is to replace
them by their closest Hermitian approximants (Nl + N

†
l )/2

and additionally set to zero any negative eigenvalues in order
to get the closest positive semidefinite approximant of Nl , as
described above for the environment of the reduced tensor
pair.13

(2) In general, some eigenvalues of Nl are zero and its
positive subspace is ill-conditioned. That is why N−1

l must be
a pseudoinverse. A cutoff is set such that only the subspace of
Nl with eigenvalues larger than a certain value is considered
in the construction of the pseudoinverse.

11We propagated, using the FU, several 11×11 D = 2 PEPS,
obtained from the SU for the Ising model with different fields, and
we monitored eigenvalues and singular values of norm and gauge
matrices throughout the evolution.

12We can also expect that the direct variational minimization of the
energy benefits from our gauge transformations because they improve
the condition number of the norm matrix Nl that enters the generalized
eigenproblem Hl

�Al = λNl
�Al , which has to be solved for the tensor

update at lattice site l.
13In the direct variational minimization of the energy, also the

matrices Hl are not exactly Hermitian and hence should be replaced
by their closest Hermitian approximants (Hl + H

†
l )/2. Furthermore,

the eigendecomposition of (Nl + N
†
l )/2 enables us to replace the

generalized eigenproblem by a standard one,
√

Nl

−1
Hl

√
Nl

−1 �Bl =
λ �Bl . Its lowest eigenvector, �Bl , yields the desired new variational
parameters via �Al = √

Nl

−1 �Bl .

(3) Finally, the correct tensor normalization has a decisive
impact. Imaginary time evolution steadily modifies the norm
of the state. Thus we impose the normalization of the PEPS,
〈ψ |ψ〉 = 1, after each set of Trotter gates, and, in order to
avoid the existence of very small or very large tensors, we
additionally scale all PEPS tensors to have the same largest
element absolute.

IV. PERFORMANCE OF FINITE PEPS

With the aim of analyzing its performance in terms of
system size and bond dimension, we have applied the generic
finite PEPS code to the ground-state search for the Heisenberg
and quantum Ising model, and compared the results to those
obtained by other numerical methods, when available. Our
best PEPS results were obtained with the FU, i.e., updating
the reduced tensors, applying the Trotter gates sequentially,
and approximating the full contraction of the environment
by means of general boundary MPO. This combination of
techniques allowed us to push the simulations to lattices of
size up to 21×21. On the same systems, we ran also the SU
for finite PEPS.

A. Convergence procedure

In each case, the PEPS ground-state approximation was
found by means of imaginary time evolution. The initial
state was always a D = 2 PEPS, which was constructed by
embedding in it a separable PEPS and replacing the zero
entries by small random numbers. Beginning with the time
step τ = 0.01, the propagation was performed long enough for
the energy to converge, and then the procedure was repeated
for smaller time step(s). After convergence was attained for
the minimum time step, the scheme was iterated for a larger
bond dimension, starting from a previously converged PEPS
as initial state.

We observed that the converged SU PEPS of a certain
bond dimension was always a good initial state for further
propagation with the FU for this bond dimension. On the
one hand, in general, the SU PEPS can already be a good
ground-state approximation and then only few further steps
with the FU are required. On the other hand, we have found,
that such state required smaller values of D′ when the evolution
was continued with the FU.

Energies and correlators reported here for a certain value
of D correspond to the final PEPS for the smallest time step.
The error in the corresponding observable was estimated via
the difference to the expectation value calculated with the
converged PEPS for the previous time step. All contractions
were performed with boundary bond dimension D′ = 100, big
enough to neglect contraction errors, as we explicitly checked
by comparison to results from D′ = 200.

B. Heisenberg model

We considered imaginary time evolution with an antifer-
romagnetic Heisenberg Hamiltonian Ĥ = ∑

〈l,m〉 �Sl · �Sm. This
model on a two-dimensional square lattice is a paradigmatic
benchmark Hamiltonian because quantum Monte Carlo meth-
ods provide quasiexact results for very large system sizes [33],
and thus we can directly compare our results to quantum Monte
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FIG. 14. (Color online) Relative energy error εE :=|E(D)−E0|/
|E0|, where E0 denotes the exact ground-state energy from the
ALPS library [34–36], of the SU (open symbols) and the FU (filled
symbols) for different lattice sizes. In the case of the SU, we consider
N = 10×10 (triangles), 14×14 (squares), 16×16 (diamonds), and
20×20 (circles). In the case of the FU, we consider N = 10×10
(diamonds) and 14×14 (circles).

Carlo simulations.14 In the context of PEPS, the ground-state
order parameter of this model, i.e., the squared staggered
magnetization M2

stag := 1
N2

∑N
l,m=1(−1)l+m〈�Sl · �Sm〉, is partic-

ularly challenging [37] (also on a honeycomb lattice [11]) and
a precise determination has so far only been possible with very
large bond dimension D = 16 in Ref. [13]. Here we want to
find out what our improved algorithmic procedures can do.

To our Heisenberg Hamiltonian we added a small staggered
magnetic field BZ

∑
l(−1)lSZ

l , which we slowly switched off
during the evolution, starting from BZ = 10−3. In the presence
of this staggered field, the SU(2) symmetry of the Heisenberg
model is explicitly broken and smaller values of D′ suffice.
This procedure improved the convergence of all our algorithms
significantly. In the case of the SU, it helped to avoid local
minima and reach lower final energies, in particular on the
largest 20×20 lattice. And, in the case of the FU, already
when the staggered field was still switched on, low values of
the energy were attained while smaller values of D′ were
required. All propagations were performed for time steps
τ = 10−2 and 10−3.

Figure 14 shows the convergence of the energy with
increasing bond dimension. We observe that, while the FU
energy error decreases rapidly with D, the SU energies
saturate, and for bond dimensions up to D = 6, the lowest
SU energies lie between the values for D = 3 and 4 obtained
with the FU. This is consistent with our earlier observations
in Ref. [21] based on smaller lattices. Both the SU and the FU
produce better energies when the lattice size increases.

We can now compare our energy accuracies to the existing
literature. The original finite PEPS algorithm [1,16] obtained
a lowest energy per site −0.62515 on a 10×10 lattice,

14We obtain our quantum Monte Carlo reference values from the
ALPS library [34–36].

using a time step τ = 0.001 and bond dimension D = 4
(this PEPS result is given in Refs. [38,39]). For this system
size and the same values of τ and D, we now achieve the
slightly lower energy per site −0.62637(2), and we can also
provide the converged D = 6 result −0.62774(1). All our
energies as well as our quantum Monte Carlo reference values
corresponding to Fig. 14 are collected in Appendix C. Our
D = 4 energy per site is already lower than the best values
reported for the wave function ansatz (block) sequentially
generated states (−0.61713) [38], entangled-plaquette states
(−0.6258(1)) [39], and string bond states (−0.6225) [40], to
which we can directly compare because they also considered
finite systems with open boundary conditions. For infinite
systems, the iPEPS ansatz attains slightly better energy
precisions between 10−3 and 10−4 for D = 4 to 6, as reported
in Ref. [41]. For large finite cylinders, the best DMRG results
are also more accurate: Ref. [42] analyzes the Heisenberg
model on a cylinder with a constant staggered magnetic field
on the boundaries and, by making use of SZ symmetry in the
algorithm, reaches an energy accuracy of 10−4 on a 20×10
lattice.

In order to check the accuracy of the ground-state approxi-
mation, we evaluated also nonlocal observables. In particular,
we computed the correlator 〈�Sl · �Sl+x〉, in the center of the
lattice for two sites separated by a distance x, either along
the diagonal or along the same column. We checked explicitly
that the correlators of the converged PEPS along the diagonal
and vertical direction are quantitatively very similar. This
feature is obviously due to the PEPS ansatz and would be
harder to reproduce, e.g., with MPS in two dimensions. The
precision of our considered spin-spin correlator 〈�Sl · �Sl+x〉
also indicates the precision that can be expected for the
order parameter M2

stag := 1
N2

∑N
l,m=1(−1)l+m〈�Sl · �Sm〉. Since

the former quantity, being dependent on the distance x,
provides more information than the latter quantity, being
just a single number, we focus here on the spin-spin
correlator.

The results for the diagonal correlators in 10×10 PEPS
are shown in Fig. 15(a), and Fig. 15(b) displays the vertical
correlators for 14×14 PEPS. We observe that the FU converges
quickly to the true correlator with increasing bond dimension.
Although for fixed D the error grows with the distance x, for
fixed x it decreases fast with D. In particular, if we consider
the correlator at distance x = L/2, as commonly done for
the construction of the thermodynamic value via finite size
scaling, we read off εD=6

C ≈ 0.01 and εD=7
C ≈ 0.003 on the

10×10 lattice, and we find εD=5
C ≈ 0.07 and εD=6

C ≈ 0.01 on
the 14×14 lattice. As for the energy, the SU results saturate,
and they get better when the system size is larger.

We want to compare our results for the spin-spin correlator
to previous works. The widely used iPEPS algorithms achieve
a remarkably low relative energy error in the thermodynamic
limit [41] while their relative correlator error ≈0.1 reported in
Ref. [37] for D = 5 is still rather high (although larger values
of D are accessible within iPEPS algorithms nowadays [5,43]
by making use of symmetries [44,45]). In Ref. [13], the SU
was used together with Monte Carlo sampling to reach much
larger bond dimensions, and their best accuracies obtained with
D = 16 were 0.003(2) on a 8×8 lattice and 0.013(2) on a
16×16 lattice, assuming periodic boundary conditions. We
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FIG. 15. (Color online) Spin correlations C(x) := |〈�Sl · �Sl+x〉|
(main) and relative error εC(x) := |C(x) − C0(x)|/|C0(x)| (inset),
with the exact values C0(x) (thick line) from the ALPS library
[34–36], for two sites separated by distance x along the diagonal
in the center of 10×10 PEPS (a) and along the vertical in the center
of 14×14 PEPS (b). We consider PEPS Heisenberg ground-state
approximations from the FU with D = 2 (dash-double-dotted), 4
(dash-dotted), 5 (dashed), 6 (filled circles), and 7 (crosses), and from
the SU with D = 4 (squares), 6 (diamonds), and 8 (open circles).

now attain the same precisions here on 10×10 and 14×14
lattices already with much smaller bond dimensions D = 6
and 7. Again, the best DMRG results are still more accurate:
Ref. [42] reports an uncertainty of 0.0007 for the observable
|〈SZ〉| in the center of a 20×10 cylinder with constant
staggered magnetic fields on the boundaries.

We can try to understand the characteristics of the SU and
the FU results with the help of the environment approximation
used in their tensor updates. As we have argued in Ref. [21],
SU and FU represent special cases of a unifying CUδ: the SU
is equivalent to clusters of size δ = 0 in the tensor update,
while the FU corresponds to the largest possible cluster size
δ = L − 1. Here we showed that the cluster contraction error
as a function of the cluster size behaves like the correlation
function of the considered PEPS, such that states with short
correlation lengths can be accurately contracted by means of
small clusters. It is then reasonable to expect that the cluster
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FIG. 16. (Color online) Correlation function G(x) :=〈�Sl · �Sl+x〉−
〈�Sl〉 · 〈 �Sl+x〉 for two sites separated by distance x along the diagonal
in the center of 10×10 (main) and 14×14 (inset) PEPS Heisenberg
ground-state approximations of bond dimension D = 4. We compare
SU (dotted), CU1 (dash-double-dotted), CU2 (dash-dotted), CU3

(dashed), and FU (solid).

size δ used in CUδ limits the finally achievable correlation
length. We address this question on a 10×10 lattice with
D = 4 in the main part of Fig. 16. Indeed, the correlation
function decays slower when larger clusters are used in
the CU.

Moreover, we can gather from Fig. 16 that the correlation
functions for system size 14×14 from SU as well as FU
decay faster than the corresponding ones for system size
10×10, while Fig. 14 shows that a higher energy accuracy
is attained on the larger lattice. This indicates that, for the
finite systems with open boundary conditions considered here,
the true correlation length of the Heisenberg model slightly
decreases with growing lattice size. In the context of the SU,
this would explain why the SU results of Figs. 14 and 15 are
better on larger lattices. And in the context of the FU, this
would explain our numerical observation that the convergence
of energies and spin-spin correlators required smaller values
of D′ for larger systems:15 a smaller correlation length can
be captured with a smaller cluster size δ in the CUδ and
the contraction precision achieved with such δ can equally
be obtained by the full contraction, used in the FU, with
correspondingly smaller value of D′ (see Figs. 12 and 13 in
Ref. [21]).

C. Quantum Ising model

We have also applied our finite PEPS algorithms
to the quantum Ising model with transverse field,

15To be precise, our FU energies and spin-spin correlators for the
Heisenberg model were converged with D′ = 2D2 for all D = 2 to 6
on the 14×14 lattice, i.e., our results did not change anymore when
we further ran the FU with larger D′. However, this convergence
occurred only with D′ = 75 for D = 5 and D′ = 126 for D = 6 on
the 10×10 lattice.
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FIG. 17. (Color online) Observables 〈σZ〉 (main) and 〈σX〉 (in-
set) evaluated in the center of 21×21 PEPS Ising ground-state
approximations from the FU with D = 2 (plusses), 3 (crosses),
and 4 (filled circles), where the D = 4 are basically on top of the
D = 3 results. Open symbols show the SU at B = 3.0, for D = 2
(down-triangles), 4 (up-triangles), 5 (squares), 6 (diamonds), and 7
(open circles). We interpolate the FU D = 4 〈σZ〉 results between
B = 2.85 and B0 := 3.000035 with |B − B0|0.34.

Ĥ = −∑
〈l,m〉 σZ

l σZ
m − B

∑
l σ

X
l . This Hamiltonian features

a quantum phase transition in the thermodynamic limit, and its
critical point Bc ≈ 3.044 and exponent β ≈ 0.327 are known
very accurately thanks to finite size scaling with the quantum
Monte Carlo method [46]. Since iPEPS have already very
successfully demonstrated the adequacy of the PEPS ansatz
for the quantum Ising model even at criticality [9,10] (Ref. [10]
reports Bc ≈ 3.04 and β ≈ 0.328), we present our results
here and in Appendix C just for benchmark purposes, e.g.,
to enable a comparison with another PEPS implementation
or with another wave function ansatz. We thus consider
here only few different values of the magnetic field around
B = 3 and run our computations only for the two system
sizes 11×11 and 21×21. For each value of B, we converge
the imaginary time evolution independently, using time steps
τ = 10−2, 10−3, and 10−4.

Figure 17 shows the order parameter evaluated in the center
of 21×21 PEPS from the FU for several points in the phase
diagram. Without performing a finite size scaling, we can
already extract estimates of the critical point Bc ≈ 3.0 and
exponent β ≈ 0.34 from this finite system, which are close
to the iPEPS results [9,10]. We conclude that this lattice is
already large enough to display features similar to iPEPS.

For comparison, we also present SU results at B = 3. As
expected from our previous analysis, the SU does not work well
there, where the correlation length should be large. Figure 18
shows that the FU can indeed generate PEPS with larger
correlation lengths. While a least squares fit gives a correlation
length for the FU D = 4 PEPS ζD=4

FU ≈ 2.6, it reveals for
the SU D = 7 PEPS only ζD=7

SU ≈ 1.2. The inset of Fig. 18
demonstrates the largest correlation length ζD=4

FU ≈ 4.3 for
the 11×11 lattice. Notice that, here, we have not performed
such an extensive convergence analysis with D′ as we have

10
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10
-2
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10
-4

10
-5

10
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FIG. 18. (Color online) Correlation function G(x) := 〈σZ
l σZ

l+x〉−
〈σZ

l 〉〈σZ
l+x〉 for two sites separated by distance x along the diagonal

in the center of PEPS ground-state approximations of the Ising
model on a 21×21 lattice with transverse field B = 3.0 (main) and
on a 11×11 lattice with B = 2.8 (inset). The results were obtained
with the FU using bond dimension D = 2 (plusses), 3 (crosses),
and 4 (filled circles), and with the SU using D = 4 (squares), 6
(diamonds), and 7 (open circles).

done before for the Heisenberg Hamiltonian.16 Nevertheless,
we want to emphasize that our correlation functions for the
21×21 lattice are in perfect agreement with the best iPEPS
results [10].

Remarkably, long correlation lengths can be analyzed, i.e.,
large clusters can be contracted, with very high accuracy in
the framework of PEPS. This constitutes clear evidence for
the power of general boundary MPO. They can capture the
correlations of a large cluster size δ with a boundary bond
dimension much smaller than the one needed for the exact
contraction, D′ = D2δ .

V. CONCLUSIONS

In this paper, we have reviewed various aspects that need to
be taken into account in the implementation of efficient state-
of-the-art finite PEPS algorithms. Within the two main parts
of PEPS algorithms, namely the environment approximation
and the tensor update, we have analyzed algorithmic strategies
that improve the efficiency and stability of the procedures, and
the physical properties of the solution.

The environment approximation has decisive influence
on the precision of the final PEPS of an imaginary time
evolution, and is equally crucial for the computation of
expectation values. We have shown how the accuracy of the
cluster strategy [21], which allows for a natural trade-off
between precision and computational cost of the environment,
is fundamentally connected to the correlation length of the

16For the quantum Ising model and all considered transverse fields
B, on the 11×11 lattice, we ran the FU with D′ = 8 for D = 2,
D′ = 54 for D = 3, and D′ = 128 for D = 4, while on the 21×21
lattice, we ran the FU with D′ = 8 for D = 2, D′ = 36 for D = 3,
and D′ = 128 for D = 4.

064425-12



ALGORITHMS FOR FINITE PROJECTED ENTANGLED . . . PHYSICAL REVIEW B 90, 064425 (2014)

state. Additionally, we have demonstrated that it is possible to
make use of purification MPO in order to ensure a positive
environment approximation, and that this overcomes the
limitations of the single-layer algorithm [14]. The numerical
techniques analyzed in this problem can straightforwardly be
applied to the cluster update [21] and to the full update, but
also to other scenarios where a positive MPO is required, e.g.,
to describe the mixed state of a one-dimensional system.

Not only the environment approximation, but also the
method chosen for the tensor update affects the cost and
stability of the routines. We have proposed an update scheme
that is more efficient and better conditioned than the one from
the original algorithm [1,16]. By restricting the variational
parameters to the reduced tensor, the update is drastically
accelerated. For both the reduced and the full tensor, we
have formulated gauge fixings that significantly improve
the conditioning. These gauge fixings, additionally, when
combined with a cheap SVD, constitute a promising simplified
but fast tensor update procedure.

Finally, we have combined the ingredients discussed above
in an efficient implementation of finite PEPS imaginary time
evolution, capable of dealing with large systems and bond
dimensions. In particular we have opted for the sequential
application of Trotter gates, using general boundary MPO in
the contraction of the full environment,17 and restricting the
update to the reduced tensors. To benchmark the performance
of finite PEPS and to quantitatively assess the algorithmic
properties, we have applied the code to the ground-state search
for the Heisenberg and the quantum Ising model.

We have presented ground-state calculations for system
sizes up to 21×21 and bond dimensions up to D ≈ 7, 8.
Our results demonstrate the adequacy of the PEPS ansatz for
the description of strongly correlated quantum many-body
systems, with energy and order parameter converging fast
with increasing bond dimension, when they were obtained
with the full update. In that case, thanks to the algorithmic
improvements developed in this article, we have been able to
achieve precisions of the spin-spin correlator in the Heisenberg
model using bond dimensions D = 6 and 7 that previously had
only been attained using a much larger D = 16 in Ref. [13].
Our analysis of a 21×21 quantum Ising model gave, already
without finite size scaling, critical point, critical exponent,
and correlation functions in good agreement with the iPEPS
results [9,10].

The simple update [8] and the cluster update [21] using
small cluster sizes, while ensuring a less costly environment
and thus being able to deal with larger bond dimensions, do
not produce the best ground-state approximation for a certain
value of D, and, in particular, give rise to PEPS with limited
correlation length, which is especially relevant for strongly
correlated systems as, e.g., the Ising model close to criticality.
This makes clear that the largest bond dimension attained is
not the significant measure of the power of a PEPS algorithm.

By reaching system sizes typically considered for finite
size scaling, we have given evidence that finite PEPS, when

17Notice that clusters could be beneficial in a parallel implementa-
tion as discussed in Ref. [21].

all algorithmic details are taken into account, offer a feasible
unbiased alternative to their infinite counterpart iPEPS [9]. On
the other hand, the algorithmic methods proposed here can also
be applied to iPEPS, and the feasibility of large finite PEPS
demonstrated here suggests that large unit cells are possible
in iPEPS, such that their potential bias due to a finite unit cell
can be well analyzed by systematically increasing the unit cell
from small to very large size.

Our analysis has been carried out with a generic imple-
mentation of PEPS algorithms, so that one can expect that
adapting the methods to the specific properties of a certain
problem will further enhance the performance. A particularly
promising next step is to incorporate the symmetries of the
considered Hamiltonian in the tensors [44,45], a key element
of ground-breaking two-dimensional DMRG studies, such as
Refs. [47,48], and of seminal iPEPS calculations, such as
Refs. [5,43].
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APPENDIX A: PURIFICATION APPROXIMATIONS

Approximating the boundary by a purification MPO, as
described in Sec. III A 2, requires the solution of nonlinear
equations for each tensor Al . Different algorithms can be
used for this purpose, and we have tried and compared three
methods.

(1) Linearization. Instead of solving the equations for the
product AlA

∗
l , we solve them for AlBl , treating Al and A∗

l

as independent tensors. In order to achieve convergence, the
change of the tensor in each iteration needs to be small, and
hence we construct the solution of the ith iteration according
to A

(i)
l = (1 − α)A(i−1)

l + αAl , where Al solves the linearized
equations of the previous iteration and is added to the previous
solution A

(i−1)
l with a weight α. The latter parameter must be

chosen small enough to guarantee a decreasing cost function,
and large enough to avoid unnecessarily long convergence
times.18 The construction of the individual parts of the linear
equations has the leading cost O(dD6D′′4) + O(D4D′′6).
Because we cannot impose a kind of canonical form that gives
a trivial norm matrix Nl = 1, we have to explicitly contract
its tensor network, which contributes a cost O(d ′2D2D′′6).
Finally, computing the pseudoinverse to solve the linear
equations requires O(d ′3D3D′′6) operations, which typically
represent the dominant cost when d ′ � D.

18We found that the optimization worked well if the initial value
was α = 0.01 and was multiplied by 0.8 whenever the cost function
increased.
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TABLE II. We show the mean condition number of the norm
matrix with its standard deviation in the full tensor update, for D = 2
and the setting of Table I.

Model Positive approximant Gauge fixing

B = 1.0 Ising (2 ± 3)×109 1.3 ± 0.2
B = 3.0 Ising (2 ± 2)×104 2.9 ± 0.7
Heisenberg (1.3 ± 0.8)×103 1.15 ± 0.05

(2) Conjugate gradient. We employ a canned routine19 that
comprises a conjugate gradient method with line minimization.
It has the lowest computational cost, as it only requires the
computation of the cost function and its gradient with respect
to a single tensor, which can be obtained with O(dD6D′′4) +
O(D4D′′6) operations.

(3) Newton method. It approaches a root of the gradient
by iterating H(i−1)

l ( �A(i)
l − �A(i−1)

l ) = − �G(i−1)
l , where H(i−1)

l

denotes the Hessian matrix and �G(i−1)
l the gradient of the

cost function with respect to the tensor components at site
l, evaluated with the solution A

(i−1)
l of the previous iteration.20

The Newton method has the advantage that the step width is
naturally given, in contrast to the linearized equations where
α needs to be chosen heuristically, and in contrast to the
conjugate gradient routine where it is determined via line
search. In addition to the parts of the conjugate gradient
algorithm, the Newton method needs the Hessian matrix of
the cost function, which contributes O(d ′2D2D′′6) to the cost,
and its pseudoinverse, determined by O(d ′3D3D′′6) opera-
tions, such that the leading cost O(dD6D′′4) + O(D4D′′6) +
O(d ′3D3D′′6) is the same as for the linearized problem.

To compare the different alternatives, we benchmarked their
performance in the search for an optimal purification with
fixed D′′ = 2 and varying d ′, given a reference purification
with D′′ = 4 and d ′ = 4. The latter was constructed by taking
two rows from one edge of a PEPS norm TN, for several
11×11 D = 2 SU ground-state approximations of the Ising
model at various magnetic fields. As a general rule, the initial
tensors for the search with incremented purification bond
d ′ + 1 were chosen as the previous solution for d ′ where the
extra elements were filled with uniformly distributed random
numbers. From the three considered algorithms, the Newton
method performed best. It converged reliably for all d ′ within
few local updates per tensor.

All the methods benefit from initial variables that are al-
ready close to the final solution. A sensible numerical approach
to purification approximations can then be implemented in two
steps: firstly, the computation of the optimal purification via
the SL algorithm [14], and secondly, the further optimization
of that purification via the Newton method.

19For conjugate gradient minimization we use nag_opt_conj_grad
from the NAG library [49].

20We observed that, occasionally, the Hessian matrix had many
negative eigenvalues and then it was crucial to include only the
positive ones (above a certain cutoff) in the construction of its
pseudoinverse.

FIG. 19. (Color online) Gauge fixing on the environment tensors
of the full tensor pair, when the environment is nonseparable. (a) The
environment tensor NL of the left full tensor. (b) We determine the
positive approximant for the environment of the left full tensor via a
diagonalization of the Hermitian approximant ÑL := (NL + N

†
L)/2 =

U�U †, in which, then, the negative eigenvalues are discarded in
�+, and, finally, the environment is written as X̃LX̃

†
L in terms of

its square root X̃L := U
√

�+. (c) We perform three independent
QR decompositions on X̃L. (d) After equally having carried out the
previous steps (a) to (c) with the right full tensor, we have six different
matrices R. Their inverses are contracted with the corresponding
tensors of the boundary MPO.

APPENDIX B: GAUGE FIXING FOR THE FULL TENSORS

When the environment is nonseparable, and the update of
the full tensors is considered, gauge transformations can be
efficiently computed in such a way that an eigendecomposition
of the D6×D6 dimensional norm environment of the pair is not
necessary. Instead, the D4×D4 dimensional environments of
the left (NL) and right (NR) tensor are independently computed
[Fig. 19(a)] and replaced by their positive approximants
[Fig. 19(b)] like in previous cases. Their square roots are used
to obtain the desired gauge transformations for each of the
virtual bonds of the pair [Fig. 19(c)]. On each virtual bond
we then insert the corresponding product R−1R and absorb
the R matrices in the full tensors and their inverses in the
environment [Fig. 19(d)].

The update of the full tensor pair proceeds in the way
explained in Fig. 20, analogously to the reduced tensor update.
As in the latter context, if the environment is separable, the

TABLE III. Energy per site of the Heisenberg model on square
lattices of various sizes from quantum Monte Carlo, computed with
the ALPS library [34–36].

10×10 14×14 16×16 20×20

−0.628656(2) −0.639939(2) −0.643531(2) −0.648607(1)
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FIG. 20. (Color online) Like in the reduced case of Fig. 12,
the update of the full tensor pair also consists of the three stages
initialization, optimization, and final form. The optimization is the
standard ALS sweeping, in which each full tensor is gauged after its
update in the standard way, i.e., the left tensor is QR decomposed
along its right virtual bond and the right tensor is LQ decomposed
along its left virtual bond. (a) Initialization I. Firstly, we contract the
gauge transformations from Fig. 19 with the full tensors, and split off
their reduced parts. (b) Initialization II. Secondly, we construct new
reduced tensors from a SVD on the tensor pair and the Trotter gate,
equally sharing the D largest singular values between the left and
right tensor. (c) Initialization III. We recover the full tensors AL and
AR, which are now the initial tensors for the optimization via ALS
sweeping. (d) Final form. After convergence of the sweeping, we put
the two tensors on the same footing.

tensor initialization Fig. 20(a) to (c) already minimizes the cost
function, while, if the environment is close to separable, we can
expect a significant decrease of the cost function. In general,
we can anticipate good starting tensors for the following ALS
sweeping.

Table II contains typical condition numbers of the norm
matrix in the full tensor update without our gauge fixing, using

TABLE IV. Energy per site of PEPS Heisenberg ground-state
approximations from the FU.

D 10×10 14×14

2 −0.61310(2) −0.62631(1)
3 −0.61999(1) −0.63246(1)
4 −0.62637(2) −0.63832(3)
5 −0.62739(1) −0.63901(1)
6 −0.62774(1) −0.63930(1)

TABLE V. Energy per site of PEPS Heisenberg ground-state
approximations from the SU.

D 10×10 14×14 16×16 20×20

2 −0.61281(1) −0.62115(1) −0.62719(2) −0.63519(2)
3 −0.61846(2) −0.62977(1) −0.63433(1) −0.64056(2)
4 −0.62382(1) −0.63587(1) −0.63985(1) −0.64549(2)
5 −0.62520(2) −0.63713(2) −0.64106(1) −0.64659(2)
6 −0.62541(2) −0.63738(2) −0.64129(2) −0.64676(2)

TABLE VI. Energy per site of 11×11 PEPS Ising ground-state
approximations from the FU for different transverse fields B.

D 2.0 2.5 2.8

2 −2.40075(1) −2.74230(2) −2.98947(5)
3 −2.40076(1) −2.74243(1) −2.99094(2)
4 −2.40076(1) −2.74243(1) −2.99099(1)

D 2.9 3.0 3.1

2 −3.07945(5) −3.17128(4) −3.26400(4)
3 −3.08071(1) −3.17210(1) −3.26457(1)
4 −3.08073(1) −3.17210(1) −3.26457(1)

D 3.2 3.5 4.0

2 −3.35744(4) −3.64097(3) −4.12064(2)
3 −3.35785(1) −3.64116(1) −4.12071(1)
4 −3.35785(1) −3.64116(1) −4.12071(1)

TABLE VII. Energy per site of 21×21 PEPS Ising ground-state
approximations from the FU for different transverse fields B.

D 2.0 2.5 2.8

2 −2.45219(1) −2.77340(2) −3.00705(4)
3 −2.45219(1) −2.77346(1) −3.00737(1)
4 −2.45219(1) −2.77346(1) −3.00737(1)

D 2.9 3.0 3.1

2 −3.09228(5) −3.18128(6) −3.27326(4)
3 −3.09287(1) −3.18242(1) −3.27406(1)
4 −3.09287(1) −3.18243(1) −3.27406(1)

D 3.2 3.5 4.0

2 −3.36617(4) −3.64849(3) −4.12685(2)
3 −3.36672(1) −3.64873(1) −4.12694(1)
4 −3.36672(1) −3.64873(1) −4.12694(1)

TABLE VIII. Energy per site of 21×21 PEPS Ising ground-state
approximations from the SU for transverse field B = 3.0.

D 3.0

2 −3.1792(4)
3 −3.1806(4)
4 −3.1807(4)
5 −3.1812(5)
6 −3.1812(4)
7 −3.1814(5)
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only the positive approximant, and with our gauge fixing. Our
gauge fixing improves the condition number drastically.

APPENDIX C: FINITE PEPS ENERGIES

Here, we collect some precise energy values obtained
with the PEPS ground-state approximations considered in this

paper. In the case of the Heisenberg model, we compare our
results to energies from the quantum Monte Carlo loop algo-
rithm of the ALPS library [34–36], summarized in Table III.
The presented values and errors correspond to temperature
T = 10−4, and they agree with the ones corresponding to
T = 10−3 within the error bars.
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[13] L. Wang, I. Pižorn, and F. Verstraete, Phys. Rev. B 83, 134421

(2011).
[14] I. Pižorn, L. Wang, and F. Verstraete, Phys. Rev. A 83, 052321

(2011).
[15] Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, and

T. Xiang, Phys. Rev. B 86, 045139 (2012).
[16] F. Verstraete, V. Murg, and J. I. Cirac, Adv. Phys. 57, 143 (2008).
[17] V. Murg, F. Verstraete, and J. I. Cirac, Phys. Rev. A 75, 033605

(2007).
[18] V. Murg, F. Verstraete, and J. I. Cirac, Phys. Rev. B 79, 195119

(2009).
[19] M. Lubasch, V. Murg, U. Schneider, J. I. Cirac, and M.-C.
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033014 (2014).
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Lett. 109, 067201 (2012).
[49] The NAG Library, The Numerical Algorithms Group (NAG),

Oxford, United Kingdom (2013), http://www.nag.com.

064425-16

http://arxiv.org/abs/arXiv:cond-mat/0407066
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1103/PhysRevB.84.041108
http://dx.doi.org/10.1103/PhysRevB.84.041108
http://dx.doi.org/10.1103/PhysRevB.84.041108
http://dx.doi.org/10.1103/PhysRevB.84.041108
http://arxiv.org/abs/arXiv:1402.2859
http://dx.doi.org/10.1103/PhysRevX.4.011025
http://dx.doi.org/10.1103/PhysRevX.4.011025
http://dx.doi.org/10.1103/PhysRevX.4.011025
http://dx.doi.org/10.1103/PhysRevX.4.011025
http://dx.doi.org/10.1103/PhysRevLett.99.120601
http://dx.doi.org/10.1103/PhysRevLett.99.120601
http://dx.doi.org/10.1103/PhysRevLett.99.120601
http://dx.doi.org/10.1103/PhysRevLett.99.120601
http://dx.doi.org/10.1103/PhysRevLett.101.090603
http://dx.doi.org/10.1103/PhysRevLett.101.090603
http://dx.doi.org/10.1103/PhysRevLett.101.090603
http://dx.doi.org/10.1103/PhysRevLett.101.090603
http://dx.doi.org/10.1103/PhysRevLett.101.250602
http://dx.doi.org/10.1103/PhysRevLett.101.250602
http://dx.doi.org/10.1103/PhysRevLett.101.250602
http://dx.doi.org/10.1103/PhysRevLett.101.250602
http://dx.doi.org/10.1103/PhysRevB.80.094403
http://dx.doi.org/10.1103/PhysRevB.80.094403
http://dx.doi.org/10.1103/PhysRevB.80.094403
http://dx.doi.org/10.1103/PhysRevB.80.094403
http://dx.doi.org/10.1103/PhysRevLett.103.160601
http://dx.doi.org/10.1103/PhysRevLett.103.160601
http://dx.doi.org/10.1103/PhysRevLett.103.160601
http://dx.doi.org/10.1103/PhysRevLett.103.160601
http://dx.doi.org/10.1103/PhysRevB.81.165104
http://dx.doi.org/10.1103/PhysRevB.81.165104
http://dx.doi.org/10.1103/PhysRevB.81.165104
http://dx.doi.org/10.1103/PhysRevB.81.165104
http://dx.doi.org/10.1103/PhysRevB.83.134421
http://dx.doi.org/10.1103/PhysRevB.83.134421
http://dx.doi.org/10.1103/PhysRevB.83.134421
http://dx.doi.org/10.1103/PhysRevB.83.134421
http://dx.doi.org/10.1103/PhysRevA.83.052321
http://dx.doi.org/10.1103/PhysRevA.83.052321
http://dx.doi.org/10.1103/PhysRevA.83.052321
http://dx.doi.org/10.1103/PhysRevA.83.052321
http://dx.doi.org/10.1103/PhysRevB.86.045139
http://dx.doi.org/10.1103/PhysRevB.86.045139
http://dx.doi.org/10.1103/PhysRevB.86.045139
http://dx.doi.org/10.1103/PhysRevB.86.045139
http://dx.doi.org/10.1080/14789940801912366
http://dx.doi.org/10.1080/14789940801912366
http://dx.doi.org/10.1080/14789940801912366
http://dx.doi.org/10.1080/14789940801912366
http://dx.doi.org/10.1103/PhysRevA.75.033605
http://dx.doi.org/10.1103/PhysRevA.75.033605
http://dx.doi.org/10.1103/PhysRevA.75.033605
http://dx.doi.org/10.1103/PhysRevA.75.033605
http://dx.doi.org/10.1103/PhysRevB.79.195119
http://dx.doi.org/10.1103/PhysRevB.79.195119
http://dx.doi.org/10.1103/PhysRevB.79.195119
http://dx.doi.org/10.1103/PhysRevB.79.195119
http://dx.doi.org/10.1103/PhysRevLett.107.165301
http://dx.doi.org/10.1103/PhysRevLett.107.165301
http://dx.doi.org/10.1103/PhysRevLett.107.165301
http://dx.doi.org/10.1103/PhysRevLett.107.165301
http://dx.doi.org/10.1103/PhysRevA.89.062324
http://dx.doi.org/10.1103/PhysRevA.89.062324
http://dx.doi.org/10.1103/PhysRevA.89.062324
http://dx.doi.org/10.1103/PhysRevA.89.062324
http://dx.doi.org/10.1088/1367-2630/16/3/033014
http://dx.doi.org/10.1088/1367-2630/16/3/033014
http://dx.doi.org/10.1088/1367-2630/16/3/033014
http://dx.doi.org/10.1088/1367-2630/16/3/033014
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1103/PhysRevB.83.245134
http://dx.doi.org/10.1103/PhysRevB.83.245134
http://dx.doi.org/10.1103/PhysRevB.83.245134
http://dx.doi.org/10.1103/PhysRevB.83.245134
http://dx.doi.org/10.1088/1367-2630/15/12/123021
http://dx.doi.org/10.1088/1367-2630/15/12/123021
http://dx.doi.org/10.1088/1367-2630/15/12/123021
http://dx.doi.org/10.1088/1367-2630/15/12/123021
http://arxiv.org/abs/arXiv:1404.4466
http://dx.doi.org/10.2307/2690338
http://dx.doi.org/10.2307/2690338
http://dx.doi.org/10.2307/2690338
http://dx.doi.org/10.2307/2690338
http://dx.doi.org/10.1103/PhysRevA.86.022317
http://dx.doi.org/10.1103/PhysRevA.86.022317
http://dx.doi.org/10.1103/PhysRevA.86.022317
http://dx.doi.org/10.1103/PhysRevA.86.022317
http://dx.doi.org/10.1103/PhysRevB.56.11678
http://dx.doi.org/10.1103/PhysRevB.56.11678
http://dx.doi.org/10.1103/PhysRevB.56.11678
http://dx.doi.org/10.1103/PhysRevB.56.11678
http://dx.doi.org/10.1103/PhysRevLett.87.047203
http://dx.doi.org/10.1103/PhysRevLett.87.047203
http://dx.doi.org/10.1103/PhysRevLett.87.047203
http://dx.doi.org/10.1103/PhysRevLett.87.047203
http://dx.doi.org/10.1016/j.jmmm.2006.10.304
http://dx.doi.org/10.1016/j.jmmm.2006.10.304
http://dx.doi.org/10.1016/j.jmmm.2006.10.304
http://dx.doi.org/10.1016/j.jmmm.2006.10.304
http://dx.doi.org/10.1088/1742-5468/2011/05/P05001
http://dx.doi.org/10.1088/1742-5468/2011/05/P05001
http://dx.doi.org/10.1088/1742-5468/2011/05/P05001
http://dx.doi.org/10.1088/1742-5468/2009/09/P09006
http://dx.doi.org/10.1088/1742-5468/2009/09/P09006
http://dx.doi.org/10.1088/1742-5468/2009/09/P09006
http://dx.doi.org/10.1103/PhysRevA.77.052306
http://dx.doi.org/10.1103/PhysRevA.77.052306
http://dx.doi.org/10.1103/PhysRevA.77.052306
http://dx.doi.org/10.1103/PhysRevA.77.052306
http://dx.doi.org/10.1088/1367-2630/11/8/083026
http://dx.doi.org/10.1088/1367-2630/11/8/083026
http://dx.doi.org/10.1088/1367-2630/11/8/083026
http://dx.doi.org/10.1088/1367-2630/11/8/083026
http://dx.doi.org/10.1103/PhysRevB.81.214426
http://dx.doi.org/10.1103/PhysRevB.81.214426
http://dx.doi.org/10.1103/PhysRevB.81.214426
http://dx.doi.org/10.1103/PhysRevB.81.214426
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125018
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125018
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125018
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125018
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1103/PhysRevLett.112.147203
http://dx.doi.org/10.1103/PhysRevLett.112.147203
http://dx.doi.org/10.1103/PhysRevLett.112.147203
http://dx.doi.org/10.1103/PhysRevLett.112.147203
http://dx.doi.org/10.1103/PhysRevB.83.115125
http://dx.doi.org/10.1103/PhysRevB.83.115125
http://dx.doi.org/10.1103/PhysRevB.83.115125
http://dx.doi.org/10.1103/PhysRevB.83.115125
http://dx.doi.org/10.1103/PhysRevB.83.125106
http://dx.doi.org/10.1103/PhysRevB.83.125106
http://dx.doi.org/10.1103/PhysRevB.83.125106
http://dx.doi.org/10.1103/PhysRevB.83.125106
http://dx.doi.org/10.1103/PhysRevE.66.066110
http://dx.doi.org/10.1103/PhysRevE.66.066110
http://dx.doi.org/10.1103/PhysRevE.66.066110
http://dx.doi.org/10.1103/PhysRevE.66.066110
http://dx.doi.org/10.1126/science.1201080
http://dx.doi.org/10.1126/science.1201080
http://dx.doi.org/10.1126/science.1201080
http://dx.doi.org/10.1126/science.1201080
http://dx.doi.org/10.1103/PhysRevLett.109.067201
http://dx.doi.org/10.1103/PhysRevLett.109.067201
http://dx.doi.org/10.1103/PhysRevLett.109.067201
http://dx.doi.org/10.1103/PhysRevLett.109.067201
http://www.nag.com



