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Magnon thermal mean free path in yttrium iron garnet
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The magnetothermal properties of monocrystalline yttrium iron garnet (YIG) are reported. The magnon
contribution to both the thermal conductivity and specific heat at low temperatures has been determined by
measuring these properties under an applied magnetic field, which allows us to freeze the magnon modes
and isolate the phonon contribution relative to the zero-field behavior. These results are interpreted within the
framework of a simple kinetic gas model for magnon heat conduction that allows us to estimate the magnon
thermal mean free path, i.e., the inelastic scattering length scale for thermally driven bulk magnons. We observe
this parameter to reach as high as approximately 100 μm at 2 K. It tracks the acoustic phonon thermal mean
free path closely and decreases rapidly as the temperature is increased. This relatively short length scale suggests
that magnon modes at thermal energies in YIG are not solely or directly responsible for coherent macroscale
thermal spin transport (e.g., in the spin Seebeck effect) at high temperatures. Instead, these results support a
growing consensus that subthermal magnons, i.e., those at energies below about 30 ± 10 K, are important for
spin transport in YIG at all temperatures. These results also emphasize that magnon effects should be considered
wavelength dependent, and that magnon-magnon interactions may be just as important for thermal spin transport
as magnon-phonon scattering. This, in turn, has implications for understanding the characteristic temperature
and length scales involved in spin caloritronic phenomena.
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I. INTRODUCTION

The rapidly expanding field of spin caloritronics [1,2] has
generated a surge of interest in the magnetic and thermal
properties of a wide variety of materials. Via processes such as
the spin Seebeck (SSE) [3–5] and spin Peltier (SPE) [6] effects,
as well as the (inverse [7]) spin Hall effect (SHE) [8,9], a bevy
of spin-dependent transport mechanisms are now available
for probing the magnetic, electronic, and thermal properties
of various materials and heterostructures. The spin Seebeck
effect has been reported in two clearly different geometries, the
longitudinal SSE (LSSE), where magnon transport is parallel
to the temperature gradient, and the transverse geometry
(TSSE), where it is perpendicular. It was suggested, but
not proven, that the TSSE can be viewed as a variation of
LSSE with nonlocal spin detection. A key step in designing
and interpreting experiments in this field lies in developing
an appropriate understanding of the relevant interactions
between the elementary excitations (magnons, phonons, and,
in electrical conductors, spin-polarized electrons) whose fluxes
govern spin transport, and the corresponding length scales
over which these processes occur. For example, one important
parameter is the distance over which coherent spin currents
persist in various materials (the spin diffusion length), as
this distance correlates with the limiting length scale of
heterostructure components whose functions rely on spin
transport [10].

In order to isolate and understand the nature of various
possible interactions between fluxes of heat, charge, and mag-
netization in materials, it is convenient to examine materials in
which only one or two of the relevant elementary excitations
are active at a time. To study phonon-magnon interactions,
for example, it is desirable to examine materials that have
relatively large band gaps and high Curie temperatures, so
that the material remains both electrically insulating and

magnetically ordered within the desired temperature range
of study. For these reasons, certain transition metal oxides,
in particular yttrium iron garnet (Y3Fe5O12, or YIG), have
become ubiquitous in spin caloritronic experiments. This
material has a band gap of approximately 2.85 eV [11]; its
Curie (TC = 550 K [12]) and Debye (TD = 531 K, this
work) temperatures are remarkably close to each other, and
relatively high. The desired electronic and magnetic properties
are thus easily maintained at room temperature and below.
The absence of itinerant electrons in YIG means that the
localized core d electrons of the iron atoms are the primary
source of spin and magnetization dynamics in the material, and
thermal energy then propagates through only perturbations of
the magnetization (magnons) and/or real-space displacements
of the atoms (phonons).

Experimental measurements [13] of the magnon dispersion
in YIG by neutron diffraction, in addition to numerical
simulations, report that the magnons can be reasonably well
described by a quadratic dispersion:

�ω = Da2k2, (1)

up to approximately �620 GHz (30 K). Here a is the size
of the unit cell (1.24 nm) and D corresponds to a spin-wave
stiffness parameter measured in units of temperature ranging
from about 46 K (for the limit where a2k2 → zero) to 35 K
(when a2k2 = 0.01) [13]. Additional magnon modes appear
in the dispersion near 620 GHz. An “optical-like” magnon
mode appears near �150 K, and this mode hybridizes with
the “acousticlike” mode whose dispersion at this energy is
approximately linear. The linearity of this latter mode allows
for the calculation of a corresponding “pseudoacoustic” group
velocity vM = dω/dk, which is �8500 m/s at these energies
and temperatures.
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The conceptual similarities between thermal magnons and
phonons suggest that the relevant length scales that describe
inelastic scattering for magnons should be similar to those
of phonons. This implies that magnon spin currents may,
under appropriate conditions, propagate significantly farther
than electronic spin currents, which makes magnon-based
materials an intriguing avenue for the possibility of developing
spin-based devices with more practical dimensions. This idea
is made more appealing when one considers that magnon
currents may be efficiently excited via thermal processes
(e.g., SSE), which typically occur at higher energies relative
to electronic or resonant excitation methods. These higher
energies in turn provide access to proportionately larger
densities of spin states, and thus potentially larger spin
current densities [14] and larger output voltages in spin-charge
transducers. Although resonant excitations can also pump high
magnon populations, this is true for only the states available
at their specific energies.

The other key feature that makes YIG attractive for spin
caloritronic experiments is the relative strength of phonon-
magnon coupling. In general, magnons and phonons may
exist at different effective temperatures in a material [15]. In
the limiting case where magnon-phonon coupling is infinitely
strong, the magnon and phonon baths are in local equilibrium
everywhere at all times; the two can hybridize [16] or scatter
resonantly [17], which is common in antiferromagnets. In that
case, the driving force for SSE disappears, because thermal
spin pumping depends on the existence of a temperature
difference between the magnon bath in the ferromagnet and the
electron bath in the normal metal; the latter is in equilibrium
with the phonon baths, while the former is not. In the opposite
extreme, where the coupling is zero, it becomes impossible to
pump heat into or out of the magnon bath, and the magnons
again contribute nothing to the thermal conductivity. The
coupling strength in YIG lies in between these extremes,
such that some heat is transferred between the magnon and
phonon baths, but the coupling is not so strong that the magnon
conductivity is quenched [15].

In spite of the widespread use of this material in spin
caloritronic experiments, lingering questions remain regarding
the length scales governing spin and heat transport. Recent
reports have provided some insights into this problem, and we
build upon those results here. Agrawal et al. have concluded
via spatially resolved optothermal measurements near room
temperature that short wavelength magnons cannot directly
contribute to SSE in YIG [18], and Tikhonov et al. [19]
have presented complementary calculations that indicate an
important role for subthermal phonons (i.e., those of energies
<kBT, where T is the temperature of the measurements and kB

the Boltzmann constant) in SSE effects at room temperature.
These results together suggest that subthermal magnons are
indeed a critical feature that drives SSE. In addition to these
studies, LSSE measurements performed at room temperature
as a function of YIG film thickness show that the signal
strength is strongly dependent on the film thickness up to
�150 nm, beyond which the signal appears to saturate [20].
This latter result suggests that the LSSE relies heavily on pro-
cesses that occur in the bulk of the YIG, and that it is not simply
a surface effect at the YIG/Pt interface. It also suggests that
150 nm may correspond with the room temperature scattering

length of the particular magnon modes responsible for LSSE.
In contrast, the fact that transverse spin Seebeck signals are
observed in YIG [21] over the entire macroscopic length of the
sample, which can reach 1 cm and thus cannot be related to the
above length scale, suggests that the TSSE is more complicated
than LSSE. One important aspect to consider is that different
magnon modes (e.g., long vs short wavelength, surface vs bulk
modes, etc.) are affected by different scattering mechanisms
with different scattering cross sections, and this may perhaps
help reconcile the counterintuitive nature of macroscale spin
transport in YIG [19,22].

The details of magnon-phonon scattering are important for
bulk modes, and this scattering appears to be dependent on the
temperature of the material as well as the specific phonon
oscillation orientation (i.e., longitudinal vs transverse) and
momentum state [23]. As opposed to the room temperature
behavior, we expect the relevant mechanisms to be different at
low temperatures where long wavelength modes constitute a
larger percentage of the occupied modes. This corresponds to
the regime in Ref. [23] where magnon-phonon coupling is still
present, but relatively weak. Indeed, Uchida et al. observed
very different low-temperature behavior in LSSE experiments
on YIG|Pt heterostructures when comparing the signals gener-
ated from a monocrystalline YIG slab to those obtained from a
polycrystalline sample, which they interpreted to be related to
the suppression of phonon conductivity by boundary scattering
in the latter case [24]. At temperatures above 100 K, however,
the behaviors appear to converge, indicating that boundary
scattering is not a significant mechanism behind the observed
temperature dependence in the high-temperature limit.

To outline a framework in this paper within which we
experimentally explore the length scale of bulk spin transport
in YIG, we start from a model of magnon heat conduction that
approximates the total thermal conductivity κ to be comprised
of two independent contributions, one from magnons (κM ),
and one from phonons (κλ):

κ = κλ + κM. (2)

This approximation is a quite aggressive simplification,
since (as discussed above) a nonzero magnon-phonon coupling
is necessary in order for magnons to contribute to the thermal
conductivity. We nonetheless use (2) as a phenomenological
framework to describe the effective contribution from each
conduction channel. Since magnons and phonons are bosons
with low population densities at low temperature (T < TD ,TC),
we apply the conventional kinetic gas theory to express their
individual contributions to the thermal conductivity in terms
of the standard relationship describing heat conduction in
a diffusive system. Within this approximation, the thermal
conductivity can be written as [25]

κ = 1
3Cλvλlλ + 1

3CMvMlM, (3)

where C is the isobaric specific heat per unit volume, v is the
group velocity, l is the thermal mean free path (MFP), and the
subscripts distinguish between the phonon (λ) and magnon
(M) properties. Furthermore, we can define the magnon
thermal conductivity by Fourier’s law as the magnon heat
current density (jQ,M ) divided by the magnon temperature
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gradient ∇TM ,

κM = jQ,M

∇TM

. (4)

Equation (3) produces single estimates for the effective
average MFP of all magnons (lM ) and all phonons (lλ), rather
than their frequency and mode-dependent values. Although
this is obviously an oversimplification, this is a historical
approach now known in phonon physics to nonetheless be
a robust approximation applicable to many materials [26].
The analogy between phonon and magnon thermal transport
further suggests that a calculation of lM obtained within this
framework will likely overemphasize the contributions of
higher-energy thermal magnons with short MFP, and that a
non-negligible flux of magnons with energies �kBT and much
longer MFPs will also be present when a temperature gradient
is applied to the sample. We assert that lM can still provide
a reasonable order of magnitude estimate for this parameter’s
magnitude and temperature dependence, and provide for a
comparison to lλ.

With these limitations in mind, we continue our analysis by
describing each magnon mode as possessing a single degree
of freedom, which means that each mode transports a single
quantum of heat, spin, and magnetization. This implies directly
that the total magnon heat current density is proportional to
the concomitant magnon spin (jS) and magnetization (jM )
current densities; this notion can be expressed through the
relationships

jQ,M

kBTM

= jS

�
= jM

μB

, (5)

where TM is the absolute magnon temperature, � is the reduced
Planck constant, and μB is the Bohr magneton.

By definition, the magnon thermal mean free path lM
characterizes the typical length scale over which thermally
driven magnons propagate before undergoing inelastic scat-
tering events (“Normal” low angle elastic scattering events
do not contribute to finite thermal conductivity). Vis-á-vis
Eq. (5), we assert that the occurrence of inelastic magnon
scattering necessarily implies the simultaneous occurrence of
spin scattering. This means (within the limitations described
above) that lM becomes a useful metric for characterizing the
effective distance over which thermally excited spin waves
propagate in the material, i.e., the bulk thermal spin diffusion
length.

In order to determine lM experimentally, we begin with the
relationship in Eq. (2). The value of κM can be determined by
considering that both heat carriers in the material (magnons
and phonons) are bosonic quasiparticles, and thus their
concentrations are determined by their density of states (DOS)
and the Bose-Einstein distribution function, which is itself a
function of the absolute temperature. Magnons are distinct
from phonons in that they result from perturbations of the
magnetization, and thus they are explicitly sensitive to applied
magnetic fields. This magnetic field dependence is expressed in
the magnon dispersion relation, which is given for the idealized
case of a Heisenberg ferromagnet by the relationship

�ωk = μBgLH + Da2k2, (6)

where ωk is the angular frequency of the magnon mode with
wave vector k, gL is the Landé factor, and H is the effective
applied magnetic field. The magnon DOS is then given by [27]

D (�ω) = �

4π2D3/2a3

√
�ω − μBgLH if �ω > μBgLH

= 0 if �ω < μBgLH. (7)

Applying nonzero H creates a forbidden zone in the
DOS for magnons with energy �ω < μBgLH . By applying
a sufficiently large external field to the material at a given
temperature T = �ω/kB , it is thus possible to create a DOS
gap large enough that effectively zero magnon modes are
active, and the thermal properties are then determined by
phonons only. In the equivalent microscopic physical picture,
magnons are suppressed when the orientations of localized
spins are restricted by the applied field in such a way that
the energy necessary for propagating a coherent perturbation
of these spins is larger than the available thermal energy
kBT. For YIG, which has a Landé factor of gL = 2.046, the
magnon energy gap is approximately 0.14 K/kOe. This is
within a suitable range such that, at low temperatures (T �
8 K), most magnon modes can be suppressed by the field of
a superconducting magnet in the range of 70 kOe. Since this
suppression falls off exponentially with temperature, it is still
possible to achieve a significant reduction on the order of 20%
or more at temperatures near 20 K. By freezing out the magnon
contribution to the specific heat and thermal conductivity (CM ,
κM ), the effective phonon contribution to both quantities (Cλ,
κλ) can then be determined directly, and this can be subtracted
from the total specific heat or conductivity to provide an
estimate for the separate magnon contribution. Combined,
these quantities provide sufficient information for determining
lM and lλ via Eq. (2) within the temperature range where
magnon freeze-out can be achieved. At zero applied magnetic
field, the magnon specific heat per unit volume is then

CM (T ) = 0.113
kB

a3

(
kBT

D

)3/2

. (8)

Previous studies have attempted to estimate and measure
the magnetic field dependence of the thermal conductivity
and specific heat of YIG crystals [28], although those efforts
were focused mostly within the temperature regime below
2 K [29,30] where magnon freeze-out can be achieved with
relatively small magnetic fields. One particularly insightful
study was performed by Douglass [30], who measured κ(H )
from 0.5 to 4 K in fields up to 20 kOe. He observed a 70%
reduction in the thermal conductivity at 0.5 K when a field
of 10 kOe was applied, indicating a substantial contribution
of magnons to the total thermal conductivity within this
temperature range. It is important to note that extrinsic
factors such as crystal quality (i.e., impurity scattering) can
have a significant impact on both the magnon and phonon
conductivities at low temperatures, so the absolute results of
Douglass’s work (as he points out) should be interpreted as
sample dependent.

Douglass provided a simple estimate of the magnon thermal
mean free path at 1.6 K by calculating a magnon group
velocity of 3500 m/s and estimating a spin relaxation time
on the order of 10−7–10−6 s from ferrimagnetic resonance
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data, which together correspond with lM � 1 mm. However,
by measuring κ(H ) directly and applying a more suitable
theoretical framework, Douglass used his own experimental
results to calculate the magnon thermal mean free path at 0.5 K
to be approximately 100–200 microns, with the phonon mean
free path approximately 130–340 microns. Since his sample
dimensions were on the order of 1–5 mm, these mean free
paths are still roughly an order of magnitude smaller than what
would be expected if they were limited by boundary scattering
alone. This suggests that the diffusive transport description
remains valid in YIG even at these low temperatures, which
implies the presence of defects in Douglass’s crystals and/or
that phonon-magnon interactions do, in fact, play an important
role, even in this temperature range.

Largely inspired by this work, here we independently
verify these results by measuring κ(T ,H ) and C(T ,H ), and
extend them to higher applied fields and higher temperatures
than Douglass was able to reach. We also interpret these
results within the context of spin caloritronic phenomena
such as LSSE. For clarity, we will utilize the sign convention
κijk throughout this paper, where the index i represents the
direction of the applied heat current, j represents the direction
along which the resulting thermal gradient was measured, and
k represents the direction of the applied magnetic field. The
magnon contribution to the heat capacity corresponds well to
the calculated value at 2 K based on a simple Heisenberg model
[13], but has a temperature dependence that is slower than the
T 1.5 law predicted by that model. We will conclude that at T >

5 K, the effective phonon and magnon thermal mean free paths
are approximately equal. Plant [13] reports that the magnon
dispersion relation becomes multibranched above about
620 GHz, corresponding to the energy of thermal magnons at
30 K. This complicates the interpretation of the spin Seebeck
effect’s temperature dependence in YIG [24].

II. EXPERIMENTAL PROCEDURES

Samples of single-crystal 〈100〉 YIG measuring 10 × 5 ×
0.5 mm3 were obtained commercially (Princeton Scientific
Corporation). The thermal conductivity of one crystal was
measured in a Quantum Design Physical Property Measure-
ment System (PPMS) using the Thermal Transport Option
(TTO). Gold-plated copper leads and heat sinks were attached
to the sample with Epotek silver epoxy, and two Cernox
thermometers were used to determine the temperature of the
sample at the leads. The magnetic field dependence of the
Cernox thermometry was separately calibrated. Continuous
thermal conductivity measurements were performed from 300
to 2 K, both at zero applied field and under a persistent field
H of 7 × 104 Oe. This field range is well above the saturation
magnetization of YIG, which is of the order 102 Oe [4].

Steady-state thermal conductivity measurements were also
performed at a variety of temperatures and magnetic fields
between ±7 × 104 Oe. This measurement was conducted by
applying a heat current jQ along the length of the sample so as
to produce a constant temperature gradient ∇xT. The magnetic
field was then stepped to various values, and the whole
system was allowed to reach equilibrium at each measurement
condition before the thermal conductivity was recorded.

These measurements were performed in both the lon-
gitudinal [κxxx(H ), H‖jQ‖〈100〉] and transverse [κxxz(H ),
H ⊥ jQ‖〈100〉] orientations. Since YIG adopts the cubic garnet
structure, the magnetothermal conductivity is expected to be
isotropic [31], which agrees with our results. When possible,
κλ was determined in each orientation by finding the high-field
saturation value of κ(H ) at each temperature point, and this
value was subtracted from κ(H = 0) to determine κM .

To measure the magnetic field dependence of the specific
heat, a small piece of a different YIG single crystal from
the same batch weighing 0.24 mg was used. Thermal grease
was applied to the PPMS specific heat sample holder as an
adhesive, and a calibration measurement was performed on
the empty container before adding the YIG sample. The data
were collected by continuously varying the temperature from
300 to 2 K, both under zero-field and applied-field (70 kOe)
conditions. The value of CM was determined by subtracting
Cλ from Ctotal within the temperature and field ranges where
magnon freeze-out was observed in κ(T ,H ).

III. RESULTS AND DISCUSSION

The measured longitudinal (κxxx) and transverse (κxxz)
thermal conductivities are shown in Figs. 1 and 2, respectively.
The top frame of Fig. 1 shows the temperature dependence of
the longitudinal thermal conductivity κxxx , both at zero field
and at an applied field of 70 kOe. The overall behavior is
typical for an electrical insulator in which the conductivity
is dominated by phonons: It follows a �T 3 law at low
temperatures before peaking and entering the umklapp region
around 30 K, beyond which it decays following a �T −1

trend. At temperatures below approximately 20 K, the applied
magnetic field suppresses the conductivity by a discernible
amount. The bottom frame of Fig. 1 shows a representative
plot of the magnetic field dependence of κxxx (Hx) at
8 and 2 K, respectively. Figure 2 shows the same quantities
for the transverse thermal conductivity κxxz as functions of
temperature, both in the absence of field and at Hz = 70 kOe
in the top frame, and conversely as a function of field at fixed
temperature (2 and 8 K) in the bottom. At 2 K, we see a
substantial drop in magnitude of the conductivity for relatively
small fields of approximately ±15 kOe. The conductivity
appears to be constant at fields above this value, which suggests
that the magnon contribution has been completely frozen out
in the high-field regime. This is consistent with the expected
magnon gap of �0.14 K/kOe, which predicts freeze-out at
2 K for fields of �14 kOe. However, as the temperature is
further increased to 8 K, we see what appears to be incomplete
magnon saturation within the range of applied fields utilized
in this experiment, but still the value at 70 kOe is about
90% saturated. Overall, the results of the longitudinal (κxxx)
and transverse (κxxz) conductivity measurements were not
significantly different, as expected [31].

The origin of the field dependence of κxxx and κxxz, vis-à-vis
Eq. (2), can be seen in Fig. 3, which shows the temperature
[Fig. 3(a)] and field [Fig. 3(b)] dependence of the specific
heat under the same conditions. A clear deviation between
the two curves in Fig. 3(a) is seen below �15 K, indicating
that the magnon modes are at least partially suppressed by
the applied field within this temperature range. The degree
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FIG. 1. (Color online) Temperature (top frame) and magnetic
field (bottom frame) dependence of the thermal conductivity κxxx

in the presence of a magnetic field parallel to the direction of the
temperature gradient. The temperature dependence is shown in the
absence of field, then in an external magnetic field of 70 kOe. In
the bottom frame, the magnetic field dependence of κxxx shows a
clear saturation at 2 K for applied fields of H > 15 kOe. At 8 K the
saturation is not quite achieved even at 70 kOe, yet the saturation
value is only about 2% lower than the value reached. For T <

10 K, the high-field value is interpreted as arising from phonon
conduction alone, while the zero-field value is interpreted as the
sum of independent phonon and magnon contributions, such that the
difference is the magnon thermal conductivity.

of freeze-out of the magnon specific heat from the total
specific heat can be evaluated from Fig. 3(b), which shows
the magnetic field dependence at 3 and 8 K, respectively: At
8 K, about 90% of the magnon contribution is frozen out
at 70 kOe, which also coincides with the magnon energy
gap [Eq. (7)] discussed above. The estimated contributions of
phonons (CP ) and magnons (CM ) from the difference between
the measurements in and out of field are shown in Fig. 3(c) for
the range of values in which the magnitude of the difference
is larger than the associated measurement error. The dashed

FIG. 2. (Color online) Temperature (top frame) and magnetic
field (bottom frame) dependence of the transverse thermal conduc-
tivity κxxz in the presence of a magnetic field perpendicular to the
direction of the temperature gradient. The description and conclusions
are the same as for κxxx in Fig. 1.

curve in Fig. 3(c) is calculated from Eq. (8), which assumes a
parabolic dispersion relation. We obtain D = 47 K by fitting
the data to a T 3/2 law, which corresponds quite well to the
zone center value of D = 46 K reported in Ref. [13] from
microwave measurements. In reality, the data points we report
for the temperature dependence of CM (T ) follow a power law
that is slightly lower than T 3/2, a discrepancy we attribute to the
lack of saturation of C(H ) at 70 kOe at higher temperature, as
well as possibly to magnon-phonon interactions. We add, as an
inset in Fig. 3(a), a plot of the total specific heat C represented
as CT −3/2 vs T 3/2. This plot gives the more usual way [27] for
separating the magnon contribution to CM without having to
make measurements in magnetic fields. Unlike the approach
used to generate the blue line in Fig. 3(c), this procedure is valid
only under the assumption that Eq. (8) holds rigorously: In that
case, the intercept of this plot gives the prefactor of the T 3/2

law [Eq. (8)], while the slope gives the prefactor of the Debye
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FIG. 3. (Color online) The specific heat C of YIG vs temperature (a) under constant pressure at zero magnetic field and in the presence of
a 70 kOe applied external field. Inset shows the data plotted as CT −3/2 vs T 3/2, from which the slope and intercept provide information about
the phonon and magnon contributions, respectively. The magnetic field dependence of C is shown in frame (b) at two temperatures; as was the
case for κxxx and κxxz, complete saturation is achieved at 2 K, but not quite at 8 K. Again, the value of C in a 70 kOe applied field is interpreted
to be due to phonons (CP ), while the difference between the value in zero field and CP is interpreted to be due to magnons (CM ) below 10 K:
These are shown in (c) as a function of temperature. The dashed line is the value calculated from a simple Heisenberg model for the magnon
specific heat equation (8), assuming a parabolic dispersion for magnons with a characteristic value of D = 47 K. The phonon specific heat is
fitted in frame (d) to a Debye model (full red line) with the additional contribution of an Einstein mode (dashed blue line).

T 3 law for the phonon specific heat. For the measurements in
the 70 kOe field, the intercept is approximately zero, indicating
a negligible contribution from magnons. The results are thus
consistent with our approach.

In Fig. 3(d) we fit the phonon specific heat CP (T ) to
a Debye spectrum (red line) with a Debye temperature of
531 K. An excess in CP is visible that fits an Einstein model
(blue dashed line) with an Einstein temperature of 145 K.
We point out that this corresponds to the energy of an optical
mode–like structure in the magnon dispersion [13], and that
evidence of a magnetoelectric effect has also been reported in
YIG near that temperature [32]. We do not imply at this time
any causal relation between these observations, however, as
the temperature is too high for us to freeze out the magnon
modes with available magnetic fields.

In the range of temperatures where the magnon contribution
appears to be discernibly suppressed, we can apply Eq. (3) to
determine the magnon thermal mean free path, which is shown

in Fig. 4 alongside the phonon thermal mean free path. To do
this, we consider the group velocity for magnons with thermal
energies below 30 K (i.e., those with �ω = kBT ) to be

vM = dω

dk
= 2a

√
Dω

�
= 2a

�

√
DkBT . (9)

These values range from vM = 3200 m/s at 2 K to vM =
7100 m/s at 10 K. For the phonon group velocity we use the
average sound velocity in YIG, 4000 m/s. Both quasiparticles’
thermal mean free path can be determined from either κxxx

or κxxz, and the values coincide to within the experimental
uncertainties. The phonon and magnon thermal mean free
paths are quite similar to each other throughout the temperature
range, with lM � 100 microns at 2 K. This agrees with the
magnitude of Douglass’s result at the temperatures where the
data overlap.
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FIG. 4. (Color online) Magnon and phonon thermal mean free
paths, as described by Eq. (3). The open symbols describe the results
obtained from κxxz (transverse) and the full symbols those from
κxxx (longitudinal) measurements, respectively. This analysis may
be extended to higher temperatures if the experiment can be repeated
at higher magnetic fields (H > 15 T), which may shed insight into
the temperature dependence of magnon scattering within the phonon
umklapp regime (T > 20 K).

IV. CONCLUSIONS

By measuring the magnetic field dependence of the thermal
conductivity and specific heat of single-crystal yttrium iron
garnet from 2 to 300 K, we have estimated the bulk magnon
thermal mean free path within the framework of the kinetic
gas theory. This value is 100 microns at 2 K, and it decreases
rapidly as the temperature is increased. The magnon thermal
mean free path is approximately equal to that of phonons at all
temperatures reached in this experiment. This may be a direct
result of magnon-phonon scattering, as the phonon mean free
path also decreases rapidly (�T −1) in this temperature range.
As we have discussed above, this interpretation is necessarily
flawed in that it produces only a single effective value for all
magnon modes, and we fully expect that different modes will
have different mean free paths [19]. This result is therefore
only an estimate of the average length scale over which bulk
spin waves travel before undergoing inelastic scattering. This
estimate is conservative, especially at room temperature, where
SSE experiments are typically conducted. This result therefore
supports the idea discussed in Ref. [18] that high-energy bulk
magnons cannot be solely or directly responsible for coherent
spin transfer at the macro scale.

If we further assume that the similarity between phonon
and magnon densities of states, group velocities, and Debye
and Curie temperatures extends to their mean free paths, then
a magnon thermal mean free path of the order of a few
nanometers is expected at room temperature, much shorter
than the characteristic length (150 nm) for the LSSE reported

in Ref. [20]. Thermal magnons are thus expected to be in
equilibrium with phonons within only a few nanometers of
the interface; if these magnons are primarily responsible for
LSSE, then increasing the film thickness beyond this value
should have no significant effect on the LSSE signal, which is
not what has been observed [20]. But if subthermal magnons
are the primary drivers of SSE in YIG, which more and more
evidence seems to suggest is the case, then the length scale of
LSSE should be determined by the scattering length of these
magnons. From this perspective, the LSSE signal would be
expected to increase with film thickness until it exceeds the
room temperature thermal mean free path of these modes; this
may actually be the 150-nm parameter measured in the film
thickness study mentioned above. Combined with our results
included here, these arguments strongly suggest that the LSSE
at room temperature is mediated primarily by subthermal
magnons [19] with energies below about 30 or 40 K, which
are the magnons that have a quadratic dispersion and do not
seem to interact strongly with phonons [13]. This has been
even further supported by the results of Kikkawa et al. [33],
who reported a substantial (�30%) suppression of the LSSE
signal in both YIG|Pt and YIG|Au heterostructures at room
temperature when a field of �90 kOe was applied. Since this
range of fields is far too low to suppress thermal magnons
at this temperature, these results also reinforce the idea
that subthermal magnons constitute a disproportionately large
contribution to the observed LSSE signal at all temperatures.

Nonetheless, we propose that thermal magnon modes with
short wave vectors and short MFP may still be relevant
for understanding and engineering thermal spin transport
phenomena, in that they appear to be able to interact with both
the phonon bath (via inelastic magnon-phonon scattering) and
the subthermal magnon modes (via elastic magnon-magnon
“Normal” interactions). We therefore suggest that the nature of
magnon-magnon interactions, in addition to magnon-phonon
interactions, may be an important parameter for SSE, and that
further consideration should be given to the detailed spectral
dependence of magnon conductivity [19].

Additional studies of the thermal properties of YIG films
may provide even deeper insight into the nature of magnons,
phonons, and their interactions in YIG, especially if those
films are thinner than the maximum thermal mean free path we
report here (�200 microns), and if the properties are measured
at temperatures and fields where magnons can be frozen out.
We anticipate that the thermal properties of such films will vary
significantly from the behavior of the bulk sample we measured
in this study, although we caution that great care should be
taken to account for the detailed impact of the substrate on any
thermal property measurements.
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I. Mirebeau, F. Moussa, M. Hennion, and S. Petit, Phys. Rev. B
79, 134409 (2009).

[17] G. Laurence and D. Petitgrand, Phys. Rev. B 8 2130 (1973).
[18] M. Agrawal, V. I. Vasyuchka, A. A. Serga, A. D. Karenowska,

G. A. Melkov, and B. Hillebrands, Phys. Rev. Lett. 111, 107204
(2013).

[19] K. S. Tikhonov, J. Sinova, and A. M. Finkel’stein, Nat. Commun.
4, 1945 (2013).

[20] A. Kehlberger, R. Roeser, G. Jakob, M. Klaeui, U. Ritzmann,
D. Hinzke, U. Nowak, M. C. Onbasli, D. H. Kim, C. A. Ross,
M. B. Jungfleisch, and B. Hillebrands, arXiv:1306.0784.

[21] K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda,
T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer,
S. Maekawa, and E. Saitoh, Nat. Mater. 9, 894 (2010).

[22] C. W. Sandweg, Y. Kajiwara, K. Ando, E. Saitoh, and
B. Hillebrands, Appl. Phys. Lett. 97, 252504 (2010).

[23] A. Rückriegel, P. Kopietz, D. A. Bozhko, A. A. Serga, and
B. Hillebrands, Phys. Rev. B 89, 184413 (2014).

[24] K. Uchida, T. Ota, H. Adachi, J. Xiao, T. Nonaka, Y. Kajiwara,
G. E. W. Bauer, S. Maekawa, and E. Saitoh, J. Appl. Phys. 111,
103903 (2012).

[25] D. T. Morelli, J. P. Heremans, and G. A. Slack, Phys. Rev. B 66,
195304 (2002).

[26] A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S.
Dresselhaus, K. A. Nelson, and G. Chen, Phys. Rev. Lett. 107,
095901 (2011).

[27] C. Kittel, Quantum Theory of Solids, 2nd revised printing (John
Wiley and Sons, New York, 1987).

[28] C. M. Bhandari and G. S. Verma, Phys. Rev. 152, 731 (1966).
[29] B. Y. Pan, T. Y. Guan, X. C. Hong, S. Y. Zhou, X. Qiu, H. Zhang,

and S. Y. Li, Europhys. Lett. 103, 37005 (2013).
[30] R. L. Douglass, Phys. Rev. 129, 1132 (1963).
[31] Y. C. Akgoz and G. A. Saunders, J. Phys. C 8, 1387 (1975);

,8, 2962 (1975).
[32] Y. Kohara, Y. Yamasaki, Y. Onose, and Y. Tokura, Phys. Rev. B

82, 104419 (2010).
[33] T. Kikkawa, K. Uchida, S. Daimon, Y. Shiomi, H. Adachi, Z.

Qiu, D. Hou, X.-F. Jin, S. Maekawa, and E. Saitoh, Phys. Rev.
B 88, 214403 (2013).

064421-8

http://dx.doi.org/10.1038/nature07321
http://dx.doi.org/10.1038/nature07321
http://dx.doi.org/10.1038/nature07321
http://dx.doi.org/10.1038/nature07321
http://dx.doi.org/10.1063/1.3507386
http://dx.doi.org/10.1063/1.3507386
http://dx.doi.org/10.1063/1.3507386
http://dx.doi.org/10.1063/1.3507386
http://dx.doi.org/10.1038/nmat2860
http://dx.doi.org/10.1038/nmat2860
http://dx.doi.org/10.1038/nmat2860
http://dx.doi.org/10.1038/nmat2860
http://dx.doi.org/10.1103/PhysRevLett.113.027601
http://dx.doi.org/10.1103/PhysRevLett.113.027601
http://dx.doi.org/10.1103/PhysRevLett.113.027601
http://dx.doi.org/10.1103/PhysRevLett.113.027601
http://dx.doi.org/10.1063/1.2199473
http://dx.doi.org/10.1063/1.2199473
http://dx.doi.org/10.1063/1.2199473
http://dx.doi.org/10.1063/1.2199473
http://dx.doi.org/10.1126/science.1105514
http://dx.doi.org/10.1126/science.1105514
http://dx.doi.org/10.1126/science.1105514
http://dx.doi.org/10.1126/science.1105514
http://dx.doi.org/10.1109/TMAG.2013.2262947
http://dx.doi.org/10.1109/TMAG.2013.2262947
http://dx.doi.org/10.1109/TMAG.2013.2262947
http://dx.doi.org/10.1109/TMAG.2013.2262947
http://dx.doi.org/10.1103/PhysRevB.88.064408
http://dx.doi.org/10.1103/PhysRevB.88.064408
http://dx.doi.org/10.1103/PhysRevB.88.064408
http://dx.doi.org/10.1103/PhysRevB.88.064408
http://dx.doi.org/10.1016/0038-1098(74)90760-1
http://dx.doi.org/10.1016/0038-1098(74)90760-1
http://dx.doi.org/10.1016/0038-1098(74)90760-1
http://dx.doi.org/10.1016/0038-1098(74)90760-1
http://dx.doi.org/10.1016/0022-3697(57)90044-6
http://dx.doi.org/10.1016/0022-3697(57)90044-6
http://dx.doi.org/10.1016/0022-3697(57)90044-6
http://dx.doi.org/10.1016/0022-3697(57)90044-6
http://dx.doi.org/10.1088/0022-3719/16/36/019
http://dx.doi.org/10.1088/0022-3719/16/36/019
http://dx.doi.org/10.1088/0022-3719/16/36/019
http://dx.doi.org/10.1088/0022-3719/16/36/019
http://dx.doi.org/10.1103/PhysRevLett.111.176601
http://dx.doi.org/10.1103/PhysRevLett.111.176601
http://dx.doi.org/10.1103/PhysRevLett.111.176601
http://dx.doi.org/10.1103/PhysRevLett.111.176601
http://dx.doi.org/10.1103/PhysRevB.15.1489
http://dx.doi.org/10.1103/PhysRevB.15.1489
http://dx.doi.org/10.1103/PhysRevB.15.1489
http://dx.doi.org/10.1103/PhysRevB.15.1489
http://dx.doi.org/10.1103/PhysRevB.79.134409
http://dx.doi.org/10.1103/PhysRevB.79.134409
http://dx.doi.org/10.1103/PhysRevB.79.134409
http://dx.doi.org/10.1103/PhysRevB.79.134409
http://dx.doi.org/10.1103/PhysRevB.8.2130
http://dx.doi.org/10.1103/PhysRevB.8.2130
http://dx.doi.org/10.1103/PhysRevB.8.2130
http://dx.doi.org/10.1103/PhysRevB.8.2130
http://dx.doi.org/10.1103/PhysRevLett.111.107204
http://dx.doi.org/10.1103/PhysRevLett.111.107204
http://dx.doi.org/10.1103/PhysRevLett.111.107204
http://dx.doi.org/10.1103/PhysRevLett.111.107204
http://dx.doi.org/10.1038/ncomms2945
http://dx.doi.org/10.1038/ncomms2945
http://dx.doi.org/10.1038/ncomms2945
http://dx.doi.org/10.1038/ncomms2945
http://arxiv.org/abs/arXiv:1306.0784
http://dx.doi.org/10.1038/nmat2856
http://dx.doi.org/10.1038/nmat2856
http://dx.doi.org/10.1038/nmat2856
http://dx.doi.org/10.1038/nmat2856
http://dx.doi.org/10.1063/1.3528207
http://dx.doi.org/10.1063/1.3528207
http://dx.doi.org/10.1063/1.3528207
http://dx.doi.org/10.1063/1.3528207
http://dx.doi.org/10.1103/PhysRevB.89.184413
http://dx.doi.org/10.1103/PhysRevB.89.184413
http://dx.doi.org/10.1103/PhysRevB.89.184413
http://dx.doi.org/10.1103/PhysRevB.89.184413
http://dx.doi.org/10.1063/1.4716012
http://dx.doi.org/10.1063/1.4716012
http://dx.doi.org/10.1063/1.4716012
http://dx.doi.org/10.1063/1.4716012
http://dx.doi.org/10.1103/PhysRevB.66.195304
http://dx.doi.org/10.1103/PhysRevB.66.195304
http://dx.doi.org/10.1103/PhysRevB.66.195304
http://dx.doi.org/10.1103/PhysRevB.66.195304
http://dx.doi.org/10.1103/PhysRevLett.107.095901
http://dx.doi.org/10.1103/PhysRevLett.107.095901
http://dx.doi.org/10.1103/PhysRevLett.107.095901
http://dx.doi.org/10.1103/PhysRevLett.107.095901
http://dx.doi.org/10.1103/PhysRev.152.731
http://dx.doi.org/10.1103/PhysRev.152.731
http://dx.doi.org/10.1103/PhysRev.152.731
http://dx.doi.org/10.1103/PhysRev.152.731
http://dx.doi.org/10.1209/0295-5075/103/37005
http://dx.doi.org/10.1209/0295-5075/103/37005
http://dx.doi.org/10.1209/0295-5075/103/37005
http://dx.doi.org/10.1209/0295-5075/103/37005
http://dx.doi.org/10.1103/PhysRev.129.1132
http://dx.doi.org/10.1103/PhysRev.129.1132
http://dx.doi.org/10.1103/PhysRev.129.1132
http://dx.doi.org/10.1103/PhysRev.129.1132
http://dx.doi.org/10.1088/0022-3719/8/9/010
http://dx.doi.org/10.1088/0022-3719/8/9/010
http://dx.doi.org/10.1088/0022-3719/8/9/010
http://dx.doi.org/10.1088/0022-3719/8/9/010
http://dx.doi.org/10.1088/0022-3719/8/18/016
http://dx.doi.org/10.1088/0022-3719/8/18/016
http://dx.doi.org/10.1088/0022-3719/8/18/016
http://dx.doi.org/10.1103/PhysRevB.82.104419
http://dx.doi.org/10.1103/PhysRevB.82.104419
http://dx.doi.org/10.1103/PhysRevB.82.104419
http://dx.doi.org/10.1103/PhysRevB.82.104419
http://dx.doi.org/10.1103/PhysRevB.88.214403
http://dx.doi.org/10.1103/PhysRevB.88.214403
http://dx.doi.org/10.1103/PhysRevB.88.214403
http://dx.doi.org/10.1103/PhysRevB.88.214403



