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Spin state of Mn2+ and magnetism in vanadate-carbonate compound, K2Mn3(VO4)2CO3
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The magnetic properties of vanadate-carbonate compound, K2Mn3(VO4)2CO3, has been discussed in recent
literature in terms of unusual low-spin configuration of Mn2+. Using first-principles density functional theory-
based microscopic analysis of electronic and magnetic structure of this compound, we find that contrary to
previous suggestion, two inequivalent Mn2+ ions in this compound, one in octahedral and another in trigonal-
bipyramidal coordination of oxygen atoms, are both in high-spin state. Our first-principles determination of
Mn-Mn magnetic exchanges leads to a spin-5/2 model consisting of alternate layers of honeycomb and triangular
spin lattices, with vastly differing strengths of magnetic interactions in the two layers, which are very weakly
connected among themselves. The computed magnetic susceptibility and magnetization, based on the derived
spin model, are compared with measured thermodynamic data.
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I. INTRODUCTION

Spin state when describing transition metal (TM) com-
plexes is an important concept, which refers to spin config-
urations of the metal center’s d electrons, given a specific
charge state of it. In many of the cases, especially for transition
metal ions with d occupancy between 4 and 7, spin states
can vary between high-spin and low-spin configurations. At
the molecular level, the stabilization of a specific spin state
depends primarily on the competition between the crystal
field splitting and the Hund’s rule coupling, the latter favoring
high-spin (HS) configuration, through maximization of total
spin, and the former favoring low-spin (LS) configuration,
as the high-spin configuration involves transfer of electron
from lower energy states to higher energy states [1]. While the
Hund’s rule coupling energy is a characteristic energy of the
transition metal ion and therefore shows only mild variation,
the crystal field splitting depends on the period (row in periodic
table) of the TM ion, the charge of the metal ion, and the field
strength of the complex’s ligands. The first two factors are
fixed for a choice of a given TM and for a given composition.
However, the last factor remains flexible and can be modulated
by changing the local environment of the TM ion. Such spin
state transitions, by change in local environment of TM ions
through external perturbation, are well known in literature.
For example, in case of metalorganic polymers, comprising of
TM centers, usually Fe2+, linked through organic ligands, the
ligand field strength has been modulated through application
of temperature, pressure, or light irradiation, triggering spin
crossover [2]. The other well-known example is the example
of cobaltites, particularly for Co3+ ions, which can exist in
low-spin, high-spin, as well as intermediate spin state [3].
The temperature-dependent spin-state transition in prototype
Co(III) system, LaCoO3, is a topic of discussion [4].

Following the above knowledge, one may expect Mn2+
ion with d5 configuration to exist in two possible spin states,
the high-spin state with S = 5/2 state and low-spin state
with S = 1/2 state. The existence of low-spin state of Mn2+,
though, is unexpected due to the large Hund’s rule stabilization,
arising from half-filled d shell. It is, therefore, a debatable
issue, whether Mn2+ ion can exhibit spin-state bistability,
as commonly observed [5] in the case of Fe2+ or Co3+.

There exists only a handful of reports of low-spin state of
Mn2+ in ambient condition, e.g., Mn substituted RuS2 and
RuSe2 [6], and tris (quinone oximates) of Mn(II, III) [7].
The first vanadate-carbonate compound, K2Mn3(VO4)2CO3,
with Mn2+ ions, was synthesized employing hydrothermal
synthesis [8], which provided the opportunity of creating two
different local environments of Mn2+ within the same com-
pound, one in octahedral surrounding of oxygen atoms (Mn1)
and another in trigonal-bipyramidal environment of oxygen
atoms (Mn2). The magnetic susceptibility was measured and
the data was explained in terms of the high-spin state and
low-spin state of Mn1 and Mn2, respectively, in two different
local environments in the compound. The proposal of the
low-spin state of Mn2+ in K2Mn3(VO4)2CO3 is curious given
the very few known examples of LS Mn2+. An independent
theoretical investigation, based on first-principles calculations,
will therefore be a worthwhile task. The literature on successful
application of first-principles calculation to derive the under-
lying spin model on a microscopic basis, given a compound,
is growing [9], resulting in an established confidence in this
approach. Also, the geometry of the magnetic Mn2+ ions
offered by the crystal structure of the compound is fascinating
due to the possible effect of frustration [10].

In the present study, we carry out density functional theory
(DFT) [11] calculations to examine the proposal of low-spin
state of Mn2+ in K2Mn3(VO4)2CO3. We further employ two
independent methods: (a) Wannier function-based derivation
of a low-energy model Hamiltonian [12], constructed out of
full DFT electronic structure and subsequent application of
super-exchange formula, and (b) DFT total energy calculation
of various magnetic arrangements, to determine the underlying
spin model [13]. This derived spin model is then solved by
Monte Carlo technique [14] to compute the thermodynamic
properties, such as magnetic susceptibility and magnetic field
dependence of the magnetization, which are compared with the
measured data. Our study reveals that contrary to the conclu-
sion drawn from the experimental study, both Mn sites in two
different crystallographic environments in the compound are
in high-spin S = 5/2 state. Application of super-exchange and
total-energy methods gives rise to two very similar descriptions
of the underlying S = 5/2 spin model. The derived spin model
comprises a dominant nearest-neighbor interaction between
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Mn1 ions forming honeycomb lattice, along with small but
nonnegligible values of further neighbor interactions, an order
of magnitude smaller nearest-neighbor interaction between
Mn2 ions forming triangular lattice, compared to that in Mn1
layer, and a tiny interaction between Mn1 and Mn2. The
calculated thermodynamic properties are found to provide
description of the measured data. The conclusions, drawn
based on our theoretical study, may be verified in terms of
future experiment, like a neutron-scattering experiment.

II. COMPUTATIONAL METHOD

For the DFT calculations, we have used two different
basis sets: (a) the muffin-tin orbital (MTO)-based linear
muffin-tin orbital (LMTO) [15] method and the N th-order
MTO method, namely, NMTO method [12] as implemented
in the STUTTGART code; (b) the plane-wave-based basis
as implemented in the Vienna ab initio simulation package
(VASP) [16]. The NMTO method, which relies on self-
consistent potential generated by the LMTO method, has been
used for deriving the low-energy Hamiltonian defined in the
basis of effective Mn-d Wannier functions, by integrating out
the degrees of freedom related to K, V, C, and O. The real-
space representation of the low-energy Hamiltonian provides
the information of crystal field splitting at inequivalent Mn
sites as well as effective hopping interactions between two
Mn sites. The energetically accurate plane-wave basis set
calculation have been employed to calculate the total energy of
different spin configurations to derive the magnetic exchanges
from the total-energy method. The consistency between the
calculations in two basis sets has been checked in terms
of band structure, density of states, magnetic moments, etc.
We have also cross-checked our results in terms of full
potential linear augmented plane wave (LAPW) basis set
calculations, especially in connection with the spin-polarized
results, determining the spin states of Mn. The exchange-
correlation functional for the self-consistent calculations was
chosen to be that of generalized gradient approximation
(GGA) implemented following the Perdew-Burke-Ernzerhof
prescription [17]. To check the missing correlation energy
at Mn sites beyond GGA, calculations with supplemented
Hubbard U (GGA + U) were carried out, with choice of
U = 4 eV and JH = 0.8 eV. For the self-consistent field
calculations in plane-wave basis, energy cutoff of 500 eV,
and 6 × 6 × 2 Monkhorst-Pack k-points mesh were found to
provide a good convergence of the total energy. We considered
a 1 × 2 × 1 supercell and a 2 × 6 × 4 Monkhorst-Pack k-point
mesh, for the total-energy calculations of various different
spin configurations. For LAPW calculations, we chose the
APW + lo as the basis set and the expansion in spherical
harmonics for the radial wave functions was taken up to
l = 10. The charge densities and potentials were represented
by spherical harmonics up to l = 6. The commonly used
criterion for the convergence of basis set, relating the plane
wave cutoff, Kmax and the smallest atomic sphere radius,
RMT, RMT ∗ Kmax was chosen to be 7.0. The thermodynamic
properties like magnetic susceptibility and magnetization were
calculated by considering the ab initio-derived spin model
on a 20 × 20 × 10 lattice, by using Monte Carlo technique.
The Monte Carlo code, as implemented in package within

Algorithms and Libraries for Physics Simulations project [14],
for quantum spin models with arbitrary spin size and magnetic
field, was used.

III. CRYSTAL STRUCTURE

The crystal structure of K2Mn3(VO4)2CO3 may be con-
sidered as derivative of BaNi2(VO4)2-type structure [18]. The
basic structural units [8] are composed of VO4 tetrahedra,
CO3 triangle, Mn2O5 trigonal-bipyramid, and Mn1O6 edge-
sharing octahedral units, as shown in Fig. 1(a). The two
different polyhedral environment of Mn ions gives rise to two
inequivalent Mn ions in the unit cell, Mn1 and Mn2, which
form two types of layers, shown in Fig. 1(b). The neighboring
Mn1O6 octahedra share edges to form honeycomb layer of
Mn1 ions, shown in the bottom panel of the Fig. 1(b), while
Mn2O5 trigonal bipyramids are connected to each other via
CO3 triangles, forming a triangular layer, shown in the top
panel of Fig. 1(b). These two layers alternate along the c axis,
as shown in Fig. 1(c), which are connected via VO4 tetrahedra
through sharing of oxygen vertices’s with Mn polyhedra, to
form the three-dimensional structure. The K+ ions, not shown
in the figure for clarity, sit in the crisscross channels formed
in the structure and bring cohesion to the structure.

Starting from the experimentally determined structure, we
carried out structural optimization in a plane-wave basis
calculation within non-spin-polarized GGA setup, keeping the
hexagonal P63/m symmetry of the cell as well as lattice param-
eters fixed at experimentally determined values [8]. During the
optimization, the positions of the atoms were relaxed toward
equilibrium until the Hellman-Feynman force became less than
0.01 eV/Å. The comparison of the atomic positions in the
optimized structure with that of the experimentally determined
structure may be found in the table in Appendix A. As is
evident from the table, the changes upon structural relaxation
are not significant. The Mn-O bondlengths are found to show
a reduction of only 1–2 % upon optimization, compared
to experimentally measured structure. The results reported
in the following are based on the theoretically optimized
structure. Calculations have been cross-checked considering
the experimentally measured structure too. This is been found
to keep the general conclusions unchanged (cf. for example
results presented in Table I).

IV. RESULT

A. DFT Electronic structure and spin state of Mn2+

The DFT results for the electronic structure of the com-
pound, as calculated in the framework of GGA in plane-wave
basis, are summarized in Fig. 2. The non-spin-polarized
density of states projected onto Mn1-d states, Mn2-d states,
V-d states, O-p states, and C states are shown in Fig. 2(a).
We notice that the states close to Fermi level, εF (set at
zero in the figure) are dominated by Mn1-d and Mn2-d
states, which are half-filled, in agreement with nominal Mn2+
valence with d5 configuration. The Mn1-d and Mn2-d states
are found to be hybridized with O-p states, as expected,
but also shows nonnegligible hybridization with V-d states.
The inset of the figure shows the zoomed plot, which shows
this hybridization even clearly. Small but finite hybridization
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FIG. 1. (Color online) Crystal structure of K2Mn3(VO4)2CO3. (a) The basic structural units, VO4, CO3, Mn2O5, and edge-sharing Mn1O6

octahedra (from top to bottom). The inequivalent oxygens have been marked. (b) The layered sublattices of Mn1 (bottom panel) and Mn2 (top
panel). (c) The connected, three-dimensional network.

from C-p states is also observed. Figures 2(b) and 2(c) show
the spin-projected density of states of Mn1-d and Mn2-d,
respectively, as given by spin-polarized GGA calculation. The
calculated magnetic moments are shown in Table I. In order
to check the influence of the crystal structure, the magnetic
moments calculated for the experimental crystal structure
are also shown for comparison. To check the influence of
strong correlation effect at Mn site, additionally GGA + U
calculations have been performed for both the structures. As
found from Table I, both the optimized as well as experimental
crystal structure give rise to high-spin states of Mn1 and Mn2
(with moment values of 4.3–4.6 μB), both at level of GGA
as well as GGA + U calculation (U = 4 eV and JH =
0.8 eV). As expected, application of supplemented U, is found
to increase the magnetic moments at Mn sites (by ≈0.2 μB).
The total moment in the two-formula unit cell was found to

TABLE I. Magnetic moment at V, Mn1, Mn2, and inequivalent
O sites (in μB ) as calculated in GGA and GGA + U, considering
measured as well as theoretically optimized crystal structures. The
moment at C sites being vanishingly small has not been shown.

Measured Structure Optimized Structure
GGA GGA + U GGA GGA + U

V 0.367 0.251 0.490 0.388
Mn1 4.346 4.550 4.276 4.510
Mn2 4.408 4.585 4.366 4.561
O1 0.003 0.001 0.003 0.002
O2 0.012 0.005 0.008 0.003
O3 0.036 0.018 0.031 0.011

be 30 μB corresponding to a moment of 5 μB per Mn. The
rest of the moment is found to reside at O and largely at
V site (∼0.3–0.5 μB), stressing once again the importance
of the hybridization with V-d states. In order to check the
robustness of our conclusion about the HS state of Mn2, which
is in apparent contradiction with experimental suggestion, we
checked the influence of the initial guess by starting with LS
state of Mn1 and Mn2, which converged to HS state solution
for both Mn1 and Mn2. We also checked the influence of
the basis set by carrying out calculations in full potential all
electron LAPW method [19], in addition to LMTO and plane
wave calculations. Calculations in all three basis sets gave rise
to same conclusion of HS state of both Mn1 and Mn2.

We further carried out fixed-moment calculations, con-
straining the total moment, which encompasses various pos-
sible spin states of Mn, by varying the total moment over
a wide range within both GGA and GGA + U calculation
setup. The obtained results are shown in Fig. 3. We find in
both for GGA as well as GGA + U calculations, the minimum
energy is obtained at a total magnetic moment of 30 μB , which
corresponds to HS state of Mn1 and Mn2, considering 4 Mn1
atoms and 2 Mn2 atoms in the unit cell. The choice of LS state
of Mn2 and HS state of Mn1, amounting to a total magnetic
moment of 22 μB in the unit cell, or the LS states of both Mn,
amounting to a total magnetic moment of 6 μB , are clearly not
the ground-state energy configurations.

In order to rationalize the high-spin configuration of Mn1
and Mn2, we computed the energy-level diagram of Mn-d
states by NMTO-downfolding procedure [12] of constructing
Mn-d only Hamiltonian out of a non-spin-polarized GGA
self-consistent band structure, by integrating out all other
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FIG. 2. (Color online) (a) Non-spin-polarized GGA density of
states, projected onto Mn1-d (black, solid line), Mn2-d (brown/light
gray, solid line), O-p (orange/gray-shaded area), V-d (red/dark gray,
solid line), and C-p (black, shaded area). The zero of the energy is
set at GGA Fermi energy. Inset shows the zoomed plot of the same.
(b) Spin-polarized GGA density of states, projected onto octahedral
crystal field split Mn1-t2g and Mn1-eg states. Inset shows the energy
level positions of Mn1-d states and their occupancies. The distortion
in Mn1O6 octahedra gives rise to small splitting within t2g states.
(c) Spin-polarized GGA density of states, projected onto crystal field
split Mn2-d states. Inset shows the energy-level positions of Mn2-d
states and their occupancies.

FIG. 3. Energy plotted as a function of the fixed total magnetic
moment in the unit cell, consisting of four Mn1 and two Mn2 ions.
The solid and dashed lines correspond to calculations within GGA
and GGA + U, respectively.

degrees of freedom other than Mn-d. The onsite matrix
elements of the real-space representation of this Hamiltonian
provide us with the information of crystal field splitting of
d states of Mn1 and Mn2 sites. The energy-level diagrams,
shown as insets in Figs. 2(b) and 2(c), show t2g-eg splitting
in the almost perfect octahedral environment of Mn1 with
splitting of ∼0.9 eV, and a splitting into double degenerate
xz/yz, doubly degenerate (x2-y2)/xy, and singly degenerate
3z2-r2 for the trigonal-bypyramidal environment of Mn2 with a
splitting of ∼0.9 eV between 3z2-r2 and the next-lower-energy
level. Considering the splitting of ∼0.9 eV between the highest
energy state and the next-lower-energy state, comparable to
Hund’s exchange, the high-spin states of Mn2, as in Mn1,
are conceivable, supporting the calculated values of magnetic
moments.

We note that S = 1/2 state for Mn2 would lead to John-
Teller active configuration with the unpaired spin residing
at doubly degenerate dx2

-y2 /dxy
level, leading to distortion

of crystal lattice. While the experimental study assigns the
anomaly at T ≈ 83 K to be tentatively of Jahn-Teller origin,
the same study also reports no indication of this distortion is
seen in specific heat measurements [8], making the situation
rather undecided. This signature is also not found in the crystal
structure data.

B. Evaluation of magnetic interactions

Next, we attempt on finding the magnetic interaction
between the Mn2+ ions. For this purpose, we followed two
independent routes. In the first approach, the low-energy Mn-
d-only Hamiltonian out of the non-spin-polarized DFT band
structure, was constructed by NMTO-downfolding procedure
[12], by keeping only Mn1-d and Mn2-d degrees of freedom
active, and integrating out the rest. The downfolded Mn-d-
only bands in comparison to non-spin-polarized DFT band
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FIG. 4. (Color online) NMTO downfolded Mn-d only bands,
shown in black, solid lines, in comparison to Mn1-d (the fatness,
shown as red, vertical lines) and Mn2-d (the fatness, shown as blue,
vertical lines) projected states of the full band structure.

structure projected onto Mn1-d and Mn2-d characters are
shown in Fig. 4. This energy-selective procedure is capable
of producing a faithful representation of the Mn-d-dominated
bands, which are overlapping with other bands in high-up
energies and therefore challenging. The low-energy Mn-d-
only Hamiltonian is defined in the basis of effective Mn-d
Wannier functions, which has the central part shaped according
to the d symmetries, while the tails, sitting at neighboring
sites, are shaped according to the symmetries of integrated-out
degrees of freedom, such as O-p, V-d, C-p, etc. The real-space
representation of this low-energy Hamiltonian provides the
onsite energies of the effective Mn-d levels, as presented in
the insets of Fig. 2, as well as the effective hopping interactions
connecting two Mn sites. The strongest interaction turned out
to be that connecting nearest-neighbor (NN) Mn1 sites in
the Mn1 layer, t1, followed by two more, second and third
NN interactions in the Mn1 layer, t2 and t3. The interactions

FIG. 5. (Color online) The dominant Mn-Mn effective hopping
interactions, in the Mn1 layer (right top), Mn2 layer (right bottom),
and that between Mn1 and Mn2 layers (left). The Mn1 and Mn2
sites are shown as green (light gray) and blue (dark gray) balls,
respectively. The fatness of the connecting bonds, connecting two
sites, are proportional to the corresponding hopping strength.

connecting NN Mn2 sites in Mn2 layer (t4) are found to be
nonnegligible but smaller than the strongest Mn1-Mn1 NN
hopping interaction. The hopping connecting Mn1 and Mn2
(t5) between the two layers is found to be small. The dominant
effective Mn-Mn hopping interactions in the sublattice of Mn
ions are shown in Fig. 5. The values of the hopping interactions
between different Mn-d orbitals, sitting at sites i and j , as
given by NMTO-downfolding, may be found in Appendix B.
From the knowledge of hopping interaction t

ij

m,m
′ , where i and

j are two Mn sites and m and m
′

are two d orbitals, and the
energy-level difference, �ij

m,m
′ , between m and m

′
orbitals at

sites i and j , we employ the super exchange formula [20],
∑

m,m
′

2(t ij
m,m

′ )2

�ij

m,m
′ +U

, to compute the magnetic exchanges, J . The

antiferromagnetic (AFM) exchanges in terms of the strongest
Mn1-Mn1 NN interaction, J1, turned out be J2

J1
=0.12, J3

J1
=0.06,

J4
J1

=0.06, J5
J1

=0.04, where J2, J3, J4, J5 represent second NN

FIG. 6. (Color online) Mn1 and Mn2 Wannier functions placed at two interacting Mn sites. The two oppositely signed lobes of the
wavefunctions at site i(j ) are colored differently as black (cyan/light gray) and white (orange/dark gray). From left to right, the plots show the
cases for two Mn1 sitting at NN positions, two Mn2 sitting at NN positions, and Mn1 and Mn2 sitting at two adjacent layers.
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Mn1-Mn1, third NN Mn1-Mn1, NN Mn2-Mn2, and Mn1-Mn2
interactions, respectively, with a choice of U = 4 eV.

In order to probe the underlying super-exchange path, we
plot in Fig. 6 the Mn-d Wannier functions placed at two
interacting Mn sites, corresponding to the strongest Mn1-Mn1
NN interaction, the Mn2-Mn2 NN interaction, and Mn1-Mn2
interaction between the two adjacent layers (from left to
right). We find that Mn1-Mn1 NN interaction proceed not
only through the edge-shared oxygens but also through the V
sites, which bridge two Mn1 sites and contributes to Mn1-Mn1
interaction due to nonnegligible hybridization between V-d
and Mn-d. Mn2-Mn2 interaction proceeds via the Mn-O-C-
O-Mn super exchange paths, while the rather weak Mn1-Mn2
interaction between two adjacent layers is mediated by O-V-O
path.

While the above analysis is based on the perturbative super-
exchange formula, the alternative more accurate approach
can be calculation of total energies for different magnetic
arrangement of Mn spins and mapping onto the underlying
Heisenberg model,

H = J1

∑

nn

Si
Mn1S

j

Mn1

+J2

∑

2nn

Si
Mn1S

j

Mn1 + J3

∑

3nn

Si
Mn1S

j

Mn1

+J4

∑

nn

Si
Mn2S

j

Mn2 + J5

∑

nn

Si
Mn1S

j

Mn2

to extract various J ’s [13]. For this purpose, we constructed a
supercell of dimension 1 × 2 × 1, giving rise to 12 Mn atoms
in the unit cell, which are labeled as shown in Fig. 7. The
least-square-fitting procedure of the calculated GGA + U
energies of different spin configurations (refer to Table II
for the considered configurations and the energies) to the
above defined Heisenberg model gave the estimate of J1, J2,

FIG. 7. (Color online) Labeling of Mn1 and Mn2 sites, forming
alternate layers in the 1 × 2 × 1 supercell, considered for total-energy
calculations. The Mn1 and Mn2 atoms are colored differently
as pink (dark gray) and light gray, respectively. The connections
corresponding to J1, J2, J3, J4, and J5 are indicated.

TABLE II. Magnetic configurations of the Mn ions in the
supercell for the states used to determine the magnetic interactions.
The numbering of the Mn sites are as shown in Fig. 7. The last column
gives the relative GGA + U energies in eV.

1 2 3 4 5 6 7 8 9 10 11 12 �E

FM + + + + + + + + + + + + 0.000
AFM1 + − − + + + − − + + + + −0.629
AFM2 + − + − + − + − + + + + −0.365
AFM3 + − + − + + − − + + + + −0.445
AFM4 + + + + + + + + + + − − −0.013
AFM5 − − − − − − − − + + + + −0.003
AFM6 − + + − + + − − − − + + −0.641
AFM7 + − + − − + − + − + + − −0.377
AFM8 + − + − − + + − + − + − −0.262
AFM9 + + + + + + + + + − + + −0.006
AFM10 − − − − − − − − + − + − −0.002
AFM11 + + − − − − − − − + − + −0.236
AFM12 + − + − + − − + − − − + −0.268
AFM13 + + + + − − − − − − − + −0.007
AFM14 + − + + + + + − + + + + −0.340
AFM15 + − + + + + + − + − + − −0.342

J3, J4, J5 as −4.162 ± 0.033 meV, −0.242 ± 0.008 meV,
−0.481 ± 0.130 meV, −0.123 ± 0.007 meV, and −0.005 ±
0.001 meV, respectively. Negative signs imply all interactions
to be of antiferromagnetic nature. We find that total energy
method gave rise to very similar description of the underlying
spin model, as found in a super-exchange method, with a
dominant J1 in the Mn1 layer, small but nonnegligible values
of J2 and J3, a J4 in Mn2 layer, which is less than order
of magnitude smaller compared to J1, and a small interlayer
coupling, J5. The value of J5 is found to be smallest among
all the interactions in both the approaches, indicating general
agreement between the two approaches, although precise
numerical values differ. The estimate of J5, as given in the
total-energy method, turns out to be tiny, pushing it to the
limit of DFT accuracy.

The above analysis leads to a spin-5/2 model consisting of
alternate layers of honeycomb and triangular lattices, which
are weakly connected to each other. The calculations, reported
in the above, were carried out considering the collinear
arrangement of the Mn spins. However, the frustration effect
in the triangular geometry of the Mn2 spins is expected to
lead to canting of the Mn spins with possible noncollinear
arrangement. The classical phase diagram of possible ground-
state magnetic structure for large S spins on a honeycomb

FIG. 8. (Color online) The lowest-energy spin structure of Mn
spins, as given in DFT calculation, with Mn1 and Mn2 layers shown
in left and right panels, respectively.
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FIG. 9. Temperature dependence of magnetic susceptibility. The
solid line and circle correspond to calculated susceptibility based on
ab initio-derived spin model and experimental data [8], respectively.
Inset shows the calculated susceptibility based on only Mn1-Mn1
interactions.

lattice, has been evaluated in literature for a J1-J2-J3 model
[21]. Following those structures, we find that the lowest-energy
structure, as computed within GGA + U, to be noncollinear
with 120o canting of spins in Mn2 layer of triangular lattice,
and that in Mn1 layer to be collinear with alternate pointing
of spins along the hexagonal ring of the honeycomb lattice,
as shown in Fig. 8. The magnetic structure in Mn1 layer
follows the expectation arising from a strong J1, and much
weaker J2 and J3, all being antiferromagnetic. The magnetic
moments of the individual Mn spins in the noncollinear spin
configuration were found to range between 4.6 and 4.8 μB , in
good comparison to that found considering the collinear spin
arrangement.

C. Calculation of thermodynamic properties

Finally, we carried out the Monte Carlo simulation [14] of
thermodynamic properties considering the ab initio-derived
S = 5/2 spin model. Calculations have been carried out
considering the J1-J2-J3-J4 model, as effect of tiny J5 is
found to have negligible effect. The magnetic susceptibility
as well as magnetization properties were calculated. In
order to make the comparison of the theoretically computed
susceptibility obtained from spin-spin correlation in presence
of magnetic field of B = 1T , to that of the experimentally
measured susceptibility (in [emu/mol]), the relation χ exp =
0.5 S(S + 1)g2χ theory/J1 is used, where g denotes the Lande
g factor, which has been fixed at experimentally determined
value of 1.978 [8]. Note that g value being less than the free
electron value of 2 is typical for Mn2+ ion in high-spin state.
The theoretical result and the experimental data for magnetic
susceptibility are presented in Fig. 9. The inset shows the
calculated susceptibility considering only J1, J2, and J3, i.e.,
the interactions in Mn1-layer. In absence of interaction at the
Mn2 layer, namely J4, the computed susceptibility shows a
drop in low-temperature range, which changes drastically upon
introduction of Mn2-Mn2 interaction. The overall agreement
with the experimental data is moderately reasonable, given
the uncertainties both in experimental measurement as well
as in the various levels of approximations in the theoretical
evaluation of the magnetic exchanges. Finally, we computed
the magnetization as a function of varying magnetic field, at
a temperature of 3 K, which is found to reproduce the initial
fast rise, with slow rise at intermediate field value as well as
a fast upturn at higher field value as observed experimentally,
as shown in Fig. 10.

V. SUMMARY

Using first-principles density functional theory-based cal-
culations, we investigate the proposal of low-spin configura-
tion of Mn2+ ion in K2Mn3(VO4)2CO3. The existence of low-
spin configuration of Mn2+ at ambient condition is rare due to
large Hund’s rule energy gain and, therefore, this suggestion is

FIG. 10. The magnetic-field dependence of magnetization. The left and right panels correspond to calculation based on ab initio-derived
spin model and experimental data [8], respectively. In the left panel, the stars mark the calculated data while the line is a spline fit through the
data points.
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provoking. Our rigorous first-principles calculation establishes
that, contrary to the previous suggestion, both inequivalent
Mn2+ ions, Mn1 and Mn2, one in octahedral and another in
trigonal-bipyramidal coordination, are in high-spin state. This
is justified considering a crystal field splitting of ≈0.9 eV
at both inequivalent Mn sites. Computation of magnetic
exchanges employing Wannier function-based super-exchange
formula, as well as mapping of total energies of different
magnetic arrangements to Heisenberg model, establishes a
antiferromagnetic S = 5/2 spin model of alternating layers
of honeycomb and triangular lattices, which are coupled very
weakly. The nearest-neighbor interaction in the honeycomb
Mn1 layer is found to be the strongest interaction, followed
by second- and third-neighbor interactions, in decreasing
order, which are small but nonnegligible. The nearest-neighbor
interaction in triangular Mn2 layer is found to be much smaller
than that in Mn1 layer, setting the low-energy scale at which
ordering takes place. The connection between Mn1 and Mn2
layers is very small and found to have negligible effect. The
frustration effect in triangular lattice is found to give rise to
noncollinearity with 120o canting of spins in Mn2 layer, and
that in Mn1 layer is found to be collinear with alternate pointing
of spins along the hexagonal ring of the honeycomb lattice,
following the expectation from a dominant antiferromagnetic
nearest neighbor, and small values of antiferromagnetic
second- and third-nearest-neighbor interactions of large spins
on a honeycomb lattice [21]. Solving the first-principles-
derived spin model using Monte Carlo technique, we calculate
the temperature dependence of magnetic susceptibility and the
magnetic-field dependence of the magnetization, which were
found to provide reasonable description of the experimental
results. The difference in conclusion of the present study and
the experimental study [8] concerning the spin state of Mn2

demands further experimental study on this interesting issue.
Specifically, the suggestion [8] of the LS state of Mn2 should
be reflected in its signature of Jahn-Teller activity, which is
found in neither crystal structure data nor in specific heat
data. We hope that our theoretical study will stimulate further
experimental activity on this compound.
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APPENDIX A

TABLE III. The theoretically optimized atomic positions com-
pared to the experimentally measured data. During the optimization
the parameters of the hexagonal unit cell are fixed at the experimen-
tally measured values, a = 5.21Å and c = 20.41 Å.

Measured Optimized
Atom x y z x y z

V 0.00000 0.00000 0.07987 0.00000 0.00000 0.07949
Mn1 0.66667 0.33333 0.00457 0.66666 0.33333 0.00427
Mn2 0.00000 0.00000 0.25000 0.00000 0.00000 0.25000
K 0.33333 0.66667 0.15776 0.33333 0.66666 0.15759
C 0.66667 0.33333 0.25000 0.66666 0.33333 0.25000
O1 0.00000 0.00000 0.15520 0.00000 0.00000 0.15626
O2 0.44340 0.06810 0.25000 0.43342 0.06483 0.25000
O3 0.30980 0.98939 0.05494 0.31628 0.99217 0.05337

TABLE IV. Effective hopping interactions (in eV) between two Mn sites which can be either Mn1 or Mn2 (see third column), connected
through the connecting vector, as given in the first column, and separated by a distance, as given in the fourth column of the table. The
number of neighbors for a given pair of Mn sites is indicated in the second column. Each hopping interaction is a 5 × 5 matrix, hm,m′ with
m,m′ = dxy,dyz,d3z2-1,dxz, and dx2-y2 .

Connecting vector NN Atoms Distance dxy dyz d3z2-1 dxz dx2-y2

hopping int. no. (Å)

dxy −0.057 −0.033 0.009 0.045 0.007
dyz 0.033 0.048 −0.023 −0.032 −0.009

[0.58 0.00 − 0.04] 3 Mn1-Mn1 3.01 d3z2-1 −0.009 −0.023 −0.154 −0.023 −0.101
t1 dxz 0.045 0.032 0.023 0.282 0.004

dx2-y2 −0.007 −0.009 −0.101 −0.004 −0.270

dxy dyz d3z2-1 dxz dx2-y2

dxy 0.000 −0.014 −0.035 −0.015 0.047
dyz −0.020 −0.016 0.013 −0.006 −0.028

[0.00 − 1.00 0.00] 6 Mn1-Mn1 5.20 d3z2-1 0.026 −0.073 0.014 −0.012 −0.092
t2 dxz 0.010 −0.003 −0.026 −0.003 −0.056

dx2-y2 −0.001 −0.001 0.016 −0.028 −0.014

dxy dyz d3z2-1 dxz dx2-y2

dxy −0.004 0.007 −0.050 −0.035 −0.010
dyz −0.007 0.009 −0.001 0.021 −0.004

[0.58 − 1.00 − 0.04] 3 Mn1-Mn1 6.01 d3z2-1 0.050 −0.001 −0.007 0.025 −0.021
t3 dxz −0.035 −0.021 −0.025 0.008 −0.027

dx2-y2 0.010 −0.004 −0.021 0.027 0.000

APPENDIX B
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TABLE IV. (Continued.)

Connecting vector NN Atoms Distance dxy dyz d3z2-1 dxz dx2-y2

hopping int. no. (Å)

dxy dyz d3z2-1 dxz dx2-y2

dxy −0.003 0.000 −0.025 0.000 −0.040
dyz 0.000 0.010 0.000 −0.004 0.000

[0.00 − 1.00 0.00] 6 Mn2-Mn2 5.20 d3z2-1 −0.037 0.000 −0.031 0.000 0.005
t4 dxz 0.000 0.040 0.000 −0.005 0.000

dx2-y2 −0.069 0.000 −0.037 0.000 −0.020

dxy dyz d3z2-1 dxz dx2-y2

dxy 0.003 0.010 0.007 −0.000 0.001
dyz −0.006 0.018 −0.022 0.003 −0.023

[0.29 − 0.50 − 1.09] 6 Mn1-Mn2 6.35 d3z2-1 0.021 0.013 −0.023 −0.001 −0.044
t5 dxz −0.009 −0.048 0.003 0.000 0.011

dx2-y2 0.000 −0.008 0.012 −0.002 0.012
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