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Semiclassical spin dynamics of the antiferromagnetic Heisenberg model on the kagome lattice
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We investigate the dynamical properties of the classical antiferromagnetic Heisenberg model on the kagome
lattice using a combination of Monte Carlo and molecular dynamics simulations. We find that frustration induces
a distribution of time scales in the cooperative paramagnetic regime (i.e., far above the onset of coplanarity),
as recently reported experimentally in deuterium jarosite. At lower temperature, when the coplanar correlations
are well established, we show that the weather-vane loop fluctuations control the system relaxation: the time
distribution observed at higher temperatures splits into two distinct time scales associated with fluctuations in the
plane and out of the plane of coplanarity. The temperature and wave-vector dependencies of these two components
are qualitatively consistent with loops diffusing in the entropically dominated free energy landscape. Numerical
results are discussed and compared with the O(N ) model and recent experiments for both classical and quantum
realizations of the kagome magnets.
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I. INTRODUCTION

In psychology, frustration is an emotional response to
opposition or conflict. In the natural sciences, frustration
is often associated with the impossibility of a system to
optimize simultaneously all elementary interactions, whether
they are single body, two body, or many body. It gives rise
to many exciting phenomena in particular in magnets where
magnetic states stay disordered despite the presence of strong
interactions.

Although the first studies of spin models with competing
interactions date back from the early 1950s [1,2], the ter-
minology of frustration was introduced in the 1970s mostly
in the context of spin glasses [3–6]. Since then it has been
associated with many unconventional low-energy states such
as quantum and classical spin liquids [7–12], or more recently,
with quantum, classical, and artificial spin ices [13–16].

All these phenomena take place in diverse systems but each
of them can be associated with a canonical representative, i.e.,
a minimal frustrated spin model which brings together most
of the important features.

The 2D antiferromagnetic Heisenberg model on the kagome
lattice (KHAFM) is one of the archetypes of such systems. The
kagome lattice can be described as a lattice of triangles sharing
one corner with each neighbor, the key property for creating
these unusual and often highly degenerate ground states both
in classical and quantum models [8,15–19].

In the quantum limit, the ground state of KHAFM is still
unsettled, but recent results rather point towards a quantum
disordered ground state [20–25]. In the classical limit, the equi-
librium properties of KHAFM in the paramagnetic (T > |J |)
and cooperative regimes (T � |J |) are now well known and
understood down to low temperature [8,17,18,26–30] (where
|J | is the nearest-neighbor interaction coupling constant).
Finally a recent study finds a very weak magnetic order when
the system is settling in the coplanar regime [31].

The dynamics of the classical Heisenberg model in both
one, two, or three dimensions is very rich at all temperatures
because of the nonlinearity of the model. The dynamics in
the paramagnetic regime was extensively studied during the
1990s.

Early studies of the dynamics of frustrated magnets have
shown that these systems are very different from their
nonfrustrated counterparts [32] at low temperature. In classical
3D frustrated magnets, such as pyrochlore antiferromagnets,
most correlations in magnetic states decay exponentially at
low temperature while the temperature dependence of the
relaxation time follows a power law [7,33,34]. Similar results
were found in the kagome antiferromagnets despite the more
complex landscape around the ground-state manifold [35,36].

At low temperature, the absence of long-range-ordered
ground states does not forbid short-lived spin-wave-like
excitations [37] whose natural time scale is of the order
of |J |−1. The highly degenerate nature of the ground-state
manifold gives rise to additional processes that contribute at
intermediate time scales [7,35,36]. The longest time scales
(t |J | > 500) are the domain of both (i) spin diffusion, i.e.,
the stochastic propagation of the magnetization throughout
large magnetic regions, and of (ii) magnetic relaxation, i.e.,
the gradual reorganization of the average spin configuration
around which the spin waves are oscillating. All these time
scales are present in KHAFM and can be studied with different
experimental probes, ranging from thermal neutron scattering
and muon relaxation for the short and intermediate time scales
to ac-susceptibility and NMR measurements for the long time
scales.

The aim of this work is to understand and characterize
the dynamics beyond short time scales. We find that spin
diffusion persists at low temperature (T/|J | < 10−2) despite
the presence of strong spin correlations. Below T/|J | = 10−2,
the spin dynamics becomes anisotropic due to the entropic
selection of coplanar states. We also find that the relaxation is
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FIG. 1. (Color online) Schematic phase diagram of the classical Heisenberg model on the kagome lattice. While there are no broken
continuous symmetries, this model undergoes two different crossovers when the temperature decreases. The paramagnetic regime has
conventional diffusive behaviors in the high-T regime. The first crossover occurs around T ≈ J and the system enters a regime where
dipolar-like spin correlations develop at a length scale of the order of the spin correlation length ξ (T ). Around T ≈ 10−3J , the entropic
selection favors coplanar states whose dynamics is anisotropic.

mediated by large-amplitude oscillations around small loops
(also called weather-vane defects) and spin waves, despite the
absence of long-range order.

This article is organized as follows. In Sec. II, current
knowledge of KHAFM thermal behavior is reviewed in
order to provide the reader with a clear description of the
magnetic structures that the spin dynamics is built on. Then,
numerical procedures and technical details are given in Sec. III.
Finally, our numerical results are presented in Secs. IV and V
respectively for the high and low temperature regimes, and
compared with recent experimental results obtained in kagome
systems (see Sec. VI).

II. EQUILIBRIUM PROPERTIES OF THE CLASSICAL
KAGOME HEISENBERG ANTIFERROMAGNET:

FOUNDATIONS FOR A SPIN DYNAMICS

The phase diagram of the classical KHAFM is depicted on
Fig. 1. At high temperatures (T > |J |), the classical KHAFM
is a conventional paramagnet with short-range spin-spin
correlations. When temperature becomes comparable to the
exchange |J |, correlations appear and spins on each triangular
plaquette of the kagome lattice approximately sum to zero and
are oriented at 120◦ to one another. This local arrangement
does not lead to large correlated domains because of the
existence of an uncountable number of configurations that
form a highly degenerate and connected manifold associated
with “origami” folding of the spin pattern [38–40]. As a result
of this degeneracy, spin correlations decay algebraically with
distance and can be associated with a so-called Coulomb
phase [7,17,29,41–44]. In such a phase, correlations are
expected to have a dipolar-like decay with distance (in 1/r2)
with prefactors that depend on the temperature [45]. This
regime roughly covers the temperature range 5 × 10−3 <

T/J < 1.
When temperature is further reduced, i.e., T/J < 5 ×

10−3, the free energy of all spin foldings is no longer uniform
and the spins, which are still locally constrained to stay
at 120◦ within each triangle, now select a particular spin

plane1, common over many triangles, around which they are
fluctuating [22].

This selection of coplanar states, also known as entropic
ordering (or order out of disorder), is due to the additional soft
degrees of freedom for the thermal fluctuations [7,18,38,46]
available in the coplanar regime. This was first identified as
a coplanar ordering, i.e., the development of quadrupolar (or
spin nematic) correlations [18]. This incipient order is not
merely coplanar but was later recognized to imply octupolar
order as well [28].

Thus, in the model’s ultralow-temperature regime, spins
fluctuate around one of the discrete coplanar ground states,
in which every spin has one of three possible directions,
which can be represented by the values (or colors) of the
discrete spins in the 3-state Potts model on the same lattice.
The coplanar ground states correspond 1-to-1 up to global
rotations to Potts ground states, in which every triangle has
three colors [17,29,40], whose number is Nc ≈ 1.13N where
N is the number of spins of the lattice (we will always consider
finite lattices with periodic boundary conditions).

Consequently, there are essentially three different regimes:
the generic paramagnetic regime with short-range spin cor-
relations; a cooperative paramagnetic regime or spin-liquid
regime, with algebraic correlations on finite-area domains,
whose area is controlled by a temperature-dependent corre-
lation length; and a nematic-like regime, where correlations
are enhanced via an order out of disorder phenomenon that
stabilizes a common spin plane. At very low temperature
magnetic ordering also appears [31].

The first studies of the dynamics of magnetic systems con-
centrated on the nature of spin fluctuations in the cooperative
paramagnetic regime in comparing the spin dynamics of a
strongly correlated disordered magnet with the dynamics of an
ordered one. Following this perspective, it was shown that the

1By the Mermin Wagner theorem, the corresponding orders are cut
off at the longest length scales, leaving well-defined regimes separated
by crossovers.
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KHAFM is a model with unusually high density of low-lying
excitation [32] at low temperatures. It was also shown that
at sufficiently low temperatures (T/J � 5 × 10−3), coherent
excitations are unexpectedly stable despite being built on a
thermodynamically characterized disordered manifold [35].

In this work, our interest is to understand how the natural
high-temperature (T � J ) signature of diffusive dynamics
is found at lower temperatures (T � J ), how it terminates
close to the nematic boundary even though local excitation are
still present (6-site loops), and how this model discriminates
between in-plane and out-of-plane spin dynamics, all latter
considerations being discussed in the intermediate 10J−1 �
τ � 104J−1 time scale. In other words, it aims at resolving spin
fluctuations while extending previous dynamical studies in
order to cover a time range associated with magnetic relaxation
rather than structured and propagative excitation.

III. MODEL, NUMERICAL PROCEDURES, AND
OVERVIEW OF THE RESULTS

In this section, we first define the model and the notation we
use in this paper, as well as the method we use to investigate the
spin dynamics at finite temperature. The numerical procedures
used to perform the stochastic sampling of the phase space
and to integrate the nonlinear equations of motions are then
detailed. Based on this technical framework, we justify our
choice of temperature range and lattice sizes to ensure that
most of the discussed results are free of finite-size effects.
We end this section with a short overview of the dynamics in
the three temperature regimes that will be developed in the
following sections.

A. Model

We consider the classical Heisenberg model

H = −J
∑
〈i,j〉

si · sj , (1)

where the summation is limited to nearest neighbors, J < 0 is
the isotropic antiferromagnetic coupling constant, and |si | = 1
are classical spins on the unit sphere S2 located at the kagome
sites.

The kagome lattice is described as a two-dimensional
triangular lattice with a triangular unit cell and displacement
vectors a = a(1,0) and b = a(−1/2,

√
3/2), with a the lattice

constant. The unit cell contains three spins at positions r1 =
(0,0), r2 = a/2, and r3 = b/2. The index i = (Ri ,αi) in Eq. (1)
is a compact notation that regroups both the position Ri of the
unit cell where the spin resides and αi its sublattice index. With
these notations, the Brillouin zone (BZ) is a hexagon with
corners located at (Qa,Qb) = ±(1/3,1/3), ±(2/3, − 1/3),
±(1/3, − 2/3) in reciprocal space with (Qa,Qb) = Qaa� +
Qbb�.

It is convenient to express Eq. (1) as

H = −J

2

∑
η

l2η + E0, (2)

where E0 is a constant energy shift and lη = ∑
i∈η si is the total

spin of triangle η. From this expression, it is possible to see that
the ground state satisfies lη = 0 for all triangles, thus leading

to a relative angle of ±2π/3 between neighboring spins in any
ground state.

In this article, our interest lies in the time evolution of
the spin-pair correlations emerging in such a model. It is
convenient to probe such dynamical correlations in reciprocal
space by calculating the scattering function, also called
dynamical structure factor

S(Q,t) = 〈s−Q(0) · sQ(t)〉, (3)

with 〈. . .〉 the thermal average and

sQ(t) =
∑
i,α

si,α(t)e−i(Ri+rα )·Q. (4)

Ri and rα are respectively the position of the unit cell and the
coordinates of sublattice α.

In expression (3), the semiclassical spin dynamics at T = 0
is described by the nonlinear Bloch equations

dsi(t)

dt
= −J si(t) ×

⎛
⎝∑

j

sj (t)

⎞
⎠ , (5)

where sites j are the nearest neighbors of i. Note that the
set described by Eq. (5) conserves the total energy Etot and
magnetization Mtot.

We numerically integrate Eq. (5) in order to evaluate the
scattering function. We combine the deterministic integration
of the equations of motion with (hybrid) Monte Carlo
simulations for generating samples of spin arrays at a given
temperature. This numerical procedure is detailed in the next
section.

B. Numerical procedures

The numerical integration of Eq. (5) has been performed
up to 1024J−1 (even up to 104J−1 in the coplanar regime;
see Sec. V A) using an 8th-order explicit Runge-Kutta (RK)
method with an adaptive step-size control, offering an excellent
compromise between accuracy and computation time. The
RK error parameter as well as the RK order have been fixed
in order to preserve the Euclidean distance d = [

∑
i(s

RK
i −

sBS
i )2]1/2, i.e., the distance between time trajectories obtained

with the RK method and with the more robust but time-
consuming Burlisch-Stoer (BS) algorithm [47]. As a result,
trivial constants of motion, such as the total energy Etot and
magnetization Mtot, are conserved with a relative error smaller
than 10−9.

The initial spin configurations used for the numerical
integration are generated at each temperature by a hybrid
Monte Carlo method using a single-spin-flip Metropolis
algorithm. The single-spin-flip algorithm becomes inefficient
at low temperature because the number of rejected attempts
increases due to the development of spin correlation as the
system enters the liquid and the spin nematic regimes. To
partially overcome this effect, we reduce the solid angle from
which each spin-flip trial is taken to ensure that the acceptance
rate is above 0.4 at every temperature.

A thousand spin configurations are used at each temperature
to evaluate the ensemble average in Eq. (3) while the number of
Monte Carlo steps needed for decorrelation is adapted in such a
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way that the stochastic correlation between spin configurations
is lower than 0.1.

In the coplanar regime, the stochastic correlation between
spin configurations is relatively high because the number
of accepted attempts is small. The system is trapped in the
immediate surroundings of one given coplanar configuration
which means that ensemble averaging is only representative
of the initial conditions. To limit this effect, we use a
hybrid Monte Carlo Metropolis algorithm that combines
both overrelaxation [48] and the molecular dynamics method
described earlier.

These two methods correspond to rather different ways of
exploring the configuration space. An overrelaxation move,
which fulfills the detailed balance, consists of rotations of the
selected spin by a random angle around its local exchange
field so the system does not remain precisely in the same spin
configuration when the single spin flip is rejected. However
it does not prevent the system from being trapped into the
immediate surroundings of one given coplanar configuration,
so a huge number of Monte Carlo steps are still necessary for
the system to decorrelate.

On the other hand, as shown in this paper, the molecular
dynamics procedure is a very efficient way to probe different
coloring states (or Potts states) related to each other by a
spatially localized excitation. Indeed, two-color closed spin
loops of small size are easily flipped while integrating the
equation of motions, even at temperatures as low as T/J =
0.0001. Thus, our method acts as a “natural” loop algorithm
although the method is limited to small loops as the flipping
time grows rapidly with loop size and decreasing temperature.

The numerical results have been obtained for different
lattice sizes ranging from L = 144 [for the Q-resolved
scattering function S(Q,t)] to L = 192 [for the autocorrelation
function A(t)] with periodic boundary conditions, so the total
number of spins does not exceed N = 3L2 � 1.2 × 105.

Finite-size effects, which are negligible at high temperature,
become particularly important at low temperature. Figure 2(a)
shows that the evolution of the autocorrelation function

A(t) =
∫

d2Q S(Q,t) (6)

=
∑

i

〈Si(0) · Si(t)〉 (7)

at T/J = 0.0006 for different lattice sizes from L = 36 (red)
to L = 144 (blue) becomes nearly independent of the system
size when L > 108. Moreover the long-time dynamics is
affected by the rotation of the spins around the residual
magnetization [7] 2.

The fit of the autocorrelation is represented for each lattice
size on Fig. 2(b) [for the fitting process, see Sec. V C and

2This effect is relatively small for large systems and can be
compensated using the properties of the octupolar regime without
modifying the equation of motion. It is worth noting that no finite-size
effects have been observed for the short time scales. Therefore, the
analysis of the spin wave spectrum determined in Ref. [35], as well as
the evolution of its lifetime versus temperature, is justified. However,
the long-time dynamics qualitatively discussed in Ref. [35] [see
Fig. 3(b)] is affected by finite-size effects in the coplanar regime.

FIG. 2. (Color online) Finite-size effects on the autocorrelation
function A(t) and relaxation time in the octupolar regime. (a)
Autocorrelation function A(t) at T/J = 0.0006 for different lattice
size from L = 36 (red) to L = 144 (magenta). (b) Fit (blue) of the
numerical data (red) for the different lattice sizes ranging from L = 36
to L = 144, assuming that A(t) = a‖e−t/τ‖ + a⊥e−t/τ⊥ . (c) Relaxation
time τ‖ versus lattice size resulting from the fit shown in (b).

Eq. (21)]. While the short-time relaxation (tJ < 60) does not
depend on the lattice size, the long-time relaxation, plotted
versus L in Fig. 2(c), does not seem to vary significantly for
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L > 120. Consequently, finite-size effects will be neglected in
the following for T/J � 0.0001 and L � 144. Microscopic
quantities like the correlation lengths or more generally the Q-
resolved scattering function S(Q,t) may however be affected
by finite-size effects at least in certain regions of reciprocal
space. This problem will be discussed in Sec. V.

C. Three dynamical regimes with blurred boundaries

Our main goal in this work is to probe the fluctuations
around the ground-state manifold. Before characterizing the
relaxation dynamics and establishing in particular the tem-
perature and wave-vector dependence of the lifetime of the
correlated magnetic domains, we qualitatively discuss the tem-
perature dependence of a global quantity, the autocorrelation
function A(t) defined by Eq. (7). A more detailed study of
each regime is given in Secs. IV and V.

The autocorrelation function A(t), shown in Figs. 3(a)–3(c),
is respectively represented by dashed red, solid green, and
dot-dashed blue lines for the paramagnetic, spin-liquid, and
coplanar regimes. Linear-log [(a), (c)] and log-log (b) scales
are used to exhibit both exponential relaxations and diffusive
behaviors. While it is manifest from panel (a) that a slowing

FIG. 3. (Color online) Temperature dependence of the semiclas-
sical spin dynamics as revealed by the autocorrelation function
A(t). Autocorrelation function A(t) versus time in the paramag-
netic (T/J = 10–0.1), cooperative (T/J = 0.1–0.005), and coplanar
(T/J < 0.005) regimes respectively represented by dashed red, solid
green, and dot-dashed blue lines: (a) linear-log scale, (b) log-log scale,
and (c) linear-linear scale focusing on the coplanar regime.

down of the spin fluctuations with decreasing T is at work—as
could be expected for any conventional magnetic system—we
also notice that the overall shape of A(t) strongly depends on
the temperature range.

In the paramagnetic regime, although A(t) = 1 − t2α for
shortest times, the linear tail in a log-log scale above tJ � 4
[see Fig. 3(b)] is characteristic of spin diffusion expected to be
found in the limit of high temperatures and long wavelengths
and times [49,50]. The signature of diffusive behavior is
strongly reduced with decreasing temperature and is no longer
visible in the two lowest temperature regimes. Nevertheless, it
will be shown in Sec. IV B that (i) spin diffusion is still present
in a slightly reduced q range with the onset of short-range
correlations below T/J = 0.1, and (ii) this range tends to zero
at the octupolar transition (at least, it becomes smaller than the
wave-vector resolution, so that there is no apparent diffusive
behavior in our simulations for this lattice size).

Below the paramagnetic/cooperative crossover occurring
around T/J ∼ 0.1, the rough linear dependence of A(t) in
a linear-log scale [see Fig. 3(a)] suggests an exponential
decay e−t/τT with a temperature-dependent relaxation time τT .
Nonetheless, the detailed analysis of S(Q,t) given in the next
section will highlight that τT is Q dependent as well, so that
only an average appears in A(t).

Finally, the most surprising feature in Fig. 3 is probably the
intriguing behavior of A(t) in the octupolar regime, showing a
kink in the A(t) behavior at around tJ ∼ 60. It is related to the
presence of two relaxation processes that are different in nature
(see Sec. V for more details). In particular, it will be shown
that the entropic selection (i) strongly affects the fluctuations
of the ground-state manifold far above the transition toward
coplanarity (T/J � 0.05; see Sec. IV B), and (ii) leads to
different dynamical behavior for the in-plane and out-of-plane
spin components below the crossover (see Sec. V).

IV. PARAMAGNETIC AND COOPERATIVE REGIMES

A. Models, predictions

In the absence of any order, the most basic dynamical
process that may happen in a simple Heisenberg spin model is
a stochastic process transferring spin density from a magnetic
site to a neighboring one. By a succession of such thermally
activated random steps, the spin density arrives at a large
distance r with a probability given by phenomenological
spin-diffusion theory [49,51,52]. Since the total magnetization
is a conserved quantity, the magnetization density m(r,t) must
fulfill a local equation of continuity

∂m(r,t)
∂t

+ ∇ · j(r,t) = 0. (8)

If we assume that the local current j(r,t) is related to the
magnetization by Fick’s first law

j(r,t) = −D∇m(r,t), (9)

where D is the diffusion coefficient that depends on the details
of the model, and after expressing Eq. (8) and (9) in Fourier
space, the magnetization density obeys the diffusion equation

∂m(q,t)

∂t
= −Dq2m(q,t) (10)
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in the hydrodynamic regime, i.e., for large time t and wave
vectors smaller than the inverse of the correlation length q <

1/ξ [52]. After integration over time of Eq. (10),

S(q,t) = S(q,0)e−Dq2t . (11)

Integrating over q gives rise to an autocorrelation with a tail
that follows a power law A(t) � t−d/2 where d is the dimension
of the system [49].

At lower temperature T � J , the spin dynamics becomes
sensitive to the magnetic correlations which extend over scales
of the order of the spin correlation length ξ , which diverges
as 1/T according to the predictions for the N -component
spin model [45] (ICSM). This model describes very well
the apparition of structured spin pair correlations in classi-
cal Heisenberg systems [42,53]. Coupled to an appropriate
Langevin dynamics, it becomes a powerful method to predict
the temperature dependence of the dynamical properties [34].

In this model [34] which we describe here for completeness,
each spin component in the large-N limit has the normalized
probability distribution e−βE with

βE = 1

2

∑
i

λs2
i + 1

2
βJ

∑
α

l2α. (12)

lα = ∑
i∈α si is the sum of the soft spins −∞ < si < ∞

forming the triangle α. The energy function (12) differs from
Eq. (5) by an additional term that constrains the length of the
spins. The Lagrange multiplier λ = 1 + O(T/J ) in the limit
T � J is obtained by imposing 〈s2

i 〉 = 1/3 to each single
component of the spin to mimic the behavior of Heisenberg
spins [34].

Then, the diffusive dynamics emerging from these static
correlations can be described by the Langevin equation

dsi

dt
= �

∑
l

�il

∂E

∂sl

+ ξi(t) (13)

for each spin component, and whose integration yields an
analytic expression of the dynamical scattering function
S(q,t). In this expression, �ij = Aad

ij − zδij is the lattice
Laplacian, z is the coordination number of the lattice (z = 4
for the kagome lattice), and Aad

ij is the adjacency matrix (see
the Appendix for details). �, which sets the energy scale of the
dynamical processes, is the only free parameter of the model.
This model contains two terms, a drift current that we take
proportional to the difference of generalized forces ∂E/∂sj on
each bond of the lattice, and a second term imposing thermal
equilibrium described by a Gaussian noise contribution ξi(t) on
each site i of the lattice bonds. The noise term is correlated with
an amplitude fixed by the requirement of thermal equilibrium:

〈ξi(t)ξj (t ′)〉 = 2T ��ij δ(t − t ′). (14)

This model was initially proposed for studying the dy-
namics of the pyrochlore antiferromagnet in the limit T �
J [34]. Similar results are found for the KHAFM: around
the center of the Brillouin zone where the scattering function
is described by Eq. (11) with a temperature-independent
diffusion coefficient. At larger wave vectors and away from
the high-symmetry directions, the decay rate τ−1

α ∝ T varies
linearly with temperature and does not depend on q.

B. Numerical results and discussion

In the following subsections, we show that spin diffusion
is observed in the hydrodynamic regime as predicted in
the previous section with, however, a temperature-dependent
diffusion coefficient DT . At larger wave vectors and away from
the nodal lines [h,0], [0,h], and [h, − h], where the dynamical
properties are dominated by finite-energy spin-wave-like
excitation [35,36], an exponential relaxation is observed with
a temperature- and wave-vector-dependent relaxation time
τT (Q) (Sec. IV B 2), revealing the sizable effect of the entropic
selection even at temperatures far above the transition toward
coplanarity.

1. Hydrodynamic regime

In the hydrodynamic regime, expected to characterize only
the long-wavelength–low-frequency response of the system
(see Sec. IV A), the scattering function S(Q,t) is expected to
decrease exponentially with a relaxation rate τ−1

T (q) = DT q2

where DT is the diffusion coefficient [see Eq. (11)]. On the
other hand, a short-time expansion of the scattering function
leads to the form [51]

S(Q,t)

S(Q,0)
= 1 − 1

2
〈ω2〉t2 + 1

24
〈ω4〉t4 + O(t6), (15)

with 〈ωn〉 = ∫ ∞
−∞ ωnS(Q,ω)dω/

∫ ∞
−∞ S(Q,ω)dω the nth mo-

ment of the normalized spectral weight function. As for the
1D case [51], we find that the expansion up to the fourth
order describes well the numerical simulations for 0 < tJ <

1. Above the spin-velocity correlation time tvc = 〈ω2〉−1/2

which is no more than a few J−1 at most wave vectors, the
hydrodynamic regime appears and diffusion occurs.

We proceed as follows to extract DT . The relaxation time
τT (q) is obtained by fitting the scattering function S(Q,t)
at some given temperature and wave vectors using Eq. (11)
for times t � tvc; an example of such a fit is presented on
Fig. 4(a) for T/J = 0.17 at wave vectors taken along the [h,h]
direction around q = 0 (in this model the diffusive behavior
is isotropic in Q space, so other directions are not represented
in the figure). Then, fitting the relaxation time τT (q) versus
q2 for each temperature gives both the range of validity in q

of the diffusive behavior and the diffusion coefficient DT [see
Fig. 4(b)].

The temperature dependence of DT is represented in
Fig. 5 in both paramagnetic and cooperative regimes. At high
temperature, DT asymptotically tends to a constant value
D∞ = 0.125(5)JSa2. This value is a little higher than the
prediction [51]

DT = π

2
√

3
lim
q→0

( 〈ω2〉
q2

) ( 〈ω2〉
〈ω4〉

)1/2

, (16)

which is obtained by considering a Lorentzian response for
S(Q,ω) truncated at frequencies ωtvc > 1 to take into account
the failure of the exponential approximation at times shorter
than tvc (note that the coefficient π

2
√

3
becomes

√
π/2 if we

consider a short-time expansion instead of a rough cutoff,
although the global expression remains identical [54,55]). In
the infinite-temperature limit, expression (16) gives D∞ �
3/16r2

0 (J/�)
√

zS(S + 1), with r0 = a/2 the distance between
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FIG. 4. (Color online) Spin diffusion in the cooperative regime as
revealed by the spin-spin correlation functions. (a) Scattering function
S(q,t)/S(q,0) versus tJ at T/J = 0.17 for several wave vectors
close to the zone center in the [h,h] direction. The fits, performed
at each wave vector using a decaying exponential law (see text),
are represented by the thin black lines. (b) Inverse of the relaxation
time τd extracted from panel (a) as function of the wave vector. The
wave-vector region (|q| � 0.1) where the spin diffusion law is not
valid is shaded.

two nearest neighbors and z = 4 the connectivity of the
kagome lattice. Using JS(S + 1)/� → JS2 for classical spins,
we find that D∞ = 3/32 JSa2 � 0.09375 JSa2. This small
discrepancy between numerical and theoretical results was
already noticed in 1D systems, and is associated with the
failure of the short-time expansion which should be carried
to higher orders [54].

For T � J , it becomes more difficult to obtain a simple
theory since other processes appear beside spin diffusion.
However, by considering the temperature dependence of the
constant ratio (〈ω2〉/〈ω4〉)1/2 in the whole temperature range, it
is possible to rewrite Eq. (16) as a function of the macroscopic
susceptibility and internal energy [55],

DT ∝ U (T )/χ (T ). (17)

Although the O(N ) model does not reproduce quantitatively
the simulations, it is possible to capture the global shape of
the diffusion coefficient above T/J = 0.05 (see red curve
in Fig. 5) using the analytic expressions of U (T ) and χ (T )
derived in Ref. [45].

FIG. 5. (Color online) Diffusion coefficient and wave-vector
range of validity of the diffusive approximation (inset) as a function of
temperature. The red lines are the predictions obtained by the different
models (see text); the value of D∞ is obtained by extrapolating the
numerical data from T/J = 1 to 10; and the vertical dotted black line
at T/J = 0.005 is for the transition toward coplanarity.

Finally, in the very low temperature limit T � J , the
infinite-component spin model coupled to a Langevin dynam-
ics (see Sec. IV A and the Appendix) predicts a temperature-
independent diffusion coefficient. Figure 5 shows that DT

reaches a plateau below T/J = 0.1 at around 0.37(1)JSa2.
Moreover, from Ref. [45] and using expression (17), we
obtain a ratio (DT =0/D∞)O(N) = 3 between zero and infinite
temperature. This quantitatively agrees with the value 2.8(4)
determined from our simulations, while extrapolating the value
of the plateau down to T = 0 from the behavior observed
around T/J ∼ 0.1 (see Fig. 5). At lower temperature T/J <

0.05, the O(N ) model rapidly fails since it does not capture
the entropic selection of the coplanar states. The diffusion
coefficient seems to diverge when the temperature reaches the
octupolar transition, while the wave-vector range of validity of
spin diffusion, which is restricted at low temperatures by the
condition qξ < 1 with ξ the correlation length [54], shrinks to
very small wave vectors (see inset of Fig. 5).

From our simulations, it is not possible to state that the
long-wavelength diffusive behavior disappears in the coplanar
regime in favor of propagative spin transfers or if it is simply
reduced to a q-range smaller than the resolution δq = (Na)−1,
denoting that the correlation length becomes larger than the
lattice size. In this latter case, bigger lattices should be
considered to avoid finite-size effects. In any case, diffusive
behavior may exist even in a long-range-ordered AFM as
long as nonlinear effects such as interacting spin waves
are significant. These interactions are particularly strong in
frustrated magnets even at very low temperatures [56,57], so
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FIG. 6. (Color online) Temperature dependence of the relaxation time τ (Q,T ) in the cooperative regime. Intensity maps of the relaxation
time τ (Q,T ) in reciprocal space for T/J = 1.31 (a), 0.077 (b), and 0.010 (c), extracted by fitting the scattering function S(Q,t) at each wave
vector using Eq. (18). The prediction of the infinite-component spins model stands at the bottom right for each temperature. The red lines
bound the Brillouin zones.

spin diffusion may still be present in the coplanar regime,
although being limited to very long wavelengths and negligible
in intensity compared to propagative spin transfers.

2. Relaxation at generic wave vector: Lifetime of the ground states

The autocorrelation function A(t) gives useful information
about the global relaxation of the system and may be an
efficient way to probe the evolution of the stiffness with the
development of correlations at low temperature. In a previous
study [35] as well as in Fig. 3 of this paper, it is shown that a de-
caying exponential qualitatively describes the autocorrelation
function in the paramagnetic and cooperative paramagnetic
regimes—at least in a certain time range, this range being
highly reduced in the paramagnetic regime because of the 1/t

diffusive tail. Thus, the wave-vector-averaged relaxation time
can be extracted for each temperature, its inverse �r (T ) =
τr (T )−1 being represented in Fig. 9. The relaxation rate �r (T )
goes from the constant value J in the paramagnetic regime
to an algebraic law AT α in the cooperative regime with
α = 0.94(3) close to 1, reflecting a slowing down of the spin
fluctuations. For comparison, note also that a similar result
has been obtained in the pyrochlore antiferromagnet using
simulations and phenomenological arguments [7,34].

Nevertheless, A(t) = ∫
d2QS(Q,t) only provides qualita-

tive information in the case of wave-vector-dependent fluc-
tuations. So it is necessary to study the Q-resolved scattering
function S(Q,t) to understand the overall dynamical properties
of the system. In the following, we assume an exponential
decay of the scattering function at each Q

S(Q,t) = S(Q,0)e−t/τT (Q) (18)

and use the same treatment as the one discussed in the
previous section for long wavelengths. The relation (18)
was checked to be a good approximation at most wave
vectors. In particular Eq. (18) is justified in the paramagnetic
and cooperative regimes because the long-time dynamics is
dominated by relaxation processes away from nodal lines.
In that case, propagating excitation can be neglected in the
first approximation [35]. So, extracting the relaxation time
τT (Q) from the numerical data allows us to distinguish
the dynamical properties of short-range-correlated domains
having a propagation vector Q at temperature T .

Figure 6 displays maps of τT (Q) in reciprocal space for
temperatures T/J = 1.31, 0.077, and 0.01; the red lines
represent the BZ edges. For comparison, the same maps
obtained from the O(N ) model (Sec. IV A and the Appendix)
are shown in insets. Cuts of these maps as well as the
instantaneous scattering function S(Q,t = 0) are shown in
Fig. 7 along the [h,h] direction for several temperatures.

FIG. 7. (Color online) Influence of the temperature on S(q,t).
(a) Relaxation time and (b) instantaneous scattering function
S(Q,t = 0) versus Q = (h,h) at many temperatures in the paramag-
netic and cooperative regimes. The vertical gray lines at h = n/3 are
for BZ vertices (n = 1,2,4) and center (n = 3). Inset: Evolution of the
relaxation time with temperature at some high-symmetry positions
in reciprocal space. The open squares represent the relaxation time
obtained after integration over wave vectors away from nodal lines
where τ is predicted to be q-independent from ICSM (see text), with
a 1/T law which is represented in black.
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In the cooperative regime [Fig. 6(b)], the relaxation time
seems to be nearly independent of wave vector in regions away
from the nodal lines and the zone center where the dynamical
properties are dominated by diffusion and spin-wave-like
processes. This result is very similar to the predictions of the
O(N ) model and is rather intuitive in the light of Ref. [37]
since no particular correlations are favored in this temperature
range, all locally ordered domains having roughly the same
relaxation time. More generally, it is striking that the O(N )
model reproduces accurately the overall q dependence of the
relaxation time above T/J = 0.05.

The simulations show that τT (Q) [Fig. 6(c)] becomes more
structured at lower temperatures. In particular, it is clear from
Figs. 7(a) and 7(b) that the longest relaxations coincide with the
correlations peak of the

√
3 × √

3 state that are located around
BZ vertices. This slowing down of the spin fluctuations at BZ
vertices, obviously not reproduced by the O(N ) model which
does not take into account order-by-disorder phenomena,
is thus observed at higher temperatures than the onset of√

3 × √
3 static correlations, which occurs only when T/J �

0.005 [28].
The temperature evolution of the relaxation time close to

and away from the BZ vertices is represented in blue and red
in the inset of Fig. 7(b). The shaded region between these two
curves symbolizes the relaxation time distribution [for wave
vectors contained in the blue triangle of Fig. 6(b)]. The open
black squares are the mean value of this distribution. Although
the O(N ) model neglects the wave-vector dependence of
τT (Q) below T/J = 0.05, the wave-vector-averaged relax-
ation time is roughly consistent with the law τT (Q) ∝ T −1

obtained in Sec. IV A at low temperatures.
To conclude, these results suggest that the fluctuations

around the ground-state manifold are strongly affected by the
entropic selection far above the transition toward coplanarity
which occurs only at T/J = 0.005. Contrary to the antifer-
romagnetic Heisenberg model on the pyrochlore lattice [34],
the O(N ) spins model describes only qualitatively both the
diffusive and higher wave-vectors regimes in a restricted
temperature range 0.05 < T/J � 1.

V. COPLANAR REGIME

A. Low-temperature landscape

The goal of this section is to motivate and justify the
investigation of the Q-resolved dynamical scattering function
in the time range of interest. In the coplanar (octupolar)
regime [18,28], the incoherent spin dynamics induced by
thermal fluctuations is not the only channel of relaxation. In
this low-temperature regime, the low-energy manifold can be
thought as the neighborhoods of all ground states of the q = 3
Potts model on the kagome lattice, the discrete set being split
into distinct Kempe sectors [30,58]. The Kempe sectors are
connected subsets while the union of all Kempe sectors which
forms the set of all possible ground state of the q = 3 Potts
model is not connected. So motion within a Kempe sector is
allowed though the dynamics of 2-colored loops (which takes
the form of switching the two colors), while it is only possible
to go from one sector to another through the use of a defect, a
unlikely event at low temperature.

The low-energy configuration space of the Heisenberg
model is richer than that of the Potts model. First, small
deviations from a Potts state are possible, either with three
spins in a triangle not quite adding up to zero, or in the
form of slow twists of the Potts axes in space, as these
are dynamically chosen by (not quite in 2D) breaking a
continuous symmetry. Second, the Heisenberg ground-state
manifold allows continuous connections of the coplanar Potts
states via noncoplanar Heisenberg ground states, through the
loop flips discussed in detail below. Since the noncoplanar
intermediate ground states are subject to an entropic free
energy penalty, it still makes sense to consider vicinities of
the Potts states as the free energetic ground state manifold,
which therefore inherits the properties of the ground states set
of the q = 3 Potts model, the Kempe sectors being connected
submanifolds (motion from one ground state to another is
possible thanks to weather-wane defects) while the union
of the Kempe sectors [30,58] which form the ground-state
manifold of the Heisenberg model on the kagome lattice is not
connected. Consequently, in a typical time scale of tJ < 1000,
one can consider that the system is trapped in a Kempe sector
and does not escape it.

Whatever the sector the system is trapped in, there exists
loops of different lengths p = 2 + 4n with n > 0 [38,59].
Using periodic boundary conditions, loops can be divided
into two categories: winding and nonwinding loops. One may
expect different dynamics for these two families. Actually,
we will now see that at low temperature, the microscopic
spin model we are interested in, in the time range of interest,
discriminates even more drastically within each family.

Let us consider two archetypal 3-coloring, the well-known
long-range-ordered q = 0 and

√
3 × √

3 spin configurations
whose shortest weather-vane modes are respectively infinite
lines and small loops of 6 spins. In order to mimic a very low
temperature regime, we introduce a small amount of energy in
each state, by uniformly randomizing each spin configuration
with a �E � 6.4 × 10−4J . Then, equations of motions are
integrated and time evolution for each case is represented in
Fig. 8, with (a) the autocorrelation of each spin in direct space
and (b) the associated static structure factor S(q,ω = 0). While
hexagonal loops are activated and their number increases with
time for the

√
3 × √

3 spin configuration, no flipped loop is
detected for the q = 0 state. Note also that for the

√
3 × √

3
spin configuration, no loop of length greater than 6 occurs.
Loops of length L > 6 as well as infinite loops are therefore
absent at this time scale and do not play any role in the
dynamical properties. In reciprocal space, this results in a
negligible diffuse spectral weight at ω = 0 for the q = 0 state
in opposition to the

√
3 × √

3 state (see Fig. 8).
Because it is now well established that entropy stabilizes√

3 × √
3 correlations at low temperatures, one may expect

that thermodynamically, spin configurations belong to the
corresponding Kempe sector. On the time scale of the
simulations, one may consider the configuration space to
be the 6-loops neighborhood of this configuration, i.e., all
accessible configurations starting from the pure

√
3 × √

3 state
and applying non-overlapping 6-loop moves, keeping in mind
that such operations are not all commutating.

Therefore, while in reciprocal space
√

3 × √
3 spin pair

correlations gives rise to sharp peaks located at the Brillouin
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FIG. 8. (Color online) Dynamics of the weather-vane defects for
the uniformly randomized spin configurations in the q = 0 and√

3 × √
3 states seen from the correlation functions si(t) · si(0)

(�E � 6.4 × 10−4J ). (a) Autocorrelation in direct space at times
tJ = 100, 350, and 1000 (tJ = 100, 2000, and 4000) for the√

3 × √
3 (q = 0) spin configuration. Blue (red) disks are for positive

(negative) autocorrelation si(0) · si(t) at site i. (b) Resulting static
scattering function in reciprocal space of both spin configurations
after numerical integration. For comparison, the bottom left inset
shows the structure factor of one weather-vane mode. (c) Time
evolution of the global autocorrelation function.

zone vertices, their width being inversely proportional to the
correlation length ξ√

3(T ), the presence of flipped hexagonal
loops yields an elastic diffuse spectral weight in reciprocal
space, since the presence of those “defects” in the parent
periodic structure requires an infinite number of Fourier com-
ponents. The form factor of one such “defect” is represented in
the inset of Fig. 8(b) and indeed results in broad bumps softly
stretched along BZ edges. Consequently, the instantaneous
structure factor is expected to be a superposition of both sharp
and broad features located at different regions of reciprocal
space, and whose origins are of different nature; probing the
dynamics at different wave vectors will give information on
different relaxation processes.

B. Models, predictions about time scales

The analytic approach described in Sec. IV A obviously
fails to describe the fluctuations around such a ground-state
manifold, simply because it neglects the order by disorder
phenomena occurring at very low temperature. However, using
qualitative arguments, it is possible to roughly predict how
the dynamical properties would evolve in the presence of an
entropically induced potential well.

In a first approximation, let us consider the time evolution of
a single loop diffusing in such a landscape, whose dynamics
is described by a simple stochastic differential equation. In
this approach, we also ignore the interactions between the
weather-vane modes and the spin waves sensitive not only to
the ground-state manifold (in the sense of internal energy) but
also to the excitation spectrum.

This dynamics should have, at sufficiently low temperatures
(T � VL with VL the height of the free energy barrier), two
distinct time scales, corresponding to (i) the required time
to overcome the barrier and flip the loop, (ii) the weak loop
fluctuations around the plane of coplanarity. While the latter
time scale will mainly affect the out-of-plane component for
sufficiently small fluctuations (i.e., at sufficiently low temper-
atures), flipping a loop will also influence the in-plane channel
since such a motion induces a change of three-coloring.

Classically, the in-plane relaxation associated with loop
motions should obviously undergo a reduction of the number of
flips with decreasing temperature, described by the activation
law

τ‖ = τ0 exp(−VL/T ). (19)

An estimation of the energy barrier height VL has been
obtained within Gaussian spin-wave theory [38,46,60]. In par-
ticular, it was shown that the π -periodic potential well induced
by quantum fluctuations has the form V (φ) = ηL| sin(φ)|, with
η = 0.14 [38,59,60] and φ the angle between the “averaged”
coplanar spin plane and the plane defined by the spins of the
considered loop. Therefore, in the low-temperature limit where
quantum fluctuations dominate, VL = V (φ = π/2) ∝ L only
depends on the loop length L. However, in the presence of sub-
stantial thermal fluctuations (classical limit), the barrier height
is renormalized VL = T L log(2ηJS/T ) [38,46]. Combining
this latter expression with equation (19) leads to the power
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law

τ‖ = τ0

(
2ηJS

T

)L

, (20)

whose exponent is the loop length.
The behavior of the second time scale, i.e., weak fluctua-

tions of the loops within the entropic potential well, strongly
depends on the precise shape of the well and is more difficult
to handle. Indeed, for small angle, the fluctuations of the
neighboring loops cannot be neglected anymore. In particular,
it was shown that taking into account these loops, interactions
round out the well bottom such that its φ dependence becomes
quadratic for φ � φ0, with φ0 = 〈φ2〉1/2 = √

T/J the rms
induced by thermal fluctuations [59]. The stochastic Langevin
equation in a quadratic well V (φ) = d(T )φ2, with d(T ) an
effective on-site planar anisotropy coefficient which possibly
depends on the temperature, may be solved analytically. This
leads to a relaxation time τ⊥ ∝ 1/d(T ), pointing out that the
temperature dependence of the out-of-plane relaxation time
follows that of d(T ); for instance, a temperature-independent
well bottom would lead to a constant out-of-plane relaxation
time, leading to no freezing effects down to T = 0 (in this
particular case, this would actually be the amplitude of
the fluctuations which would tend to zero with decreasing
temperature).

In the next section, we numerically test these ideas and
try in particular to prove the presence of several characteristic
time scales in the spin dynamics. We also qualitatively discuss
the possible role of the interactions between weather-vane
and spin-waves modes, which break the 120◦ rule between
neighboring spins and lead to incoherent spin fluctuations.

C. Numerical results and discussion

The autocorrelation function A(t) plotted in Fig. 3 exhibits
different behaviors depending on the considered temperature
range: paramagnetic, spin-liquid, or coplanar regimes. Al-
though the autocorrelation in the spin-liquid regime can be
described by a single decaying exponential, such treatment
is not valid (see Sec. IV B) far above the transition toward
coplanarity (for T/J � 0.05). Below the crossover tempera-
ture, Fig. 3(c) shows a more complex behavior with at least
two time scales separated by a crossover at around tJ � 60.
Since the coplanar regime is (by definition) anisotropic in
spin space, different dynamical behaviors are expected for the
in-plane and out-of-plane components, each one being likely
associated with different relaxation processes. Separating the
two contributions A‖(t) and A⊥(t) of the autocorrelation
function in our simulations appears natural. The short time
scale (tJ < 60) is governed by out-of-plane relaxation, while
the in-plane relaxation governs the long-time regime [see
Fig. 9(c) for T/J = 0.0004]. From these considerations,
A(t) can be split into two exponential contributions below
T/J � 0.005,

A(t) = a⊥e−t/τ⊥ + a‖e−t/τ‖ , (21)

with τ⊥ � τ‖ the relaxation times and a⊥/‖ = 1
N

∑
i(S

⊥/‖
i )2 ∈

[0,1] the amplitudes of the out-of-plane/in-plane fluctuations
such that a‖ + a⊥ = 1 gives a good agreement with the
numerical data.

FIG. 9. (Color online) Algebraic temperature dependence of the
relaxation time in the three different regimes. (a) Relaxation rate 1/τJ

vs temperature: red is for the isotropic high-temperature regimes
(paramagnetic and cooperative) while blue and gray respectively
correspond to the in-plane and out-of-plane fluctuation rates. (b) Out-
of-plane amplitude of spin fluctuations in function of temperature.
(c) In-plane/out-of-plane separation of the autocorrelation function
for T/J = 0.0004.

τ‖ behaves like the relaxation time obtained in the spin-
liquid regime: it follows an algebraic law AT α with a slightly
higher exponent [α � 1.2(1)] denoting a slowing down of the
spin fluctuations below the transition, the coplanarity inducing
a stiffness in the spin texture. This exponent value remains
qualitative and may slightly be influenced by finite-size effects.
Meanwhile, τ⊥ � 35(5)J−1 seems to be roughly temperature
independent. These different dynamical behaviors come with
a decrease of the out-of-plane spin component a⊥ ∝ T 1/2 [see
Fig. 9(b)], in agreement with the equipartition theorem in the
presence of out-of-plane quartic modes.

Considering the dynamical scattering function S(Q,t),
which gives access to the wave vector dependence of the
relaxation times, yields more insight about the underlying
mechanism leading to the strongly different dynamical be-
haviors of the in-plane and out-of-plane spin components:
by avoiding the wave-vector-averaging effects, we can detect
the regions of reciprocal space leading to such a behavior.
As for the higher temperature results, S(Q,t) is dominated
by quasistatic relaxation for wave vectors away from the
nodal lines.3 So following the in-plane/out-of-plane separation
performed for the autocorrelation, the scattering function can
be approximated for each Q value by

S(Q,t) = S⊥(Q,0)e−t/τ⊥
q + S‖(Q,0)e−t/τ

‖
q . (22)

Some of those fits along the Q = (h,h) directions are shown
in Fig. 10, first pointing out that the peculiar shape of the

3Note that this approximation is actually fully compatible with
previous results pointing out the existence of propagative spin waves,
as long as the intensity of the modes is small compared to the
static intensity S(Q,ω = 0). The spin wave excitations contribute
to the scattering function S(Q,t) by a negligible modulation of high
frequency (of the order of J ).
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FIG. 10. (Color online) Scattering function S(Q,t) for different
wave vectors at T/J = 0.0006 as a function of time tJ . The fits
obtained using Eq. (22) at each wave vector are represented in
red. Inset: Scattering function for Q = (0.25,0) along the nodal line
pointing out finite-frequency features.

autocorrelation function in the coplanar regime is not induced
by the wave-vector averaging, since the two characteristic time
scales are also observed at each wave-vector value. Then, the
relaxation times obtained by fitting the scattering function at
each wave vector using expression (22) are plotted as intensity
maps in reciprocal space for T/J = 0.0006 in Fig. 11(a) for
τ⊥
q and Fig. 11(b) for τ

‖
q .

Handling the in-plane scattering function is a bit tricky,
seeing that the static spectral weight is a combination of two
components with very different signatures in reciprocal space
as discussed in Sec. V A: different relaxation processes or life-
times are probed depending on the wave-vector value. Around
the BZ vertices, the static spectral weight is overwhelmed by
the sharp peaks resulting from

√
3 × √

3 correlated domains.
Thus, the time evolution of the scattering function around these
positions unveils the lifetime of these locally ordered states,

which, from our simulations, seems to diverge with decreasing
temperature. However, the static and dynamical properties
around BZ vertices are strongly affected by finite-size effects
at such low temperatures since the correlation length ξ√

3(T )
may reach the lattice size. Consequently, it is not possible in
the current work to quantitatively describe the temperature
evolution of the relaxation of

√
3 × √

3 correlations.
On the other hand, the relaxation of the diffuse spectral

weight at generic wave vectors is representative of loop
dynamics. The corresponding time scales of those local
motions in direct space are almost independent of the system
size for a sufficiently large number of spins.

The in-plane components provide the average time to flip
hexagonal loops in given

√
3 × √

3 domains (which is different
from the flipping motion by itself which has already been
discussed in a previous article [35]). Indeed, the in-plane
spin correlations are at the first order not sensitive to small
fluctuations of the loops, and full loop flips are naturally needed
to alter three-coloring states. Figure 11(a) points out that the
averaged time to flip the loops is smaller than the lifetime
of the

√
3 × √

3 correlated domains. Each weather-vane loop
may be flipped several times before the

√
3 × √

3 correlated
domains to be relaxed.

However, since flipping a hexagonal loop requires over-
coming the free energy barrier separating the two neighboring
three-colorings (the ones before and after the flip), a depletion
of the flipping events with decreasing temperature is naturally
expected. According to Eq. (20), the required time to flip a loop
follows an algebraic law τ (T ) ∝ T α with α is equal to the loop
length. Numerical data obtained around Q = (1/2,1/2) rlu,
shown in Fig. 11(c), are in very good agreement with a power-
law behavior but the fitted exponent α � 1.5(2) is around four
times smaller than the prediction α = 6 for hexagonal loops.
This discrepancy could be due to the interactions between the
local (loops) and nonlocal (spin waves) modes, which have
been neglected and probably lead to significant incoherent
thermal fluctuations. Note also that finite-size effects although
strongly reduced far away from BZ centers and corners (see
Sec. III) cannot be totally excluded.

FIG. 11. (Color online) q dependence of the parallel and perpendicular relaxation times in the octupolar regime. Intensity maps of the
parallel (a) and perpendicular (b) relaxation times τ⊥/‖

q (Q,T ) in reciprocal space for T/J = 0.0006, extracted by fitting the scattering function
S(Q,t) at each wave vector using Eq. (22). The blue lines bound the Brillouin zones. The black thick lines and disks hide the regions where the
quasistatic scattering function vanishes (nodal lines), so that using Eq. (22) is meaningless around these positions. (c) and (d), obtained around
Q = (1/2,1/2), respectively show the in-plane and out-of-plane characteristic fluctuation time of the loops.
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Away from the high-symmetry directions of the Brillouin
zone, the characteristic time scale of the out-of-plane fluc-
tuations seems roughly flat with wave vector. This result is
consistent with the local spin motions in direct space [see
Fig. 11(b)] and suggests that the relaxation is mediated by the
loop fluctuations at very low temperatures. τ⊥

Q weakly depends
on temperature and is around 28J−1 for T/J � 0.005 [see
Fig. 11(d) at wave vector Q = (1/2,1/2) rlu], as previously
noticed for the Q-integrated scattering function A(t).

The presence of temperature-independent spin fluctuations
is remarkable for a classical system, whose dynamics generally
slows down when the temperature decreases. It is however
consistent with loops slightly fluctuating around the plane of
coplanarity, if considering a temperature-independent entropic
well bottom V (φ) = dφ2 (see Sec. V B). Nevertheless, to go
beyond these phenomenological considerations and confirm
these numerical results, theoretical predictions of the precise
temperature dependence of the entropic well are necessary in
the limit of small angles φ.

In conclusion, the numerical results show that the weather-
vane loop fluctuations control the system relaxation. We
identify two distinct time scales associated with the in-plane
and out-of-plane fluctuations and find that the temperature
and wave-vector dependencies of these two components are
qualitatively consistent with loops diffusing in the entropically
induced potential well. However, the exact role of incoherent
thermal fluctuations remains ambiguous and needs a better
understanding. To go further, a thorough numerical study in
direct space (which is now in progress) is required in order
to separate more efficiently the dynamics of the (local) loop
motions from the other contributions.

VI. COMPARISON WITH EXPERIMENTS

Experimental realizations of kagome antiferromagnets are
often complicated by further neighbor and/or anisotropic inter-
actions, single-ion anisotropy, spin-lattice coupling, chemical
imperfections, and lattice distortions [61–65]. The ground-
state manifold is extremely unstable towards such perturba-
tions, which may partially or totally lift the degeneracy [66],
so that any quantitative comparison with simple models
becomes difficult. The disappearance of the nematic order
parameter when the magnetic lattice contains defects, or the
stabilization of a q = 0 ordered state when Dyaloshinski-
Moryia interactions are included, are two major illustrations
of the effect of perturbations [39,43,67]. Nevertheless, some
compounds maintain a spin-liquid behavior (often coexisting
with spin freezing) down to the lowest temperatures, which
show qualitative similarities with our present numerical work
on the simple antiferromagnetic Heisenberg model.

As described in Secs. IV and V, fluctuations around
the ground-state manifold show a complex behavior which
changes when the magnetic system tends towards coplanarity.
In the liquid regime, spin relaxation is the result of incoherent
thermal fluctuations leading to an almost linear temperature
dependence of the relaxation rate. Such behavior was recently
observed by inelastic neutron scattering measurements in deu-
terium jarosite, an experimental realization of a kagome lattice
with spins S = 5/2 [68]. The static correlations of this system

are very well reproduced by Monte Carlo simulations [68],
so our classical approach could be fruitful to describe its
dynamical properties as well. Neutron measurements have
been performed from T = 14 to 240 K, which, considering
the effective coupling constant Jcl = JS2 = 244 K [68],
probes both the paramagnetic and liquid regimes (0.05 �
T/J � 1). The relaxation rates obtained experimentally and
numerically have the same order of magnitude and show
qualitative agreement over all the probed temperature range:
for instance, data collected at T = 240 K (15 K), giving
T/J = 0.82 (0.06), provide a relaxation time τJ � 3.2 (10.5),
while 1.1(3) [6.2(6)] is obtained from numerical results.
Interestingly, a linear dependence of the fluctuation rate is
also observed in the quantum spin-1/2 kagome compound
Cu(1,3-benzenedicarboxylate) by means of muon spin spec-
troscopy [69], with a relaxation time that is one order of
magnitude larger than predicted by the simulations. In this
compound, a saturation of the relaxation rate is observed at
lower temperatures. This could be due to the presence of
sizable quantum fluctuations which are not taken into account
in the present study.

When approaching coplanarity, a distribution of time scales,
extending over approximately one order of magnitude for a
given temperature (see for instance Fig. 7), is also observed
numerically. This distribution is induced by the entropic
selection that favors

√
3 × √

3 correlations and leads to a
longer lifetime for this type of spin configuration. Such a
time scale distribution has been observed experimentally in
the deuterium jarosite, for which a non-Lorentzian line shape
of the quasielastic intensity of the neutron scattering data was
observed at low temperatures [68].

Below the transition, the collective motion of the hexag-
onal loops mostly controls the spin relaxation in numerical
studies. One consequence is the apparition of a temperature-
independent second time scale that is associated with the
out-of-plane fluctuations of the hexagonal loops. Recent
experiments on gadolinium gallium garnet (GGG), a three-
dimensional generalization of the kagome lattice with Heisen-
berg spins, also reported the observation of distinct time
scales with very different temperature dependence. In this
system, the different time scales are associated with the
simultaneous development of short-range-order dimerization
dynamics, cooperative paramagnetism, static order, and finally
fluctuating “protected” spin clusters, so that the time-scale
distribution extends over several orders of magnitude [70–73].
Dynamic magnetization measurements also reported that the
protected spin cluster fluctuations are not thermally activated
and do not depend on temperature. They concluded that the
protected spin clusters are quantum dynamical objects [70].
Our results suggest that such a temperature-independent
behavior does not necessarily need quantum fluctuations and
may also be observed in classical systems. However, for a more
quantitative comparison, we should consider the real three-
dimensional crystal structure of GGG as well as the dipolar
interactions, which have the same order of magnitude as the
exchange and whose role in the dynamical properties is still
unclear.

More generally, time-scale distributions are a feature
of many frustrated compounds, often characterized by the
coexistence of a fast dynamics together with a nonconventional
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FIG. 12. (Color online) Powder-averaged scattering function in the octupolar regime. (a), (b) Static scattering functions at T/J = 0.015
and 0.0013 in Q space: the blue lines bound the BZ while the red ones correspond to wave-vector directions represented in panels (c),
(d). (c), (d) Scattering function at the same temperatures as function of energy and scattering vector for different directions in reciprocal
space. (e), (f) Powder-averaged dynamical scattering function versus energy and wave-vector modulus |Q|. (g), (h) Constant-energy cuts of
the powder-averaged scattering function versus wave-vector modulus |Q| for ω/J = 0 (red), 1 (blue), and 2 (green). Since the finite-energy
spectral weight is order of magnitudes weaker than the static one, the two latter energies have been multiplied by constant factors in order to
superimpose all the constant-energy cuts on the same plot.

glassy behavior. Unfortunately, the glassy behaviors cannot be
observed since the algorithm used for solving the dynamics
does not accurately describe long-time dynamics. Freezing
effects may however be studied using stochastic spin dynamics
method. Monte Carlo simulations applied to the q = 3 Potts
model for instance show the presence of a freezing time scale,
associated with the rearrangement of the clusters with a typical
length of a few tens of spins [30].

Finally, to complete this comparison, it is also necessary to
discuss the fastest spin dynamics ∝ J , associated with spin-
wave propagation. Finite energy excitation exists in the two
low-temperature correlated regimes [35], but their intensities
are weak compared to the quasistatic spectral weight. These
spin-wave-like excitations can be identified in the scatter-
ing function S(Q,t) as small-amplitude but high-frequency
modulations (of the order of ω � J ). However as shown in
Figs. 12(c) and 12(d) for two different directions in reciprocal
space [see Fig. 12(a)], spin-wave excitations have a clear
signature when we consider the scattering function S(Q,ω) in
the frequency domain. The detailed analysis of these excitation
along the high-symmetry direction a�—where there is no
quasistatic spectral weight—reveal that they are propagative in
both coplanar and cooperative regimes, although their lifetime
τSW < τ⊥ � τ‖ is strongly sensitive to the selection of the
coplanar ground-state manifold [35]. It is therefore intriguing
that no evident dispersive features have been detected so far
in liquid-like kagome compounds. In these systems, single
crystals are often not available because of technical growing

difficulties, so experiments are performed on powder samples.
The absence of dispersive excitation could then arise from
this powder averaging, which motivated us to calculate the
excitation spectrum for powder samples.

The powder-averaged intensity maps in (|Q|,ω) space are
shown in Fig. 12 in the cooperative (e) and coplanar (f)
regimes. It appears that the inelastic excitation spectrum is
mostly dispersionless in both regimes in spite of existing
propagative spin waves in the single-crystal scattering function
[Figs. 12(c) and 12(d)]. Indeed, the quasistatic fluctuations
(whose intensity is orders of magnitude larger than the
spin-wave spectral weight) overwhelm the excitation spectrum
and blur any significant dispersive feature. Then, propagative
effects may be very difficult to observe experimentally on
powder samples.

Constant energy cuts of the powder-averaged scattering
function, displayed in Figs. 12(g) and 12(h) for ω = 0 (red),
1 (blue), and 2 J (green), shows that an interval centered
around the energy ω/J = 2 should maximize the experimental
detection of a dispersive signal. Indeed, the Q dependence
of the scattering function further evolves while approaching
the top of the dispersion. At this energy (ω/J = 2), the
powder averaging gives rise to a slightly more intense flat
band in |Q|. Its intensity is smoothly structured with the
scattering vector, and gives broad maxima at different wave
vectors from the static scattering function [see Figs. 12(g)
and 12(h)]. These results can be compared to experimental
results recently obtained in volborthite, a S = 1/2 kagome
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compound which shows no signs of long-range order down
to 1.8 K in spite of an effective coupling of a few tens
of kelvins. Although its static correlations and excitation
spectrum probably originate from a more complex exchange
Hamiltonian [74,75] than the KHAFM, dispersive excitation
as well as a flat band at finite energy, likely resulting from
powder averaging, have been observed in inelastic neutron
scattering on powder samples [74].

VII. CONCLUSION

The antiferromagnetic Heisenberg model on the kagome
lattice is blessed with very rich dynamics in all temperature
regimes. Each regime is characterized by a different mecha-
nism of relaxation. At high temperature, the relaxation of the
paramagnetic state is purely diffusive.

When temperature reaches the cooperative regime, spins
are still disordered but algebraic spin correlations start to
develop. They are responsible for the exponential relaxation of
the magnetic states at short time scales with a relaxation time
in 1/T in agreement with previous studies. At long time scales,
spin diffusion remains but it is mediated by the dynamics of
spin clusters rather than single spins as in the paramagnetic
regime.

In the very low temperature regime, entropic selection
favors coplanar states and an anisotropic dynamics. Although
spin waves can propagate through the system, their contribu-
tion to the relaxation is negligible and limited to short times
scales compared to the weather-vane defects. They are however
very important for activating the weather-vane defects whose
dynamics dominates the intermediate time regime. A careful
analysis of the relaxation shows that it is anisotropic and
depends on the direction of the fluctuations. The characteristic
times have a different temperature dependence, the in-plane
component following a power law while the out-of-plane
component weakly depends on temperature.

A more detailed study of the weather-vane defect dynamics
is needed to understand the origin of the different temperature
dependence of the relaxation time observed in the lowest
temperature regime. Finally, it would be interesting to see
whether any of these dynamical phenomena can play a role
in cooperative electronic physics more broadly, e.g., in the
stabilization of exotic superconductivity [76].
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APPENDIX: DERIVATION OF THE DYNAMIC
STRUCTURE FACTOR FOR THE O(N) MODEL

We describe in this appendix the derivation of the different
expressions given in Sec. IV A. The starting point of all
calculations is the energy functional of the O(N ) model

βE = 1

2

∑
i

λs2
i + 1

2
βJ

∑
α

l2α, (A1)

where the index α represents the different triangles of the
kagome lattice and lα is the sum of the components of the
spins forming the triangles. Equation (A1) differs from Eq. (2)
by an additional term that is introduced to mimic the behaviors
of the Heisenberg spins whose Lagrange multiplier λ is fixed
by the condition 〈s2

i 〉 = 1/3. Equation (A1) can conveniently
be written as

βE = 1

2

∑
i

λs2
i + βJ

∑
i,j

si

(
A

adj
ij + 2δij

)
sj , (A2)

where A
adj
ij is the adjacent matrix of the kagome lattice. By

symmetry the adjacent matrix is diagonal in q space so it is
possible to express Eq. (A2) in term of the collective variables
si(q) = ∑

R sR,i exp[iq(·R + ri)], where the index i is the
sublattice index. The energy functional is then given by

βE = 1

2

∑
i

λs
†
i (q)si(q)

+ 1

2
βJ

∑
ij

s
†
i (q)

[
Aad

ij (q) + 2δij

]
sj (q). (A3)

Aad
ij (q) are the matrix elements of the Fourier transform of the

adjacency matrix Aad(q):

Aad(q) = 2

⎛
⎜⎜⎝

0 cos qx

4 cos qx+
√

3qy

4

cos qx

4 0 cos qx−
√

3qy

4

cos qx+
√

3qy

4
qx−

√
3qy

4 0

⎞
⎟⎟⎠ .

(A4)

Then the eigenvalues of Eq. (13) can be deduced from the
eigenvalues νl of Aad(q) associated with the eigenmodes s̃l(q).
We note that P (q) is the unitary operator that transforms the
operator (A4) in the diagonal form. We find after some algebra
that the eigenvalues of Aad(q) are given by

ν1 = −2, (A5)

ν2 = 1 −
√

3 + 2 cos qx + 4 cos
qx

2
cos

qy

√
3

2
, (A6)

ν3 = 1 +
√

3 + 2 cos qx + 4 cos
qx

2
cos

qy

√
3

2
. (A7)

As explained in the main text, we describe the spin
dynamics with a Langevin equation given by Eq. (13). The
equation of motion of the collective variables si(q) can be
deduced by direct calculation of the Fourier transform of
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Eq. (13). We find that

dsi(q)

dt
= �([Aad(q) − z][T λ + J (Aad(q) + 2)][s(q)])i

+ ξi(q,t), (A8)

where ξi(q,t) = ∑
ξi,r (t) exp(iq · r) is the Fourier transform

of the white noise term ξi(t) and [s(q)] is the vector formed
by the collective variables si(q). All indexes in Eq. (A5) refer
to the sublattice index of the kagome net. After expressing
Eq. (A8) in the diagonal basis we find that

ds̃i(q)

dt
= �(νi(q) − z)[T λ + J (νi(q) + 2)]s̃(q)

+
∑

j

P †(q)ij ξj (q,t), (A9)

where Pαβ(q) are the matrix elements of the operator P (q).
The solutions of Eq. (A9) are given by

s̃α(q) = s̃0
α(q) exp

[
− t

τα

]
(A10)

+
∫ t

0
P

†
iα(q)ξi(q,t ′) exp

[
t ′ − t

τα

]
dt ′ (A11)

with

τ−1
α = −�(να − z)[T λ + J (να + 2)]. (A12)

Using Eq. (A10), we find that the spin correlation functions
are given by

〈s̃α(q,t)|s̃β(q,0)〉 = δαβT

T λ + J (να + 2)
exp

[
− t

τα

]
, (A13)

which combined with Eq. (4) gives rise to

S(q,t) =
∑

α

gα(q)〈s̃α(q,t)|s̃α(q,0)〉 (A14)

and

gα(q) =
∑
ij

Piα(q)Pjα(q). (A15)

Using〈
s2
i

〉 = 1

3N

∑
qα

1

λ + βεα(q)
≈ 1

3λ
+ O(T ), (A16)

we find that λ = 1 + O(T ) with 〈s2
i 〉 = 1/3 at low

temperature.
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