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We study many-body-localized (MBL) systems that are weakly coupled to thermalizing environments, focusing
on the spectral functions of local operators. These spectral functions carry signatures of localization even away
from the limit of perfectly isolated systems. We find that, in the limit of vanishing coupling to a bath, MBL systems
come in two varieties, with either discrete or continuous local spectra. Both varieties of MBL systems exhibit
a “soft gap” at zero frequency in the spatially averaged spectral functions of local operators, which serves as a
diagnostic for localization. We estimate the degree to which coupling to a bath broadens these spectral features,
and we find that some characteristics of incipient localization survive as long as the system-bath coupling is
much weaker than the characteristic energy scales of the system. We discuss the crossover to localization that
occurs as the coupling to the external bath is tuned to zero. Since perfect isolation is impossible, we expect the
ideas discussed in this paper to be relevant for experiments on many-body localization.
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I. INTRODUCTION

Closed quantum many-body systems with quenched ran-
domness can display localization [1], a phenomenon whereby
the system fails to act as its own heat bath and does
not approach thermodynamic equilibrium. The existence of
localization in weakly interacting systems has been established
to all orders in perturbation theory [2-5]. Numerical studies
[6-9] suggest that such “many-body localization” (MBL) can
occur even in strongly interacting systems at high-energy
densities, and, indeed, that all the many-body eigenstates of
a system can exhibit MBL. MBL was also shown [10-17] to
have many surprising consequences, such as the possibility of
symmetry breaking and/or topological order even when such
order is forbidden in thermal equilibrium.

Most of the existing literature on MBL assumes the
system of interest is perfectly isolated from its environment,
because the sharp distinction between the MBL and thermal
phases only exists in this limit. In any realistic experiment,
however, some degree of coupling to an external environment
is inevitable. Thus, in order to interpret experiments studying
MBL [18-21], it is imperative to know which features of MBL
survive, and in what form, in such imperfectly isolated settings.

In this paper, we note that the spectral functions of local
operators retain signatures of many-body localization even
in the presence of a weak system-bath coupling. Such local
spectral functions govern transport in an almost MBL system,
as well its properties as a quantum memory. We study the
properties of such spectral functions in the regime [called the
“fully many-body-localized” (FMBL) regime] in which every
many-body eigenstate of our isolated system is localized. We
first discuss the spectral functions in the limit of vanishing
system-bath coupling, assuming that the thermodynamic limit
is taken before the limit of perfect isolation. We find that
FMBL systems then fall into two categories, depending on
whether the local spectrum at a specific site in a specific
sample is continuous or discrete; we term these cases weak
and strong MBL, respectively. The spatially averaged spectra

1098-0121/2014/90(6)/064203(6)

064203-1

PACS number(s): 71.23.An, 03.65.Yz, 05.30.—d, 71.55.Jv

do not show this distinction; however, they universally exhibita
“soft gap” at zero frequency that is a diagnostic of localization.
We estimate how far these effects are smeared out by a weak
system-bath coupling, and we argue that manifestations of
these effects persist in the spectral functions so long as the
system-bath coupling is weaker than the intrinsic energy scales
of the system, such that the thermalization time scale is not
the shortest time scale in the problem. We also discuss the
crossover to localization that occurs as the coupling to the
bath is tuned to zero.

II. MODEL

It is expected [22-25] that the Hamiltonian of an isolated
FMBL system can be written in terms of localized constants
of motion (“I-bits” [22]) as follows:
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Here, the {S;} are the Pauli operators of N localized two-level
systems that are “dressed” versions of the local degrees
of freedom (“p-bits” [22]; for specificity we assume these
p-bits are also two-level systems). The {S;} commute with
one another and with Hy, so the eigenstates of Hj are
simultaneously also eigenstates of all the {S;}. The local fields

h; and the interactions U; j’Ki(?k)} ; are static random variables.
The interactions fall off exponentially with distance, both
in their typical values and also in the probability of having
a strong interaction. The S/ are related to the p-bits by a
system-specific local unitary transformation whose “kernel”
also falls off exponentially with distance [11,22,24]. We define
h to be the typical energy change associated with flipping a
single 1-bit.

We also define the effective two-spin interaction U;;
between two I-bits i and j for each given many-body eigenstate
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of Hy. We define this effective interaction, following [22], as

Uj=Uy+ Y K Si St Si )
n,{k}

We define a decay length & for the effective interaction by
the exponential decay with distance of the typical magnitude
of IU,-‘,'I ~ exp (—|r; —r;|/&). Note that we do not call this &
the localization length, since near the many-body localization
phase transition it might differ strongly from the length scale
of the localization of an I-bit when it is written in terms of the
bare p-bits.

The effective interaction between two 1-bits a distance r
apart in a one-dimensional system is the sum of ~2" terms in
the sum in Eq. (2). If these terms are each of random sign, then
a typical value of a single term is ~27"/2 exp (—r/£). In higher
dimensions, the terms that dominate the sum in (2) will have the
1-bits {k} all near the straight line segment between sites i and j.
In any dimension, the decay length of the effective interaction &
is in general longer than the decay length of an individual term
on the right-hand side of (2) [22]. An exception is the limit of
weak interactions between localized fermions, as considered
in Ref. [4]. There the two-particle Hartree interaction Uj; is
the dominant contribution to the effective interaction U; 5 both
Uij and U; ; fall off with the same &, which is set by the single-
particle localization length and can thus be of any magnitude.
The effective 1-bit interaction decay length & is the length
scale that will be most relevant for the present work. It should
be possible to measure £ using the “double electron-electron
resonance” technique that is presented in Ref. [26].

We take the bath to consist of interacting bosons (e.g.,
anharmonic phonons) hopping on the same lattice as the 1-bits
[27].

One possible generic form for the bath Hamiltonian is

Hyo =1 ) blbj+ A (blblby +He). (3
(i) (ijk)

We assume that the bandwidth of the bath ¢ is much larger
than the characteristic energy scales in the system, so that the
bath can locally supply enough energy for any local process in
the system. In this “broad bandwidth bath” limit, the energy
diffusivity of the bath will be high, such that the bath behaves
in an effectively Markovian fashion on the time scales of
interest. The case of a narrow-bandwidth bath is discussed
in Ref. [28]. To ensure that this bath remains well-behaved
when we consider an infinite temperature, we impose the
(artificial) constraint of no more than some small number
(say, two) bosons at any site. However, we emphasize that
our results do not depend qualitatively on the nature of the
bath, beyond the assumption that it thermalizes itself and has
a local bandwidth of order #. Any nonintegrable quantum sys-
tem obeying the eigenstate thermalization hypothesis (ETH)
[29-31] can function as the bath.

The system-bath coupling should be local in the space of
p-bits, which implies that it is also local in the space of 1-bits.
Here we take the simplest fully local coupling, which has the
form

Hiw =gy S} (b} +by). )
(ij)
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More generally there should be longer-range and higher-order
couplings that fall off exponentially with distance; including
these would not qualitatively change our results.

For a thermodynamically large bath, any nonzero coupling
g should suffice to bring the system to thermal equilibrium,
in the sense that the new eigenenergies of the coupled
system+-bath will obey RMT level statistics and the new eigen-
states will obey ETH. More generally, when both the system
and bath are finite-sized, the crossover to thermalization occurs
when g ~ /18, where § is the many-body level spacing of the
bath. This follows because each local system-bath coupling
term couples to ~7/§ other states in the bath, so that the matrix
element is typically ~g./8/t. Thermalization will occur when
the matrix element becomes of order the many-body level
spacing § of the bath.

III. SPECTRAL FEATURES IN THE LIMIT g — 0

We now imagine starting from the coupled system and bath,
and slowly taking the limit g — O so the system remains at
equilibrium with the bath. For specificity, we now consider the
spectral function for “flipping” 1-bit j:

oo
Aj@)=Im [ die®Tr[pS;e 5T
0

o0
+1Im / dt e Tr[pSTe 'S eM],  (5)
0

where p is the probability density operator and H is the
full Hamiltonian of the system interacting with the bath,
@ = w + 10, the spectral function is measured in thermal
equilibrium at a specific site j for a specific disorder realiza-
tion, and we use units where i = kg = 1. The generalization
to spectral functions of other local operators is in principle
straightforward.

The qualitative behavior of the spectral function depends
on the temperature. At 7 =0 and ¢ =0, A;(w) is simply
a single § function, corresponding to flipping 1-bit j up to
its excited state. At nonzero temperature but still g =0,
each eigenstate of Hj that has appreciable Boltzmann weight
contributes a §-function peak, and each such peak is at a
different frequency (as it depends on the states of all the other
1-bits); a natural question to ask is whether A ;(w), for a specific
site j and a specific realization of the quenched disorder,
is discrete or continuous for an infinite system in the limit
g— 0.

A. One dimension

In one dimension, whether the local spectrum is asymp-
totically discrete or continuous depends on the decay length
&, which controls how rapidly the effective interaction
Uij ~ Uyexp(—|i — j|/&) falls off with distance in a typical
eigenstate. One can see this as follows (assuming for now that
T — 00): consider A;(w) for a single 1-bit spin i in the middle
of an infinite chain. When U, = 0, this contains two § functions
at w = *h;. Including nearest-neighbor interactions causes
these to each split into four § functions with typical splittings
~Uyexp(—1/&). Including second-neighbor interactions
causes each of those § functions to split on a smaller energy
scale into another four § functions, etc. By including these
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FIG. 1. (Color online) Spectral structure at a site i in the weak
[panel (a)] and strong [panel (b)] regimes of many-body localization,
at infinite temperature. Each configuration of the other spins in the
system gives rise to a pair of spectral lines; the resulting spectral
structure can be visualized as a tree. At the nth level of the tree, we
have accounted for the influence on site i of all sites out to distance
n. The “true” branching ratio of this tree is more than 2; however, we
have drawn the tree with a branching ratio of 2 to avoid clutter. (c) A
system in the weak MBL regime in one dimension (left) has no sharp
features in the spectral function, whereas a system in the strong MBL
regime (right) has sharp features at all energy scales. Thus, looking
for sharp features at multiple energy scales provides a diagnostic for
“strongness” and “weakness,” which survives even away from the
limit of perfect isolation. In higher dimensions, the spectral function
has sharp features on energy scales greater than E..

w—>

Tl

splittings one by one from strongest to weakest, we build up
a “spectral tree” (Fig. 1) [12]. In general, after taking into
account interactions with the 2n other 1-bits within a distance
n of site i, the original § functions have each split into 22" §
functions which are spread over a frequency range that remains
finite at large n. Thus the average gap between § functions
scales as ~Uj exp(—n In4).

Meanwhile, the typical splitting coming from the effective
interaction with the spins at a distance n is ~Uyexp(—n/&).
For & < 1/In4, this is much smaller at large n than the
average gap, so opening these gaps causes very few crossings
of the “branches” of the spectral tree. The union of all the
new gaps produced due to interactions at large distance n
occupies a vanishing fraction of the spectrum. Thus the gaps
opened at any large n do not fill in with spectral weight as
n is subsequently increased to infinity, and the full n — oo
spectrum is discrete, with an infinite number of gaps. This
can be seen (Fig. 1) to lead to an asymptotically pointlike,
statistically self-similar spectrum with a fine structure similar
to a Cantor set. We call this the regime of strong MBL. For
& > 1/1n4, on the other hand, the new gaps that are opened at
any large n generally overlap strongly, causing many crossings
of the branches of the spectral tree, and allowing the many
8 functions produced for n — oo to densely fill in almost all
gaps. We call this regime weak MBL. Note that although local
spectra in the weak MBL regime resemble those of a diffusive
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system in being continuous, they are not the same: in particular,
as discussed below, they exhibit a soft gap as w — O.

At any finite temperature 7, the Boltzmann distribution
is dominated by a subset of all eigenstates, with entropy
per spin s(T) < In2. The effective interaction for a typical
thermally occupied eigenstate will have a decay length &£(T')
that generally depends on 7. Thus, after taking into account
the interactions with all 2n spins within a distance n of site
i, the original spectral lines split into ~exp[2ns(T)] spectral
lines. Comparing this to the typical splitting Uy exp[—n/&(T)]
coming from interactions with the spins at distance n leads
us to conclude that for a one-dimensional MBL system, the
weak-to-strong transition occurs at

2s(THE(T) = 1. 6)

The entropy interpolates between s(7 — 0)=0 and
s(T — oo) = In2 per spin, and the decay length is measured
in units where the one-dimensional density of spins is unity.
For the local spectral function of an 1-bit near the end of a
semi-infinite chain, the weak-to-strong transition is instead
at s(T)&(T) = 1. We note that the distinction between weak
and strong MBL is a purely spectral distinction, and is not
associated with any differences in the properties of individual
eigenstates.

B. Higher dimensions

In higher dimensions d > 1, only the “weak MBL” regime
can be realized. We show this as follows: use units where
the density of 1-bits is unity. After interactions with all 1-bits
within a distance r have been taken into account, the spectrum
has ~exp[Ar¢s(T)] & functions, where A is the volume of
a d-dimensional unit sphere. Thus, the average gap scales
as ~U exp[—Ards(T)]. At large r, this is much smaller
than the effective interactions ~Ugexp[—r/&E(T)] for any
nonzero entropy density s(7°) > 0. Thus only weak MBL
can be realized in d > 1. For s(T)£(T) > 1, the spectral
tree has branch crossings immediately and no gaps [except
maybe one gap if & 3> U exp (—1/&)]. In the opposite limit
s(T)E(T) < 1, the gaps opened due to 1-bits at distance r < r,
mostly remain open, while beyond r., the branches of the
spectral tree strongly cross so few additional gaps remain open,

with
1 1/d-1)
Fe ~ | =m—as . @)
<§(T)S(T)>

The local spectrum of a weak MBL system will display a
finite hierarchy of gaps, with the smallest gap being of order
E. ~ Uyexp(—r./§). As& — 0,E. — 0.

The distinction between weak and strong MBL is only sharp
in the thermodynamic limit. For a specific finite-size system,
the local spectrum is necessarily discrete. The number of gaps
that are much wider than the typical many-body level spacing
will increase without limit with system size in the strong MBL
regime, but will reach a finite limit in the weak MBL regime.

C. Spatially averaged spectral functions

Thus far we have discussed spectral functions evaluated
at a single site. Such strictly local spectral functions could
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be probed using, e.g., spatially focused laser spectroscopy.
However, other possible measurements, e.g., ac conductivity,
probe spatially averaged spectral functions. Local spectral
functions at different sites of this random system will have
gaps at different frequencies. After averaging over spatial
position in a thermodynamically large sample, there will in
general be no gaps in the (averaged) spectral functions; thus,
macroscopic spatial averaging erases the distinction between
weak and strong MBL.

However, spatially averaged spectral functions of local
operators still carry a universal signature of localization, viz.
a soft gap as w — 0. This soft gap is a consequence of
energy-level repulsion in the underlying physical Hamiltonian:
it arises because two many-body eigenstates connected by a
local operator (e.g., a spin flip) generically mix. Due to this,
the probability that an operator which is local in real space
produces a transition with energy w is suppressed as w — 0,
vanishing as P(w) ~ »”. There are two regimes of behavior.
Deep in the MBL phase, the dominant resonant processes at
low o involve only a small number of nearby 1-bits, and the
exponent S is set by the symmetry class from random matrix
theory (e.g., B = 1 for the orthogonal ensemble). Closer to the
transition to the thermal phase, rare large “Griffiths” regions
that are locally conducting give a smaller 8, which is then a
Griffiths exponent [32,33]. In both cases, there is generically
a “soft” spectral gap at zero frequency for any few-particle
operator that is local in real space, in the sense that the spectral
weight at low frequencies vanishes as wf [34].

While systems with thermal many-body eigenstates also
display energy-level repulsion, this only occurs on the scale of
the many-body level spacing, which is exponentially small in
the system’s volume, so the scale of this “soft gap” vanishes
in the thermodynamic limit. For localized systems, on the other
hand, the soft spectral gap width A remains nonzero even in
the thermodynamic limit. Intuitively, this reflects the fact that
physical properties of localized systems are largely insensitive
to the addition of distant degrees of freedom. We emphasize
again that the soft gap is a property of spatially averaged
spectral functions.

IV. FINITE-g CROSSOVERS

So far, we have considered the g — 0 limit, in which each
spectral function consists of a set of §-function spikes. When
g > 0, each spike is broadened into a Lorentzian with width
I'(g) (estimated below). The distinction between strong and
weak MBL is no longer sharp, as gaps on scales < I'(g) in
the strong MBL phase are smeared out by the line-broadening.
However, gaps on scales > I'(g) are filled in only weakly,
and thus remain distinguishable. Provided that I'(g) <« U,
the weak and strong MBL regimes have qualitatively different
spectra, with the number of weakly-filled-in gaps increasing
sharply as one crosses from one regime to the other [Fig. 1(c)].
Similarly, although the spatially averaged spectral weight no
longer strictly vanishes as w — 0, it is strongly depleted, and
it should follow a power-law ~w” in the frequency range
I'(g) < w < A. Thus, local spectra retain signatures of MBL
physics even away from the limit of perfect isolation, unlike
some other properties of the MBL phase such as the failure of
the eigenstate thermalization hypothesis.
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A. Estimating the line broadening

We now estimate I'(g). We begin by considering a nonin-
teracting localized system, described by an 1-bit Hamiltonian
that contains only the first term in (1). In this case, the
only processes contributing to the linewidth of 1-bit i are
those that flip it; from the Golden Rule, one can estimate
the rate of this process as I'j(g) ~ g?/t. We now turn to
the many-body localized case: here, there are additional
contributions to the linewidth because the flipping of 1-bits near
i causes the effective field hf’“ =h; + Zj Ui; S; +--- acting
on I-bit i to change. Let us first consider a finite-sized system,
which contains N I-bits. At thermal equilibrium at small
g, this system has "N thermally populated many-body
eigenstates, where s(7") is the entropy per 1-bit. We assume the
system is large enough so that s(T)N > 1. At g = 0, the local
spectral function of I-bit j thus contains ~el*™N1 § functions
of significant intensity. At small g, each of these many-body
states has a “decay” rate I',,,(g) ~ Ns(T)g?/t, since any of the
1-bits can flip, but at low T many I-bits are in their ground state
and have a Boltzmann-suppressed probability of flipping up to
a high-energy state. Thus the typical spectral line is broadened
into a Lorentzian with this width, provided that g and N are
small enough so that all of the 1-bits in the system interact with
each other more strongly than they interact with the bath.

We now proceed to the thermodynamic limit. The interac-
tion between I-bits falls off as Uy exp(—R/&), where R is the
separation between l-bits. For sufficiently large separations
R 2 R, this interaction energy scale becomes smaller than
the linewidth, such that interactions at the scale R, cannot be
resolved within the linewidth T, (g). 1-bits at distances > R,
should then be treated as part of the bath. One can estimate R,
as follows:

Ti(g) ~ Upexp(—R./) ~ s(T)R{g*/1. ®)
This self-consistently yields the typical linewidth
2
8 di.d tUy
Ln(g) ~ =—=s(T)E In" | ————— . 9
(8) ~ S-s(T)"In (gzs(r)gd> )

which parametrically exceeds I'j(g) at small g. The full
linewidth is I'(g) =~ max{I"|(g),[',(g)}: at low temperatures,
all the nearby 1-bits are thermally frozen, but I-bit i can still
decay if excited, and thus the linewidth saturates to ~g2/¢ in
the zero-temperature limit.

B. Crossover to localization as g — 0

We now discuss the crossover to localization that occurs
as we take g — 0. At g = 0, the local spectra can exhibit a
hierarchy of gaps, as we discuss above. At large g, these gaps
are all filled in by the line broadening, such that the local
spectra exhibit no signatures of MBL. Additionally, the dc
conductivity is nonzero at any nonzero g. However, as we take
g — 0, the line broadening I" vanishes, such that many of the
gaps in the g = 0 spectrum are only weakly filled in. In this
regime, the local spectra can exhibit a hierarchy of (weakly
filled in) gaps, which is diagnostic of the proximity to MBL.
This “spectral signature” of MBL persists as long as the line
broadening I'(g) is less than the largest energy scale on which
the g = 0 spectrum has gaps. If we examine instead spatially
averaged spectra, then the key signature of proximity to MBL is
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the (weakly filled in) soft gap at zero frequency, which is visible
as long as I'(g) is smaller than the width A of this soft gap.

The preceding discussion has important consequences for
the system’s lifetime as a quantum memory. The “rounding”
of spectral features due to averaging over eigenstates encodes
the dephasing rate—the rate at which the in-plane components
of the spin S; become uncertain due to interactions between
I-bits. This dephasing can in principle be reversed by spin-
echo procedures. However, coupling to a bath (nonzero g)
introduces dissipation, which leads to an irrecoverable loss
of information. The rate at which “classical” information
(encoded in the S7) is lost is g?/t. Meanwhile, the decay rate
of the spin echo is given by the line broadening I'(g), which
can be parametrically larger than the decay rate of classical
information [35].

We note that spin-echo measurements may be difficult to
perform, particularly in the strongly interacting regime when
1-bits have small overlap with the “bare” p-bit operators. It
is thus also interesting to consider the system properties as
a quantum memory in the absence of spin echo. We assume
that even though spin echo is inaccessible, it is possible to
write and read information, using some operator O (which
may act on multiple 1-bits). If the local spectrum of this
operator O consists of well-separated features with only
weak “rounding” due to thermal averaging (or nonzero g),
then the autocorrelation functions (O(O)O(r)) will consist of
underdamped oscillations, which decay on a time scale set
by the rounding. In this regime, the system can serve as a
quantum memory (up to a damping time scale set by the
spectral rounding) even if spin echo is unavailable.

V. FROM I-BITS TO p-BITS

Thus far we have restricted ourselves to studying spectral
functions of 1-bits. We can extend our conclusions to the bare
degrees of freedom (“p-bits”’) by noting that each p-bit has
appreciable overlap with only a small number of I-bits. Thus,
the spectral functions of the p-bits are qualitatively the same
as those of the 1-bits. In particular, in the limit of small &,
each p-bit overlaps with relatively few 1-bits, and therefore the
characteristically spiky spectra of, e.g., the strong MBL regime
should be detectable in real experiments. Moreover, the “soft
gap” at zero frequency should be present even in the spectra
of p-bit operators, since the origin of this soft gap is level
repulsion of p-bit states. We note that exact diagonalization
on small systems coupled to small baths [36] indicates that
the spectral functions of p-bits are indeed sharply different in
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the localized and delocalized phases, and that the differences
persist even at couplings g where the eigenstates are effectively
thermal.

We note that studying spectral functions should be instruc-
tive even for systems with a many-body mobility edge, when
the 1-bit construction appears to fail. At energy densities well
on the localized side of the many-body mobility edge (which
occurs at an extensive energy), we expect the phenomenology
of such a MBL system weakly coupled to a heat bath to be
analogous to the phenomenology of FMBL systems weakly
coupled to a heat bath, which we have discussed in this paper.
The behavior at temperatures near a many-body mobility edge
remains an open question.

VI. CONCLUSIONS

We have shown that spectral functions of local operators
provide a perspective on many-body localization that remains
useful even away from the (experimentally unrealizable) limit
of perfectly isolated systems. In the limit of vanishing system-
bath coupling, the behavior of local spectral functions can be
used to categorize MBL states into two kinds, viz. “weak”
MBL states with continuous spectra and “strong” MBL states
with discrete local spectra with a hierarchy of gaps. Also, we
have pointed out that the spatially averaged spectral functions
generically contain a “soft gap” at zero frequency, which is a
universal diagnostic of localization.

Moving away from the limit of perfect isolation, we find
that a noninfinitesimal coupling to a bath produces a line
broadening I'(g), which erases all structure in the spectral
functions on scales less than I'(g). We have calculated the line
broadening I'(g), identifying a nonanalytic log correction that
lies beyond perturbation theory, the consequences of which
have been recently explored in [28]. We have discussed the
crossover to localization that occurs as we tune g — 0, and
we have argued that this behavior should manifest itself not
just in spectral functions of 1-bits, but also in spectral functions
of p-bits.
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