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Essential to understanding the cuprate pseudogap phase is a study of the charge (and spin) response functions,
which we address here via a consistent approach to the Fermi arcs and the Fermi pockets scenario of Yang, Rice,
and Zhang (YRZ). The two schemes are demonstrated to be formally similar, and to share a common physics
platform; we use this consolidation to address the inclusion of vertex corrections which have been omitted in
YRZ applications. We show vertex corrections can be easily implemented in a fashion analytically consistent
with sum rules and that they yield important contributions to most observables. A study of the charge ordering
susceptibility of the YRZ scenario makes their simple physics evident: They represent the inclusion of charged
bosonic, spin singlet degrees of freedom, and are found to lead to a double peak structure.
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The discovery of the high temperature superconductors has
led to the development of extensions (as well as replacements)
for BCS theory in which strong correlations or self-energy
effects are present simultaneously with the underlying pairing
interactions which drive superconductivity. These self-energy
contributions are associated with the anomalous pseudogap
behavior which sets in above Tc and which may persist as well
below the transition. A proper treatment of highly correlated
normal and superconducting states introduces consistency
constraints (vertex corrections, Ward identities, and sum rules).
This was central in the long history of BCS theory, where
these constraints led to an understanding of new types of
“particles” or excitations such as the Higgs boson and its
related mechanism.

In the high-Tc cuprates, characterizing the spin and charge
response has been essential for clarifying whether the pseudo-
gap is associated with pairing or with an alternative ordering,
although there is as yet no unanimity [1,2]. A growing enthu-
siasm is emerging for one particular pairing-based approach
to the pseudogap developed by Yang, Rice, and Zhang (YRZ)
[3], which suggests the possibility of charge ordering in the
presence of pairing [4]. Accompanying this interest has been
a fairly universal neglect of vertex corrections [4,5] in the
calculated response functions. This omission is not a formal
technicality. At a minimum such corrections are essential in
order to ensure that the normal phase is not associated with an
unphysical Meissner effect.

This leads to the goal of the present paper, which is to
present a calculation of self-consistent response functions
for the YRZ theory of Fermi pockets [3] along with an
alternative approach involving Fermi arcs [2,6,7]. We show
here that these two approaches to the pseudogap are in
fact closely related, sharing common physical features and
allowing nearly identical calculations of vertex corrections.
We also show that these vertex corrections are consistent with
sum rule constraints. Finally, we demonstrate that introducing
self-consistency leads to (hitherto ignored [4,5]) contributions
to the spin and charge response, which are of sizable magnitude
and can be physically understood.

The consolidation that we present between Fermi arcs
and pockets is possible because both theories contain pairs

which are present in the pseudogap phase. These pairs, with
their bosonic character, lead to similar vertex corrections in
both theories. Formally, these pseudogap pairs arise from
the semimicroscopic self-energies posited by the theories
[2,3], which contain both superconducting (sc) and pseudogap
(pg) components: � = �sc + �pg. The form of �pg is rather
similar to the BCS-like self-energy of the condensate but in
the pockets case this term leads to a reconstructed Fermi
surface (“pockets”) and in the arcs case to a blurring of
the d-wave nodes (“arcs”). This two-gap form of � ensures
that the pseudogap correlations persist below Tc, but are
distinct from condensation. It should not be confused with
(one-gap) phase fluctuation models, where it is presumed that
the pseudogap turns into a condensate gap at the transition.
We show here how to impose consistency for both two-gap
approaches by addressing the f -sum rule on the charge
density response (above Tc) and the transverse sum rule on
the current density response at all T . In this way vertex
corrections emerge naturally and can be readily incorporated
into the Fermi pockets approach of YRZ. (They have been
included in the formally related Fermi arcs approach in
Refs. [6,8].)

For the pockets model of YRZ the microscopic picture
for the pg contribution is that it is associated with resonating
pairs of spin singlets [9,10] which, when holes are injected,
become charged. In the Fermi arcs model, where we consider
a two-gap rendition [2] (which introduces both sc and pg gaps
�sc and �pg, as in YRZ), the pg correlations represent finite
momentum, out of the condensate excitations; they reflect a
stronger-than-BCS attractive interaction. This scenario for a
pseudogap is realized in the laboratory of ultracold Fermi gases
[2] and associated with BCS-BEC crossover. The excited pairs
are gradually converted to condensed pairs as the temperature
is lowered below Tc. Here �2

pg is effectively zero at temperature
T = 0 and reaches a maximum at Tc; in this way the square of
the excitation gap �2 = �2

sc + �2
pg is relatively constant below

Tc. Just as in the YRZ pockets model, this Fermi arcs model has
addressed thermodynamics [7], Nernst [11], the penetration
depth [6,12], quasiparticle interference in scanning tunneling
microscopy (STM) [13,14] as well as the ac and dc conduc-
tivities [15–17] and diamagnetism [18]. Perhaps its greatest
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success is that it naturally leads to a nodal-antinodal dichotomy
[19]. This refers to the collapse of the arcs as temperature
approaches Tc from above; as T approaches Tc from below
the nodal angle-resolved photoemission spectroscopy gap has
a T dependence which reflects that of the order parameter,
�sc, while the antinodal gap is very little affected by the
transition.

Theory and response functions. We introduce the Green’s
function (and neglect for simplicity the incoherent contribu-
tions)

GK = 1

ω − ξk − �2
pg

ω+ξ
pg
k

− �2
sc

ω+ξk+�R (k,−ω)

, (1)

where K = (ω,k). Here for the arcs and pockets models,
respectively,

ξ
pg
k = ξk + iγ and �R(k,ω) ≡ 0,

(2)

ξ
pg
k = ξ 0

k and �R(k,ω) = �2
pg

ω + ξ
pg
k

,

where the dispersion ξ
(0)
k is introduced in Ref. [3]. There

are two different assumed forms [20] for the sc piece in the
YRZ approach, and here we take the original one [3], rather
than introduce corrections associated with phenomenological
adjustments. Similarly we stress that for the arcs model we can
minimize phenomenological input and simply take the central
free parameter γ as independent of temperature. The role of
γ , which has a microscopic basis [21], is critical; it leads to
a smearing of the d-wave node and thus to the Fermi arcs
[19,22–24].

The pseudogap and superconducting self-energy in both
schemes are given by

�pg(K) = −�2
pgG

pg
0 (−K) = �2

pg
1

ω + ξ
pg
k

,

�sc(K) = −�2
scG

sc
0 (−K) = �2

sc
1

ω + ξk + �R(k, − ω)
,

which defines G
pg
0 and Gsc

0 . Because ξ
pg
k �= ξk, the YRZ

scheme arrives at a many-body reconstructed band structure.
Moreover, we see from G in both the arcs and pockets models
that the form of �pg is not very different from that of �sc,
yet their effects on the physics of the generalized response
functions have to be profoundly different. We enforce this
difference by ensuring that there can be no Meissner effect
in the normal phase, and this requires the inclusion of vertex
corrections in the current-current response function which we

write as
↔
P . It will be convenient to introduce a parameter

�sc ≡ 1 for the pockets case and �sc ≡ 0 for the arcs scenario.
We also define

Fpg,K ≡ −�pgG
pg
0 (−K)GK,

(3)
Fsc,K ≡ −�scG

sc
0 (−K)GK.

The quantity Fpg (unlike Fsc) is not to be associated with
superfluidity. It is not in the notation “F ” that superfluidity
enters, it is in the way in which the current-current correlator
is constructed, as we show below.

Next, we obtain an expression for the diamagnetic
current contribution ( n

m
)dia ≡ 2

∑
K

∂2ξk
∂k∂kG(K). For notational

simplicity we drop terms which involve the k derivative of the
d-wave form factor throughout. These effects can be readily
inserted, but are seen to be negligible in magnitude. We find
that the diamagnetic current can be rewritten via integration
by parts, using ∂G(K)/∂k = −G2(K)∂G−1(K)/∂k so that(

n

m

)
dia

= −2
∑
K

G2
K

∂ξk

∂k
∂ξk

∂k
+ 2

∑
K

F 2
pg,K

∂ξ
pg
k

∂k
∂ξk

∂k

+ 2
∑
K

F 2
sc,K

{
∂ξk

∂k
∂ξk

∂k

−�sc ∂ξ
pg
k

∂k
∂ξk

∂k
�2

pg

[
G

pg
0 (K)

]2
}
. (4)

Given the parametrized self-energies introduced above, in this
exact expression, central to this paper, the second and fourth
terms on the right-hand side provide a template for the form of
the ignored vertex corrections in the response functions. That
there is no Meissner effect above Tc implies that the current-
current correlation function at zero wave vector and frequency,
↔
P (0) = −( n

m
)dia. Below Tc in the YRZ scheme we make use

of the superconducting Ward identity [25] (see Supplemental
Material [26]) to establish that the prefactor of F 2

sc of Eq. (4)

enters into −↔
P (0) with the opposite sign compared to the

diamagnetic current. Once we know the form for
↔
P (0) we can

make an ansatz for the form of
↔
P (Q) (compatible with BCS

theory when �pg ≡ 0). While there is no unique inference for
↔
P (Q) away from Q = 0, we depend on the explicit satisfaction
of the transverse and f -sum rules to support our ansatz. Our

precise form for
↔
P (0) and our ansatz for

↔
P (Q) are given by

− ↔
P (0) = −2

∑
K

G2
K

∂ξk

∂k
∂ξk

∂k
+ 2

∑
K

F 2
pg,K

∂ξ
pg
k

∂k
∂ξk

∂k

− 2
∑
K

F 2
sc,K

{
∂ξk

∂k
∂ξk

∂k

−�sc ∂ξ
pg
k

∂k
∂ξk

∂k
�2

pg

[
G

pg
0 (K)

]2
}
, (5)

↔
P (Q) = 2

∑
K

∂ξk+q/2

∂k
∂ξk+q/2

∂k
GKGK+Q

− 2
∑
K

∂ξ
pg
k+q/2

∂k
∂ξk+q/2

∂k
Fpg,KFpg,K+Q

+ 2
∑
K

Fsc,KFsc,K+Q

[
∂ξk+q/2

∂k
∂ξk+q/2

∂k

−�sc
∂ξ

pg
k+q/2

∂k
∂ξk+q/2

∂k
�2

pgG
pg
0 (K)Gpg

0 (K + Q)

]
,

(6)

where we only consider the transverse response Pt below Tc

[the longitudinal part of
↔
P (Q) is correct in the normal phase,

but requires collective mode corrections for T < Tc].
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The quantities
↔
P (0) and (

↔
n
m

)dia are, however, all that is
needed to deduce an expression for the superfluid density ns

m
≡

( n
m

)dia − Pt (0) in both the arcs and pockets model,

ns

m
= 4

∑
K

F 2
sc,K

{
∂ξk

∂k
∂ξk

∂k
− �sc ∂ξ

pg
k

∂k
∂ξk

∂k
�2

pg

[
G

pg
0 (K)

]2
}
.

(7)

It is interesting to note that in the review on YRZ [20], a
concern was raised that the penetration depth (or ns/m) which
appears in the YRZ literature is missing a vertex correction.
Here, with Eqs. (4) and (5), we have established the form for
such a vertex correction [27].

In the normal state and for both the pockets and arcs model,
one can show that the density-density response function is
given by

Pρρ(Q) = 2
∑
K

([GKGK+Q] + [Fpg,KFpg,K+Q]). (8)

This equation will be used in the remainder of this Rapid
Communication to establish the way in which previously
omitted [4] vertex corrections in the second term impact the
charge response functions. We restrict calculations to T > Tc

so as to avoid complications from collective modes in the
presence of pseudogap effects. We can similarly address the
quasiparticle interference pattern [13,14] of STM, as well as
the complex conductivity and diamagnetic susceptibility [15–
18], all of which are given in the Supplemental Material [26].

Finally, the spin-current and density response functions

can be similarly deduced. Indeed (
↔
n
m

)dia in Eq. (4), appears
in the constraining sum rules on the vertex corrections. The

spin-current correlation function is given by
↔
P (Q) with a sign

change in front of Fsc, reflecting the absence of a Meissner
effect, as the spin pairing is assumed to be singlet. Above
Tc, the bare dynamic susceptibility χ spin(Q) is the same
as the expression in Eq. (8), where the second term represents
the vertex corrections. These are necessary to ensure that
the formation of singlets leads to a normal state gap in the
spin excitation spectrum, which is not fully accounted for by
the first term. Below Tc, χ spin(Q) must include the vertex
corrections associated with �sc, but there are no collective
mode effects.

Consistency with sum rules. The normal state f -sum rule
(on a lattice) provides a strong constraint on the charge
susceptibility in Eq. (8) of the form∫

dω

π
[−ω ImPρρ(Q)] = 2

∑
k

(ξk+q + ξk−q − 2ξk)nk, (9)

with nk = 〈ĉ†k,σ ĉk,σ 〉 [here Q = (ω + i0+,q)]. In the YRZ
pockets model, the left-hand side of Eq. (9) gives∫

dω

π
[−ω ImPρρ(Q)] = 2

∑
k,α=±,i=1,2

(−1)i−1f (Ei,α)

×
(
Ei,α + ξ

pg
α

)(
Ei,ᾱ + Eī,ᾱ + ξ

pg
ᾱ − Ei,α

) + �2
pg

E1,α − E2,α

,

(10)

where Ei,k = 1
2 [ξk − ξ

pg
k + (−1)i−1

√
(ξk + ξ

pg
k )2 + 4�2

pg],
i = 1,2 are the poles of the YRZ Green’s function, and we
define α = ± to represent k ± q/2. We introduce ᾱ = −α and
1̄ = 2, 2̄ = 1. Using the two identities Ei,ᾱ + Eī,ᾱ + ξ

pg
ᾱ = ξᾱ

and Ei,α(Ei,α + ξ
pg
α ) = ξα(Ei,α + ξ

pg
α ) + �2

pg, as well as the
change of variable k → k − αq/2, we find the right-hand
side of Eq. (10) reads

2
∑

k,i=1,2

(−1)i−1f (Ei,k)

(
Ei,k + ξ

pg
k

)
(ξk+q + ξk−q − 2ξk)

E1,k − E2,k

= 2
∑

k

(ξk+q + ξk−q − 2ξk)nk,

which is the longitudinal f -sum rule for YRZ in the normal
state, since

nk =
(
E1,k + ξ

pg
k

)
f (E1,k) − (

E2,k + ξ
pg
k

)
f (E2,k)

E1,k − E2,k
.

The derivation in the arc case is essentially the same, with
ξ

pg
k = ξk and Ek,2 = −Ek,1.

It should also be clear that the f -sum rule in Eq. (9) assumes
a more subtle form in the presence of a lattice, as it does not
directly depend on ( n

m
)diaq

2. One should think of ( n
m

)dia as
reflecting a q → 0 limit of the response functions, whereas
the f -sum rule was proved above to be valid for all q [28].
Finally, the transverse sum rule is shown in the Supplemental
Material [26] to be consistent with Eq. (6).

Numerical results and discussion. We turn now to a
quantification of vertex corrections and show that this leads
to a much better understanding of their physical nature and
origin. Results using the method of calculation presented in
Ref. [4] arising from only including the so-called “bubble”
contribution are shown as dotted lines in the left panel of Fig. 1
with a single peak. They are compared with the full charge
susceptibility in Eq. (8), shown as solid lines. As the gap �pg

increases, the magnitude of the (negative) vertex correction
term tends to increase, as indicated in the inset. Importantly,
the arrows indicate that this introduces a second peak which
is of equal magnitude for larger �pg. In the small q regime
vertex corrections remove almost half the weight found in the
dotted line bubble contribution.

To understand the physical cause of these vertex correc-
tions, we plot in the middle panel a color contour figure of
the dominant phase space contributions to the integrand in
Eq. (8) deriving from the vertex corrections for a fixed q, as
indicated by the arrows. These corrections are rather strongly
localized to the antinodes. To elucidate this we note that Fpg

given in Eq. (3) can be interpreted as a bosonic Green’s
function since its spectral function exhibits the appropriate
sign change when ω → −ω. This bosonic degree of freedom
is naturally associated with fermionic pairing and is expected,
then, to reside near the antinodes and to increase in magnitude
as pairing gets stronger. We may then interpret the vertex
corrections in Eq. (8) as arising from the spin singlets in
a resonating valence bond (RVB) [9,10] context, leading to
a picture which is not so different from that expounded
in Ref. [29]. By contrast, the right-hand panel indicates
the phase space contributions arising from the simple GG
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FIG. 1. (Color) (a) Normal state ω = 0, qy = 0 charge susceptibility Pρρ with (solid) and without (dotted) vertex corrections. The arrows
indicate that a second peak is present in the former case. Here we follow the band structure used in Ref. [4], and use T = 0.01 and broadening
η = 0.01 [4] to study a low-temperature system. The doping p = 0.12, and chemical potential μ is fixed by the Luttinger sum rule [3]. These
values are normalized to t , the primary single-particle dispersion parameter [3,4]. The inset shows the contribution of the vertex term (FpgFpg)
to Pρρ . (b),(c) Plots of the momentum phase space contributions to Pρρ(ω = 0,q = (0.3π,0)) for � = 0.15, overlaid on contour plots of the
spectral function AYRZ(ω = 0,k). Shown are green k (“origin”) regions and yellow k + q (“destination”) regions for which the integrand
magnitude is greater than a set threshold. (b) shows contributions from the vertex term greater than a threshold of 0.008, while (c) shows single
fermionic bubble (GG) contributions greater than a threshold of 0.02. The plus and minus signs in (b) and (c) indicate the sign of the phase
space contribution.

bubble which tend not to be so relatively strong near the
antinode.

Conclusions. All of the results presented here follow rather
directly from the form of the self-energy �pg which, through
a Ward identity, will affect correlation functions in a way
which we have just interpreted. An emerging theme is that
even though there has been no explicit reference to the spin
singlets of RVB, these arguments indicate that one has a
two-constituent system. Ignoring vertex corrections in the case
of the charge susceptibility is largely ignoring this bosonic
constituent. Indeed, even in thermodynamics, not just in the
spin and charge response functions, one should expect some
residue of bosonic degrees of freedom both directly and
indirectly through the gap which they present to the fermionic
sector.

Analogous studies are presented for the arcs scenario,
except that there are no “hot spots” or pocket tips to lead to

sharp peaks in the charge susceptibility [30]. This is illustrated
in the Supplemental Material [26]. But more significant is
the similarity which allows a consolidation of two (at first
sight) rather different approaches to the cuprate pseudogap:
the pockets model of YRZ [3,9] and the arcs model of
BCS-BEC crossover [2]. Both of these have two distinct
gaps corresponding to the condensed and noncondensed
pairs, although the YRZ is more specific by associating
singlet pairing with antiferromagnetic correlations. As noted
in Ref. [3], throughout the temperature range, “both gaps
keep their own identity.” For this reason, among others, these
two-gap approaches are distinguished from phase fluctuation
scenarios [31], and allow the general and consistent treatment
of response functions presented here.
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