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Matrix product state formulation of frequency-space dynamics at finite temperatures
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We present a flexible density-matrix renormalization group approach to calculate finite-temperature spectral
functions of one-dimensional strongly correlated quantum systems. The method combines the purification of the
finite-temperature density operator with a moment expansion of the Green’s function. Using this approach, we
study finite-temperature properties of dynamical spectral functions of spin-1/2 XXZ chains with Dzyaloshinskii-
Moriya interactions in magnetic fields and analyze the effect of these symmetry breaking interactions on the
nature of the finite-temperature dynamic spin structure factor.
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In the study of strongly correlated quantum systems mo-
mentum and frequency-resolved spectral functions are of great
interest as they provide important insights into the governing
many-body physics [1]. For instance, experimental advances in
neutron scattering [2] or electron spin resonance [3] allow for
a very precise measurement of dynamical response functions.
The availability of efficient and accurate numerical tools is
thus highly desirable for making theoretical predictions at
finite temperatures T > 0. Moreover, tuning the temperature
can lead to interesting phenomena, such as the transition to
a spin incoherent Luttinger liquid in one dimension [4], or
probing the quantum critical regime in correlated materials
[5]. Established numerical methods such as quantum Monte
Carlo (QMC) [6–8] or exact diagonalization (ED) [6] are
indispensable, but are restricted either by the fermionic sign
problem and a challenging analytical continuation procedure
or small system sizes, respectively. On the other hand,
series expansion techniques are limited to high temperatures
[9].

In one dimension, the density-matrix renormalization group
(DMRG) [10–14] arguably offers efficient approaches to spec-
tral functions. At zero temperature, DMRG-based frequency-
domain methods have fostered significant progress in the study
of spectral functions [15–19]. Most prominently, the dynami-
cal DMRG [18] provided new insights, e.g., into the dynamical
properties of charge transfer salts such as TTF-TCNQ [20].
The calculation of spectral functions is also possible in the
context of the time-dependent DMRG (tDMRG) [21–24]. This
approach has been successfully extended to finite temperatures
[25–28], where either a purification of the density matrix or
a formulation in terms of matrix product operators is used to
compute response functions at T > 0 via a real-time evolution;
alternatively, a combination of the finite-temperature Lanczos
approach [29,30] with DMRG has been proposed which
requires stochastic sampling [31].

Our starting point is the observation that the accuracy of
the tDMRG approach is restricted by the maximal accessible
time [32,33], which is due to the growth of entanglement in the
course of the tDMRG procedure. Recently, the entanglement
growth has been reduced by time evolving the auxiliary degrees
of freedom backward in time [34,35], and by further related
optimization schemes [36]. Nevertheless, in order to gain better
access to the low-frequency properties, it would be highly

desirable to work with methods not relying on the hardly
accessible long-time behavior of response functions.

In this Rapid Communication, we present a DMRG-based
finite-temperature approach working directly in the frequency
domain. We do so by considering the Liouville space dynamics
of the purified density matrix. As the purification is a
pure-state wave function in a doubled Hilbert space, it can
be associated with a Liouville space vector [37]. Hence,
dynamical correlation functions at T > 0 can be approximated
by a moment expansion of the Green’s function. Here we
implement this idea in the framework of matrix product states
(MPS) using an expansion in Chebyshev polynomials [38,39]
with respect to the Liouville operator.

This allows us to study finite-temperature properties of
low-dimensional systems with a higher frequency resolution
than in previous developments relying on real-time evolution.
Motivated by experiments on quasi-one-dimensional (1D)
materials such as copper pyrimidine dinitrate (Cu-PM) [40,41]
or copper benzoate [42,43], we apply this technique to study
finite-temperature properties of dynamical spectral functions
of spin-1/2 XXZ chains in a uniform longitudinal magnetic
field by adding a staggered transverse field mimicking the
Dzyaloshinskii-Moriya (DM) interactions in these materials.

Method. In order to extend the DMRG to T > 0, one
approach is to purify the density matrix ρT [14]. This is
achieved by working in a doubled Hilbert space consisting of
the physical state space HP and an auxiliary space HQ chosen
to be isomorphic to HP . Then the pure state |�T 〉 is an element
of the tensor product space HP ⊗ HQ, so that the density
operator of the physical system is given by TrQ|�T 〉〈�T |.
As explained in detail in Ref. [14], the desired thermal state
is obtained via an imaginary time evolution starting at infinite
temperature, |�T 〉 = e−(HP ⊗IQ)/(2T )|�∞〉, where |�∞〉 denotes
an initial state with maximal entanglement between the real
and the auxiliary system. The Hamiltonian H and the identity
operator I act on the spaces specified by the respective
indices. The obtained thermal state |�T 〉 of the doubled system
corresponds to a vector in the Liouville space of operators
[37]. Thus, its dynamics is governed by the Liouville equation
(� ≡ 1 from now on)

∂

∂t
|�T 〉 = −iL|�T 〉, (1)
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whereL = HP ⊗ IQ − IP ⊗ HQ is the Liouville operator (see
also Ref. [26] for a superoperator approach to mixed-state
dynamics with MPS). Note that the backward time evolution
on the auxiliary space, proposed to reduce the entanglement
growth in the course of a real-time evolution [34], can be
motivated by the Liouvillian description. Equation (1) can be
solved via a Laplace transform in terms of the corresponding
resolvent operator G(z) = (z − L)−1 [44], where z = ω + iη

is a complex frequency. This allows for the calculation
of momentum and frequency-resolved dynamical response
functions of the form

IA(k,ω) = − 1

π
Im

〈
�T

∣∣∣∣A† 1

z − LA

∣∣∣∣�T

〉
. (2)

Here A = AP ⊗ IQ denotes the observable of interest. The
eigenvalues of the operator L are the differences of the
eigenenergies of the Hamiltonian H . From this formulation it is
evident that the computation of finite-temperature dynamics is
inherently amenable to standard numerical methods working
directly in the frequency domain. An approximation of the
response function in Eq. (2) can, for instance, be obtained
by a continued fraction expansion (CFE) [15,45–48] or a
Chebyshev expansion [38,39,49]. For our proof-of-principle
results, we use the latter because we found that an MPS-based
expansion in Chebyshev polynomials has higher numerical
stability and better convergence properties [50]. The Sup-
plemental Material [51] features CFE results to show the
flexibility of the Liouvillian formulation.

A Chebyshev expansion only grants convergence in the
interval [−1,1], since the Chebyshev polynomials Tn(x) =
cos[n arccos(x)] grow rapidly for |x| > 1. Thus, we map the
full many-body bandwidth W of the Liouvillian L to [−1,1],
i.e., ω ∈ [−W/2,W/2] �→ ω′ ∈ [−W ′,W ′] according to ω′ =
(ω + W/2)/a − W ′. The choice of W ′ = 1 − ε/2 with ε =
0.025 acts as a safeguard to strictly impose ω′ ∈ [−1,1] and
a = W/(2W ′). The rescaled Liouvillian is denoted by L′ =
(L + W/2)/a − W ′. Instead of mapping the entire bandwidth
to [−1,1], it should also be feasible to enhance the resolution
by working with a smaller interval comparable to the width of
the support of the spectral function [39].

Our finite-temperature DMRG calculations proceed as
follows: First, we employ a Lanczos time evolution algorithm
in MPS formulation [52–54] for the imaginary time evolution
to the desired thermal state |�T 〉. The Chebyshev vectors |tn〉,
each represented as a pure state in the enlarged Hilbert space
HP ⊗ HQ, are generated via the recursion relation

|tn〉 = 2L′|tn−1〉 − |tn−2〉, (3)

where |t0〉 = A|�T 〉, |t1〉 = L′|t0〉. With this notation, the
expansion becomes

IA(ω) = 2W ′/W

π
√

1 − ω′2

[
g0〈t0|t0〉 + 2

N−1∑
n=1

gn〈t0|tn〉Tn(ω′)

]
.

(4)

The real numbers gn are damping factors which remove
artificial oscillations occurring as a consequence of the finite
order N of the expansion. We employ Jackson damping,
yielding a nearly Gaussian broadening η(N ) decreasing with
N [38,39]. The computations are performed in real arithmetics,

and we control the accuracy by specifying the dimension m of
the truncated Hilbert space.

Comparison to exact results for the XX model. As a test case,
we calculate the longitudinal spin structure factor Szz(k,ω) of
the XX model in zero field,

HXX = J

L−1∑
i=1

(
Sx

i Sx
i+1 + S

y

i S
y

i+1

)
, (5)

where Sα
i (α = x,y,z) are the components of the spin operator

Si at site i, and we assume an antiferromagnetic exchange,
J ≡ 1. By virtue of the Jordan-Wigner transform [55], this
system is mapped to free fermions and is hence exactly
solvable. We choose open boundary conditions (OBCs) as the
standard DMRG is more efficient in this case [14]. Following
Ref. [20], we define the spin operators in k space as Sα

k =√
2

L+1

∑L
i=1 sin(ki)Sα

i with respect to the quasimomenta k =
πn/(L + 1) and integers n = 1, . . . ,L. For the computation of
Szz(k,ω), the operator of interest now is A = (Sz

k )P ⊗ IQ. The
time-dependent spin correlation functions 〈Sz

i (t)Sz
j (0)〉 can be

evaluated exactly [56,57]. Fourier transforming the correlation
functions [58], we obtain the comparison to the MPS-based
Chebyshev expansion of order N = 1700 shown in Fig. 1
for a system of size L = 50. Figure 1(a) shows our results
for the longitudinal spin structure factor Szz(k = 25π/51,ω)
at T = ∞ when varying the DMRG truncation m. Although
the Gaussian broadening η of the expansions is not strictly
uniform by construction [59], the agreement with the exact
result (η = 0.06) is excellent for m = 100. In Fig. 1(b) the
temperature dependence of Szz(k = 25π/51,ω) is depicted for
m = 100. Again, the MPS results fit the exact curves well down
to temperatures as small as T = 0.125.

XXZ chain in a staggered field. Quasi-one-dimensional spin
systems such as Cu-PM [40,41] and copper benzoate [42,43]
possess alternating crystal axes giving rise to nearest-neighbor
Dzyaloshinskii-Moriya (DM) interactions or an alternating
g-tensor. In the presence of a uniform magnetic field hz, both
generate an effective staggered field hx perpendicular to the
direction of hz [60,61]. Motivated by these observations, we
consider the isotropic Heisenberg model with antiferromag-
netic exchange coupling J = 1 in a staggered transverse field,

Hstag =
L−1∑
i=1

Si · Si+1 + hz

L∑
i=1

Sz
i + hx

L∑
i=1

(−1)iSx
i . (6)

We focus on the central region of the magnetization curve
and in the following keep hz = 1 fixed. We analyze the effect
of these symmetry and integrability breaking interactions on
the longitudinal spin structure factor Szz(k,ω) for hx = 0.3 by
comparing to results for systems without DM interactions, i.e.,
hx = 0. Figure 2 shows our results for a system with L = 50
and OBCs at temperatures T = 0, 0.5, and 1. We keep m =
120 states and expand up to order N = 1500 for T > 0. At T =
0, N = 750 is sufficient to reach the same resolution, since the
full spectral range of the Hamiltonian only makes up half of
the bandwidth of the Liouvillian. The method addresses each
k value individually. Note that the high frequency resolution
obtained with the Chebyshev MPS approach enables us to
resolve interesting features of the finite-temperature spectral
functions which are difficult to see with other methods.
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FIG. 1. (Color online) Finite-temperature DMRG calculations
for the dynamic spin structure factor Szz(k = 25π/51,ω) of an
open XX chain with L = 50 sites compared to exact results with
Gaussian broadening η = 0.06 (N = 1700). (a) At T = ∞ the
accuracy is studied for different numbers of kept DMRG states m.
(b) Temperature dependence of Szz(k = 25π/51,ω) compared to the
exact solutions (solid lines) for T = 0.125, 0.25, 0.5, and 1 (from top
to bottom).

First, we discuss the case hx = 0 displayed in the left
column of Fig. 2. The result at T = 0 obtained via a Chebyshev
expansion without the doubled system is shown in Fig. 2(a). As
can be seen, the numerical results agree well with the analytical
boundaries for the spin-wave continua from the Bethe ansatz
[62]. Well-converged finite-size effects (FSEs) can be resolved
for L = 50. In the lower continuum, the oscillations are FSEs
and decay in amplitude towards higher frequencies, most
prominently at k ≈ 3π/4. Note the tiny peak just above the
lower boundary of the lower continuum at k ≈ 3π/8 moving
to higher frequencies with increasing k and a similar branch
visible in the upper spin-wave continuum which may be
physical features. The high intensity for k,ω → 0 occurs due
to spin conservation. For our choice of hz, Szz(k,ω) is gapless
at k = 0 and at k ≈ 3π/4. This is representative for a T = 0
Luttinger liquid (LL) with Fermi momentum 2kF ≈ 3π/4
[63]. It is now interesting to see how the LL changes by
increasing the temperature. For example, in Refs. [33,64], the
“melting” of a LL for a t-J chain with Kondo impurities and
for SU(N) symmetric Hubbard systems, respectively, has been
investigated numerically by considering spectral functions at
finite (effective) temperatures. Reference [64] found the peak
at 2kF to move with temperature to k = π at T ∼ 0.2 in their
units of energy.
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FIG. 2. (Color online) Longitudinal spin structure factor
Szz(k,ω) of a Heisenberg chain in a magnetic field hz = 1 obtained
by the Chebyshev MPS method with approximate Gaussian
broadening η. The left column shows results for hx = 0 (η ≈ 0.13),
and the right column for hx = 0.3 (η ≈ 0.14). Top row: T = 0.
Central row: T = 0.5. Bottom row: T = 1.

Here, we find using ED that already for very low tem-
peratures T < 0.1 the peak at 2kF is significantly broadened,
and at temperatures of the order T � 0.5 becomes strongly
suppressed. This is seen in Fig. 2(c), where for T = 0.5 the
signal at k ≈ 3π/4 is replaced by a broad distribution around
k = π . However, the QMC results of Ref. [8] indicate that
at T = 0.25 a feature in the vicinity of 2kF remains visible.
It appears interesting to study the evolution of this peak as a
function of T , which we leave for future investigations. As
can be seen in Fig. 2(e), further increasing the temperature to
T = 1 does not significantly alter the picture. Note that the
FSEs observed at T = 0 are not visible at T = 0.5 and T = 1
due to temperature broadening while the resolution remains
the same.

We now turn to the effect of a staggered field of magnitude
hx = 0.3 on Szz(k,ω). Comparing Figs. 2(a) and 2(b), we
identify the opening of a field-induced gap at T = 0 and the
formation of a well-defined band. This is in agreement with
the expectations from adding a DM term to the Heisenberg
Hamiltonian since it causes the opening of gaps [42,60] and
a mixing of the longitudinal and transverse components of
correlation functions, causing the formation of the observed
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FIG. 3. (Color online) MPS results for the frequency dependence
of Szz(k,ω) at k = 49π/51 of an L = 50 Heisenberg chain in a
uniform magnetic field hz = 1 and an additional staggered field
hx = 0.3 at temperatures T = 0, 0.25, 0.5, 1, and ∞.

band. Interestingly, increasing the temperature from T = 0 to
T = 0.5 does not significantly alter the results: A redistribution
of the weights is obtained and the signals are smeared out,
but in contrast to the hx = 0 case the qualitative features
persist. Further increasing the temperature to T = 1 leads to a
stronger redistribution of the weights and eventually the band
disappears.

These features are studied in more detail in Fig. 3,
which shows the temperature dependence of the longitudinal
spin structure factor for hx = 0.3 at k = 49π/51. At higher
temperatures T � 0.5, the peak at ω ≈ 1.3 shows thermal
broadening. Note the filling in of spectral weight into the gap
at small frequencies when increasing the temperature, which

is due to scattering. The signal corresponding to the excitation
at high energies starts to disappear for temperatures of the
order of T = 0.5. Further increasing the temperature from T =
0.5 to T = 1 also significantly broadens the peak at ω ≈ 1.3,
which represents the band visible at T = 0. Finally, at infinite
temperatures, the curve is rather flat with only small features
up to ω ≈ 2, when it starts to decay to zero.

Conclusions and perspectives. We presented an efficient
and very accurate approach to compute finite-temperature
spectral functions of strongly correlated quantum systems
directly in the frequency domain by using a Liouville space
formulation. We implemented this via a Chebyshev expansion
in a DMRG framework, and show additional results from an
alternative CFE implementation in the Supplemental Material
[51], demonstrating the flexibility of our approach. The
high resolution allowed us to observe the disappearance of
the T = 0 Luttinger liquid upon increasing temperature. In
contrast, considering the effect of spin-orbit coupling leads
to an opening of a field-induced gap and the formation of
a band which both remain stable over a wide temperature
range. While we focused on proof-of-principle calculations,
we expect that the frequency resolution can be further
increased by a factor of ten by optimizing the MPS-based
Chebyshev expansion [39]. Together with the high flexibility
of MPS methods, the Liouville approach will allow for an
unbiased and efficient treatment for a variety of systems and to
directly compare to experimental results at finite temperatures,
as obtained in neutron scattering, electron spin resonance,
transport experiments, or more recently in the context of
ultracold gases [65].
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and J. von Delft, Phys. Rev. B 83, 195115 (2011).
[40] S. A. Zvyagin, A. K. Kolezhuk, J. Krzystek, and R. Feyerherm,

Phys. Rev. Lett. 93, 027201 (2004).
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