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Large-disorder renormalization group study of the Anderson model of localization
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We describe a large-disorder renormalization group (LDRG) method for the Anderson model of localization in
one dimension which decimates eigenstates based on the size of their wave functions rather than their energy. We
show that our LDRG scheme flows to infinite disorder, and thus becomes asymptotically exact. We use it to obtain
the disorder-averaged inverse participation ratio (IPR) and density of states (DOS) for the entire spectrum. A mod-
ified scheme is formulated for higher dimensions, which is found to be less efficient, but capable of improvement.
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Pioneering work on the application of renormalization
group (RG) methods to highly disordered antiferromagnetic
quantum spin systems in one dimension [1,2] as well as
higher dimensions [2,3] was initially greeted with skepticism.
It appeared to be another real-space RG scheme, which was
known to give poor results in uniform lattice models because of
uncontrolled approximations, in contrast to Wilson’s original
k-space method for (4 − ε) dimensions [4]. However, for
disordered systems (unlike uniform systems), there exists a
perfectly justified expansion parameter: the ratio of weak
couplings to large couplings, or equivalently, the inverse width
of the distribution of the logarithm of the couplings (see, e.g.,
Fig. 1(a) of [3]); this provided a small parameter to allow a
perturbative approach, and examine the RG flow.

While an analytic justification of the approach and the
proof of its asymptotic exactness in one dimension took
another decade and a half [5], numerically the result was
already apparent in the early work (see Fig. 7 of [2]).
In the past two decades, the method of strong- or large-
disorder renormalization group (LDRG) has been used to
study several disorder models, especially in one dimension,
including mixed antiferromagnetic-ferromagnetic couplings
[6], disordered binary chain [7], random transverse field Ising
chain [8,9], Ashkin-Teller random quantum spin chain [10],
phase-coupled oscillators [11], bosons with strong disorder
[12], superconductor-metal transition [13], and disordered
systems with dissipation [14,15]. A review summarizing some
of these developments has appeared [16].

In this work, we apply the LDRG approach to the Anderson
model of localization [17]. Most aspects of the Anderson
model, especially the localization transition, are well known
using techniques such as the nonlinear sigma model as well
as numerical approaches (see [18–20] for a review of recent
results). However, it was recently discovered numerically
[21,22] that the original model of Anderson with diagonal
disorder described by a uniform bounded distribution, in
the localized phase at moderate to high disorder, far from
being featureless, exhibits a very abrupt, apparently singular
change in the nature of eigenstates as a function of energy.
This feature arises due to a switch from typical Anderson
localized states near the center of the band to a regime of
resonant states near the edge of the band. It reveals itself in
a sharp change in the first derivative of the density of states
(DOS), and more prominently, the inverse participation ratio
(IPR). Given the relatively few quantitative tests of LDRG, the

Anderson model, by being a noninteracting model computable
in polynomial time (i.e., essentially solvable numerically to
very high precision), thus provides an ideal testing ground for
a check on the accuracy of LDRG methods.

Here we formulate a LDRG scheme appropriate for study-
ing the localized phase of the Anderson model. Our method
is based on eigenfunction characteristics, in contrast to RG
schemes for uniform systems based on eigenvalues. Because
of the nonmonotonic dependence of the spatial extent of wave
functions on energy in the Anderson model, as well as the
explicit use of the LDRG philosophy, our method differs from
previous position-space RG studies of the Anderson model
(e.g., [23–27]). For moderate to large disorder, our method
accurately captures the sharp change from typical Anderson
localized states to resonant states (the latter eventually lead to
the Lifshitz tail near the band edge). It provides accurate and
quantitatively controllable results for the ensemble-averaged
density of states as well as the size of the wave functions
for the entire spectrum. In one dimension, the scheme we
propose flows to infinite disorder and thus errors remain
controlled. Though the more approximate method we use in
higher dimensions does not share such a simple flow, it still
affords significant speed-up over exact diagonalization and
sparse matrix methods; more significantly, it allows going
to much larger sizes. Further refinements are likely to yield
greater accuracy.

The tight-binding Anderson model Hamiltonian on a d-
dimensional hypercubic lattice [17] is

H0 = �i[εi |i〉〈i| + (Vi,i+1|i〉〈i + 1| + H.c.)], (1)

where |i〉 are (orthonormal) states localized on sites i of
a simple hypercubic lattice. The on-site energies εi are
independent random variables, with a distribution P (ε). As
in the original Anderson work [17], we take the initial P (ε)
to be a uniform distribution with width w, symmetric around
ε = 0, and set all nearest-neighbor hoppings Vi,i+1 = 1, which
sets the overall energy scale. w should be compared with
the full bandwidth in the absence of disorder, which is 2Z,
where Z is the coordination number of the lattice. We define
x = w/(2Z) which is thus a measure of the disorder strength
in the system. We use periodic boundary conditions. However,
the RG method outlined below can be applied for all boundary
conditions and initial probability distributions. During the
course of the RG, the distributions of both ε and V will be
modified.
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FIG. 1. (Color online) The fraction of the total system size, fcl,
that is decimated as a function of cluster size Ncl during the LDRG
flow for the one-dimensional Anderson model with initial system size
L = 105. LDRG data are averaged over 100 runs.

The IPR for a wave function � = �iai |i〉 is defined as

Iψ = (�i |ai |4)/(�i |ai |2)2. (2)

Iψ is thus inversely proportional to the number of sites where
the wave function has significant amplitude.

The basic idea of our LDRG scheme is to extract eigenstates
from the system starting with the most localized ones, irre-
spective of the energy of the eigenstate. For zero hopping (or
equivalently infinite disorder w), all eigenstates are restricted
to one site only. For large w, we calculate the size of the
eigenstate wave functions to first order using perturbation
theory. We define the effective “bond” between the states at
i0 and i0 + 1 by mi0,i0+1 = Vi0,i0+1/(Ei0 − Ei0+1). For small
bonds m, the perturbed state at site i0 has wave function and
energy given by

� ′
i0

= |i0〉 + mi0,i0+1|i0 + 1〉 − mi0−1,i0 |i0 − 1〉,
(3)

d ′
i0

= Ei0 + mi0,i0+1Vi0,i0+1 − mi0−1,i0Vi0−1,i0 ,

giving rise to an IPR Ii0 = (1 + m4
i0−1,i0

+ m4
i0,i0+1)/(1 +

m2
i0−1,i0

+ +m2
i0,i0+1)2. Since IPR is inversely proportional to

the size of the wave function, and we want to flow in the
direction of increasing wave function size, we start the RG
at the site with the highest Ii . Since Ii = 1 − 2(m2

i,i+1 +
m2

i−1,i) + O(m4) for small m, we use as our RG flow parameter
m = min(m2

i,i+1 + m2
i−1,i).

We remove and store the wave function and energy obtained
in Eq. (3). The lattice now has one less site. We also
renormalize the energies and wave functions of the erstwhile
neighbors of |i0〉. The left neighbor of |i0〉 is perturbed as

�L = |i0 − 1〉 + mi0−1,i0 |i0〉,
(4)

EL = Ei0−1 + mi0−1,i0Vi0−1,i0 ,

and similarly for the right neighbor �R . The perturbation
theory generates a hopping between these renormalized states,
VLR = 〈ψL|H |ψR〉, where H is the modified Hamiltonian
at this stage of the LDRG. With these new values, we
also recalculate the bonds for the nearest and next-nearest
neighbors of the removed site. We repeat this procedure for all
sites with both bonds less than m0, flowing in the direction of
increasing m. m0 is a cutoff which should be smaller than 1.

The smaller the value of m0, the more accurate the energies
and wave functions obtained by this method.

Once there are no more sites with both bonds less than m0

left in the lattice, we start removing “2-site” clusters in a similar
fashion. Once all the 2-site clusters are finished, we remove the
3-site ones and so on. The procedure to remove an n-site cluster
is similar in spirit to the one for a single site. Consider the clus-
ter which consists of sites from i0 to i0 + n − 1 where mi0−1,i0

and mi0+n−1,i0+n are smaller than m0, and all other bonds in
between are greater than m0. We diagonalize the “cluster
Hamiltonian”: H (i0) = �

i0+n−2
i=i0

[εi |i〉〈i| + (Vi,i+1|i〉〈i + 1| +
H.c.)] + εi0+n−1|i0 + n − 1〉〈i0 + n − 1| to give eigenstates
�

(i0)
j = �

i0+n−1
k=i0

c
(i0,j )
k |k〉 with corresponding eigenvalues d

(i0)
j ,

where j goes from 1 to n. Perturbation of these wave functions
with the rest of the lattice gives

�
′(i0)
j = �

(i0)
j − mi0−1,i0c

(i0,j )
i0

|i0 − 1〉
+mi0+n−1,i0+nc

(i0,j )
i0+n−1|i0 + n〉,

(5)
d

′(i0)
j = d

(i0)
j − mi0−1,i0Vi0−1,i0c

(i0,j )
i0

+mi0+n−1,i0+nVi0+n−1,i0+nc
(i0,j )
i0+n−1.

We remove and store these n energies and wave functions. The
number of sites decreases by n after this step. The site that was
to the immediate left of the cluster is now perturbed as

�L = |i0 − 1〉 + mi0−1,i0

(
�n

j=1c
(i0,j )
i0

)|i0〉,
(6)

EL = Ei0−1 + mi0−1,i0Vi0−1,i0

(
�n

j=1c
(i0,j )
i0

)
,

and similarly for the site to the immediate right. A hopping
is generated between �L and �R like in the one-site case. In
order to select which cluster to remove first, we calculate Ii0

with mi0,i0+1 replaced by mi0+n−1,i0+n.
In one dimension, the LDRG does not destroy the lattice

structure; i.e., each site always has two nearest neighbors.
However, the states at each site may become combinations of
several of the original tight-binding states, and the basis is no
longer orthonormal. Thus when each cluster is diagonalized as
in Eq. (5), a generalized eigenvalue equation has to be solved.

Figure 1 plots the number of sites removed during the N-
site cluster decimation process, fcl(N ) = (LN−1 − LN )/L0,
where LN is the number of sites remaining in the system after
all clusters of size N have been decimated. Since the definition
of a cluster depends on the bond cutoff m0, the number of large
clusters is smaller for larger m0. Large disorder also results
in smaller clusters. An exponential decay of fcl with Ncl is
a consequence of independent random on-site energies (i.e.,
a Poisson distribution); this basic dependence appears to be
retained within our LDRG scheme.

Figure 2(a) compares the disorder-averaged IPR and DOS
for w = 10 in one dimension from exact diagonalization
(ED) and LDRG. Results from different values of the cutoff
m0 are shown. The accuracy decreases as m0 is increased,
because higher-order perturbations become more significant
when bonds are stronger. It may be seen that the resonant
states leading to the Lifshitz tail are well captured by the
LDRG. This is because the resonant states are in fact a set of
strongly coupled sites, which are loosely coupled to the rest
of the system, i.e., the clusters in our LDRG. Resonant states
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FIG. 2. (Color online) (a) IPR (in blue, left y axis) and DOS (in
red, right y axis) for the Anderson model in one dimension with
x = 2.5 (w = 10) from exact diagonalization (solid lines) and from
LDRG with initial system size L = 105, using different values of the
cutoff m0. (b) The error in the IPR (as defined in the text) obtained
using LDRG with initial system size L = 105 as a function of disorder,
x = w/4, for the one-dimensional Anderson model. Lines are a guide
to the eye. LDRG data are averaged over 100 runs. A similar measure
can be defined for the DOS and lies below 0.1% for the values of w

shown here.

composed of sites with energies close to the disorder edge
(w/2) give rise to states with energies |E| > w/2, i.e., towards
the band edge. We remark, however, that most clusters are not
resonant states, and have energies all across the spectrum.

To determine the accuracy of the LDRG, we evaluate
the difference between its results and those obtained by
exact diagonalization. For the DOS, we find that that the
average error across the entire band at w = 12 is 0.1% for
m0 = 0.2, and significantly lower for m0 = 0.05. Both errors
decrease monotonically as w increases. For the average IPR,
we define the following measure of the error within a given
interval (E1,E2): δIE1,E2 = 1

E2−E1

∫ E2

E1
|IRG(E) − IED(E)|dE,

where IRG and IED are the IPR obtained using the RG scheme
and exact diagonalization, respectively. We divide the band
into two parts: the main central portion, corresponding to E1 =
−w/2 and E2 = +w/2, and the edge of the band, defined
by E1 = w/2 and E2 = w/2 + 2d, plus the corresponding
particle-hole conjugate E1 = −w/2 − 2d and E2 = −w/2.
We denote the average errors for the two regions by δIcentral

and δIedge. Figure 2(b) plots δIcentral and δIedge as a function
of disorder w for different values of m0. (In practice δIedge is
cut off a little before w/2 + 2d when there is insufficient data
due to the low density of states near the band edge.) As can be
clearly seen, δIedge is smaller; however both errors decrease as
w increases, and as m0 decreases, clearly delineating the path
for increased accuracy.

Since new bonds are generated during the RG flow by
multiplying decimated bonds, it is convenient to consider
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FIG. 3. (Color online) (a) Evolution of the distribution of the
logarithms of bond values mij as the LDRG progresses for the one-
dimensional Anderson model with x = 2.5 (w = 10) and m0 = 0.2.
Initial system size is L = 105. Ncl is the size of the clusters decimated
just before the distribution was measured. Ncl = 0 is thus the initial
distribution. LDRG data are averaged over 100 runs. The vertical
line marks �0. The straight lines are fits to ln[R(�)] = b� + ln(a).
(b) The inset shows that λ = a

b
e�0b is approximately constant. (c) The

evolution of the fitting parameter a as a function of cluster size Ncl

for w = 10,14,18,22 and cutoff m0 = 0.2.

the logarithmic variable �ij = ln(mij ). Figure 3(a) shows
the evolution of of the distribution of this variable, R(�),
as the RG progresses. The initial distribution is the blue
curve. The distributions can clearly be divided into two
parts on either side of � = �0 = ln(m0). R(� > �0) does
not change as the RG progresses, because the probability
of any of the strong bonds being removed inside a cluster
is equal. R(� < �0) can be fitted by an exponential of the
form a exp(b�), i.e., straight lines in Fig. 3. This implies
that the mij have a power-law probability distribution given
by F (m) = amb−1 [7]. a and b are related since the integral
over the probability distribution is equal to 1. Approximately,
we can see that a

b
em0b = λ, where λ is some constant which

does not change during the RG flow. Figure 3(b) shows that
this is true within error bounds of the fitting estimate for a

and b. Thus, the width of the distribution is given by 1/a.
Figure 3(c) shows that the parameter a decreases as the LDRG
evolves, showing that the RG flows to infinite disorder. This
again strongly suggests that within this scheme, which is much
faster than standard diagonalization, and applicable to much
larger system sizes, there is a systematic method for decreasing
errors in (at least) disorder-averaged quantities related to
eigenvalues and eigenfunctions. For two such quantities,
the density of states and the inverse participation ratio, the
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FIG. 4. (Color online) IPR for Anderson model in two dimen-
sions with x = 6.25 (w = 50) from exact diagonalization (solid line)
and from LDRG with different values of the cutoff m0. LDRG data
are averaged over 100 runs of systems with 100 × 100 sites.

scheme can be implemented practically down to sufficient
accuracy as to capture their salient features, for reasonably high
disorder.

We now turn to higher dimensions. The RG scheme
implemented in one dimension does not generate additional
couplings, and leads to a convergent result as a consequence
of flow to increasing disorder. In higher dimensions, the
topology of the lattice changes under the RG, and leads to
large connectivity with increasing complexity. The number of
nearest neighbors is not fixed and a systematic delineation
into clusters is unclear. The perturbative approach also breaks
down because of constructively interfering paths. However,
for large disorder values, we are still successful in obtaining
IPR and DOS using a modified approach described below,
which should in principle be applicable in any dimension. We
perform two kinds of decimation:

(1) Site decimation. We remove single sites by the same
method as in 1D, with the modification that each site can now
have any number of bonds.

(2) Bond decimation. We eliminate bonds mij larger than m0

by diagonalizing the 2 × 2 matrix Hij = εi |i〉〈i| + εj |j 〉〈j | +
(Vij |i〉〈j | + H.c.) This will change the basis and generate extra
bonds, which may be weaker. We set a floor, mmin, on the
minimum value of stored bonds, and do not decimate bonds
that have already been affected by a rotation. This ensures
that rotations are independent of each other and effective at

removing only the largest bonds. The procedure is continued
till the total number of bonds stored is equal to a maximum Nm.

Rotations increase the number of bonds stored, and there-
fore increase both the memory consumption and the time
required during each decimation step. Therefore, we exit step
2 and restart step 1 when the total number of bonds stored
becomes greater than Nm, and place a cutoff on the minimum
value of a bond mmin.

Figure 4 compares IPR and DOS from exact diagonalization
(ED) and this scheme for the square lattice in two dimensions
for x = 6.25 (w = 50) with mmin = 10−4. As in the one-
dimensional case, smaller values of m0 produce more accurate
results. In our data, we observed that for this value of disorder,
the size of the lattice could be reduced by 90% before there
was a significant increase in the number of bonds. A practical
method to obtain information about wave functions of such a
system would then be to utilize the RG to reduce the system
to sizes where ED could work.

In conclusion, we have proposed and implemented a
LDRG scheme for the Anderson model of localization based
on wave function size rather than any energy scale. This
LDRG is especially useful when length and energy scales
are not monotonically related, as is often true in disordered
localized systems. The method provides access to essentially
all eigenstates and eigenvalues of the system computed ap-
proximately using the perturbative RG approach. While more
approximate, this method is significantly faster than either
exact numerical diagonalization, or sparse matrix methods
of diagonalization (the latter has to be performed repeatedly
for computing quantities across the spectrum). Further, by
using the perturbative parameter as a control, we are able to
reduce errors and provide quite accurate results for ensemble-
averaged quantities such as the density of states and the inverse
participation ratio at moderately high disorder in the localized
phase. In one dimension, the RG is controlled as it flows to
large disorder, and the scheme becomes more accurate as
the RG proceeds. In higher dimensions, we use a modified
approach which reduces the size of the system to a small
fraction, at which point exact diagonalization may become
feasible. Our method may also be useful for other problems
such as many-body localization where the “size” of the wave
function is measured in Fock space.
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