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Competing structures in two-dimensional trapped dipolar gases
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We study a system of dipolar molecules confined in a two-dimensional trap and subject to an optical square
lattice. The repulsive long-range dipolar interaction D/r3 favors an equilateral triangular arrangement of the
molecules, which competes against the square symmetry of the underlying optical lattice with lattice constant
b and amplitude V . We find the minimal-energy states at the commensurate density n = 1/b2 and establish the
complete square-to-triangular transformation pathway of the lattice with decreasing V involving period-doubled,
solitonic, and distorted-triangular configurations.
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Competing structures and effects of commensuration ap-
pear in numerous physical systems. Prominent examples are
atoms on surfaces, e.g., Krypton on graphite [1], vortices
in modulated superconducting films [2], in periodic pinning
arrays [3], and in a BEC subject to an optical lattice [4],
flux quanta in Josephson junction arrays [5], or colloidal
monolayers on periodic substrates [6]. A new realization
of this physics is accomplished by assembling cold dipolar
molecules [7] (e.g., KRb [8] or RbCs [9]) in a two-dimensional
(2D) optical trap and stabilizing them with the help of a
perpendicular electric field [10]. Adding a square optical
lattice provides an effective substrate potential which competes
against the triangular lattice arrangement favored by the
long-range repulsive dipolar interaction. As a result, the system
is expected to exhibit a variety of different configurations as
a function of particle density and strength of the substrate
potential. In this Rapid Communication, we find the minimal-
energy states at commensurate density in the absence of
quantum and thermal fluctuations and thereby establish the
complete transformation pathway from the square to the
triangular lattice. Contrary to previous studies, the cold
molecule system, besides being clean, can be continuously
tuned through various configurations by changing system
parameters such as particle density and substrate potential
amplitude. Even more, modifying the orientation or num-
ber of lasers, the symmetry of the optical lattice can be
changed.

In the simplest case, the transformation pathway between
lattices with different symmetries may involve a sequence of
other uniform lattices. An interesting situation arises when
new topological objects show up in intermediate nonuniform
phases. The original “misfit problem” between a particle
lattice with lattice constant a and a periodic substrate with
incommensurate periodicity b �= a has first been formulated
in one dimension (1D); these studies [11,12] have shown that
the locked system at large potential V (with particle separation
b) smoothly transforms into the free lattice (with separation a

between particles) at V = 0 via a nonuniform soliton phase,
with soliton cores approximating the free phase separating
regions of locked phase. The commensurate-incommensurate
transition in the 2D analog has been addressed by Pokrovsky
and Talapov [13–15]; within their “resonance approximation,”
the problem reduces to a 1D one and the system develops
a secondary structure in the form of a soliton-line array.

Going beyond the resonance approximation, we find that
the square-to-triangular transformation in the dipolar system
involves three separate transitions related to the formation of
a period-doubled zigzag lattice as well as two instabilities
towards nonuniform soliton phases (see Fig. 1).

We consider a 2D-confined molecular gas with dipolar
interaction D/r3 between the molecules,

Eint = 1

2

∑
i �=j

D

r3
ij

, (1)

subject to an optical (substrate) lattice

Esub = V

2

∑
i,α

[1 − cos(qα ·ri)]. (2)

The particles with density n = 1/b2 equal to commensurate
filling (one particle per minimum) are located at positions ri

with distances rij ≡ |ri − rj |; the substrate potential involves
two modes q1 = (q,0) and q2 = (0,q) with q = 2π/b. Starting
with the system’s energy for N particles trapped within the area
A, E(A,N ) = Eint + Esub, our task is to minimize the Gibbs
free energy per particle

g(p) = G(A,N )/N = [E(A,N ) + pA]/N, (3)

where the thermodynamic limit with fixed density n = N/A is
implied. We choose to work at fixed pressure p rather than fixed
chemical potential, as this seems a better approximation to the
experimental setup where molecules are confined to a trap.
At V = 0, the molecules arrange in an equilateral triangular
lattice with a lattice constant a = (4/3)1/4b > b and height
h = (3/4)1/2a < b; the resulting misfit parameter then is
s = b/h − 1 ≈ 0.0746. Given the purely repulsive interaction
between molecules, the density n is related to the pressure
p = (3/2)ne�, with e� = eint

� ≈ 4.446eD the interaction energy
per particle in the triangular lattice and eD = D/b3 the dipolar
energy (the prefactor is conveniently calculated with an Ewald
summation technique [16]). Upon switching on a small but
finite potential V > 0, the rigid lattice assumes an energy
g�(V ) = e�(V ) + p/n ≈ 11.115eD + V , increasing with am-
plitude V as each substrate mode contributes with an average
V/2 to the energy. For a large potential V , the molecules
arrange in a square lattice with lattice constant b < a and
an energy g� ≈ 11.186 eD independent of V as all particles
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FIG. 1. Gibbs free energy of optimal states (thick line), triangular
at V = 0, distorted and rotated triangular (gdt) at small V , solitonic
and period-doubled (gpd) at intermediate V , and square for V > V�.
Below the critical potential V (0,1)

c , the period-doubled phase smoothly
transforms into the triangular lattice via two soliton transitions
involving different soliton arrays. The dashed line extrapolates the
energy gpd of the period-doubled phase. Dotted lines are energies of
rigid triangular (�), isosceles (�), and square (�) configurations.

occupy potential minima. Besides the triangular and fully
locked square lattices, a third low-energy configuration [17]
is that of an isosceles triangular lattice (below called the bb

lattice) with base b and a height b locked to one substrate
mode (we have to break the symmetry and choose the mode
along x) with an energy g�(V ) = 11.136eD + V/2. The above
expressions for g�(V ), g�(V ), and g� already provide a
reasonable approximation to the energy g versus potential V

diagram as illustrated in Fig. 1 (dotted lines).
Next, we account for deviations ui of the particle co-

ordinates ri = Rlatt
i + ui from regular lattice positions Rlatt

i .
Expanding Eq. (1) in the displacement field ui , the energy
g = glatt + δg picks up a term

δgint ≈ 1

2N

∑
i,j

ui
T �̂D

(
Rlatt

ij

)
uj , (4)

with the elastic matrix �̂D(Rlatt
ij ) depending on the chosen

lattice; the substrate potential contributes a second term δesub

to δg, δg = δgint + δesub.
For a large substrate potential V , the substrate enforces

a square lattice with particle positions Rlatt
i = R�

i . Since
the true configuration at V = 0 is the triangular one, the
square lattice becomes unstable when decreasing V . The
symmetry-breaking instability is towards a period-doubled
zigzag phase [18] and is conveniently analyzed in Fourier
space; the elastic matrix �̂D(k) exhibits negative eigenvalues,
with the most negative one φ⊥

X = −3.958eDn located at the
X point (π/b,0) of the Brillouin zone and describing a shear
distortion [alternatively, the symmetry breaking involves the
point (0,π/b)]. The contribution δesub shifts all eigenvalues
by V q2/2, thus stabilizing the square lattice. The instability
occurs when the first eigenvalue crosses zero at

V� = −(2/q2)φ⊥
X ≈ 0.201eD. (5)

Decreasing V below V�, the system transforms to a period-
doubled phase with two molecules per rectangular unit cell
(see Fig. 1) with lattice vectors Rrec

1 = (2b,0) and Rrec
2 = (0,b)

and molecular positions c1 = (0,u1) and c2 = (b,u2) therein.
Inserting these coordinates into the functional Eq. (3), we use

the Poisson summation formula replacing the real-space sum
along y by the reciprocal-space sum over �q to obtain the
energy

gpd(σ,δ) = 8πeD

∑
i,�>0

�K1[2π�(2i − 1)]

2i − 1
cos(q�δ)

+ (V/2)[1 − cos(qσ ) cos(qδ/2)] + const (6)

with σ = (u1 + u2)/2 and δ = (u1 − u2). The modified Bessel
function K1(z) ∝ e−z decays rapidly and we can limit the
sum in Eq. (6) to the term i = � = 1. Minimizing gpd with
respect to δ, we find that cos(qδ/2) = (V/8	) cos(qσ ) with
2	 = g� − g�(V = 0) ≈ 0.0496eD, and the energy reads

gpd(σ ) = g�(V ) − V 2

32	
cos2(qσ ). (7)

For the homogeneous period-doubled phase, σ = 0, i.e., the
molecules displace symmetrically around the substrate minima
along y, and δ = (b/π ) arccos(V/8	). The condition δ = 0
provides us with the critical potential V� = 8	 ≈ 0.198eD;
this is close to the previous result (5), confirming that terms
with i > 1 or � > 1 in Eq. (6) are indeed small. The order
parameter approaches zero as δ ≈ ±(

√
2 b/π )

√
1 − V/V�,

while δ = ±b/2 at V = 0 describes the bb lattice with energy
g�. The ± signs refer to the two possibilities to break
the symmetry when doubling the period, leading to twin
configurations with zigzag structures shifted by b along x.
The period-doubled phase then exists in four versions, with
the zigzag structure manifest along x or y, each with a twin
shifted by b. The energy gpd(V ) of this phase resides below the
energy g�(V ) of the singly locked isosceles phase (see Fig. 1).

Next, we focus our interest to weak substrate potentials V .
The particle coordinates then deviate from regular triangular
lattice positions, i.e., Rlatt

i = R�
i and ri = R�

i + ui in Eq. (4).
For very small V , one can expand the substrate potential
to linear order in the displacement [19] and minimize the
correction δg in Fourier space. The force field involves
the two modes qα of the substrate potential, folded back to
the first Brillouin zone of the particle lattice, qα − nαK1 −
mαK2 ≡ −pα , with K1,K2 the reciprocal lattice vectors of the
(triangular) particle lattice, nα,mα are appropriate integers,
and we have included a minus sign in the definition of pα

for convenience. The minimal-energy configuration is found
by rotating the triangular particle lattice with respect to the
square substrate potential and relaxing the configuration in
the force field. For a small misfit parameter s, one of the
vectors pα passes near zero, generating a large deformation
(and accordingly large energy gain) as the inverse elastic
matrix [�̂D]−1(k → 0) ∝ 1/k2 is large at small k. Within
the resonance approximation [14,15], only the dominant term
in the relaxation deriving from the small misfit vector, say
p1 = K1 − q1, is included, while the small correction due to
the other mode is dropped. Within this approximation, the
optimal value of the angle ϕ between the symmetry axes of
the particle lattice and the substrate (see Fig. 1) is given by
the same formula as derived by McTague and Novaco [19]
for the accommodation of a triangular lattice on a substrate
with the same (triangular) symmetry but with a different
lattice constant, ϕs ≈ √

νs. Here, ν = (κ − μ)/(κ + μ) is the
Poisson ratio, with μ and κ the shear and compression moduli.
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For the dipolar interaction ∝R−3, one has ν = 9/11 [15]
[κ = 10μ and μ/n = (3/8)e�] and accordingly ϕ = 3.86◦.
The energy (to leading order in s) of the distorted triangular
phase reads

gdt = g�(V ) − V 2

64s2

n

μ
(1 + μ/κ) (8)

and we find a sinusoidal distortion field evolving along the
direction z ‖ p1 enclosing an angle θ = arctan

√
ν ≈ 42.13◦

with the substrate lattice, i.e., near the diagonal.
With increasing V , this periodic distortion becomes large,

of order b, and turns into a soliton array as first described
by Pokrovsky and Talapov [14,15] within the same resonance
approximation. Adopting a continuum elastic description and
retaining the full anharmonic form of the substrate potential,
they showed that the solution u = ug + up minimizing the
Gibbs free energy combines a global deformation ug with a
periodic modulation up that accounts for the soliton array. The
global deformation ug involves a rotation and a uniform shear
deformation, smoothly transforming the rotated triangular
lattice at V = 0+ into the isosceles lattice locked to the
substrate along the x axis at large V . In our case, this isosceles
triangular lattice (below called the bb′ lattice) is characterized
by a height b (along x), while in the absence of the second
substrate mode, the base b′ ≈ 1.0173b along the y axis can be
found from minimizing the Gibbs free energy density g(p) at
fixed height b and pressure p.

The analysis of the soliton structure in Refs. [14,15]
starts from the triangular lattice at small V and makes use
of the associated isotropic elastic theory. Here, we focus on
the first soliton entry into the bb′ lattice upon decreasing
V; it then is more natural to calculate the energy of the
deformation v (defined relative to the bb′ lattice) using the
elastic theory of the bb′ lattice, gel

bb′ (v) = gp + gκ + gμ,
with the linear term gp = (γx + p)(∂xvx) + (γy + p)(∂yvy)
driving the system towards the triangular phase and
gκ = κx(∂xvx)2/2 + κy(∂yvy)2/2 + κxy(∂xvx)(∂yvy) and gμ =
μx(∂yvx)2/2 + μy(∂xvy)2/2 + μxy(∂yvx)(∂xvy) the usual
(quadratic) elastic terms [21]; the coefficients are
again calculated using Ewald techniques. In this
formulation, the substrate energy assumes the simple
form esub = (V n′/2)[2 − cos(qvx)] with n′ = 1/bb′ the
particle density in the bb′ lattice. Aligning the rotated
coordinate system (z,z⊥) with the misfit vector p1, the soliton
displacement v(z) derives from a 1D sine-Gordon equation.

Using the isosceles elasticity, we find the Pokrovsky-
Talapov (PT) soliton first entering the bb′ lattice at V PT

c ≈
0.0417eD; the displacement field evolves along θ ≈ 45.05◦
(θ ≈ 42.13◦ in the original analysis in Refs. [14,15] based
on an isotropic elasticity, although see [20]) and shifts the
particle lattice by d ≈ (−b,0.70b). With decreasing substrate
amplitude V , the soliton density nsol rapidly increases, nsolb ∝
1/| ln(1 − V/V PT

c )|; the configuration with strongly overlap-
ping solitons at small V then is equivalent to the rotated and
distorted triangular phase obtained from perturbation theory.

The soliton array obtained within the resonance approxi-
mation transforms the bb′ lattice to the triangular one, while
our goal here is to study the transformation of the particle
system from square to triangular. The solitonic instability

then should appear on the background of the period-doubled
phase, which requires us to include the second harmonic of
the substrate potential into our analysis. We expect the first
soliton entry in the period-doubled phase to occur at small V

where we can treat the period-doubled phase as an isosceles
bb lattice distorted by the relative shift δ̄ = b/2 − δ of the two
sublattices. Inside the soliton, the amplitude of this short-scale
distortion δ̄ = (b/π ) arcsin[V cos(qvy)/8	] is slaved to the
center of mass coordinate v(R) replacing the scalar variable σ

introduced above. We then have to minimize the energy

δg = 1

N

∫
d2R

{
gel

bb(v) + V n

2
[1 − cos(qvx)]

+ V 2n

64	
[1 − cos(2qvy)]

}
, (9)

where gel
bb is the elastic Gibbs free energy [21] density of the

bb lattice. While the resonance approximation admits only one
low-energy soliton, the full problem with both substrate modes
present allows for several line defects shifting the lattice by
dj,k = (−jb,kb/2) with j,k integers. Promising candidates
reminding about the PT soliton are the (j,k) = (1,k) defects,
but a simple ansatz with the shift d01 = (0,b/2) should be tried
as well, since the particles merely have to overcome the weak
effective potential ∝V 2/64	  V/2 along the y direction
[see Eq. (9)]. All these line defects fall into two classes: the
domain walls with j + k assuming odd values and taking the
period-doubled phase from one twin to the other, δ → −δ,
and the genuine solitons with j + k even and the same twin
on both sides, δ → δ.

The determination of the critical substrate potential for the
(0,1) domain walls is straightforward,

V (0,1)
c = −2π (γy + p)

n

√
n	

κy + μy cot2 θ
, (10)

and provides the maximal value V (0,1)
c ≈ 0.0753eD > V PT

c at
θ = 90◦ (see Fig. 2). The analysis for the (1,k) defects is
more involved and the results depend strongly on the type
of elasticity theory chosen for the calculation, telling us that
corrections due to anharmonicities are large.

15 30 45 60 90
0

0.05

0.1

FIG. 2. Numerical results for the critical substrate potential Vc

for first soliton entry versus angle θ . Shown is the data for the (0,1)
domain wall and for the PT soliton evaluated at selected angles defined
by small Miller indices (m,n); dotted lines are guides to the eye. The
flat form V (0,1)

c (θ ) renders the angle θ for the first (0,1) domain-wall
entry poorly defined. Thin lines are the analytic results following
from a continuum-elastic description for an isosceles lattice.
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For this reason, a reliable conclusion on the relevant
scenario requires a numerically precise computation of the
defects’ Gibbs free energies. Starting from a variational ansatz,
we relax the particle configuration numerically for periodic
arrays with large separations between the defects. Summing
up terms along the direction perpendicular to z reduces the
problem to a 1D one, but restricts the possible angles θ to
those appertaining to small Miller indices. The results for
the (0,1) domain wall (extrapolated to the thermodynamic
limit) are shown in Fig. 2; they agree well with the analytic
ones, although the largest V (0,1)

c ≈ 0.074 15eD is assumed at a
different angle θ = 45◦. While the flat dependence on angle
renders the optimal orientation of the domain wall poorly
defined, the data shows that the optimal defect does not align
with a symmetry axis of the isosceles lattice. This result is
quite unexpected, as such a symmetry alignment is predicted
by the analytic calculation neglecting anharmonicities and has
often been considered as natural in the literature [22]. Our
numerical results [23] for the (1,k) defects show that these
would appear at much smaller values of V ; in particular, the
(second) best result V (1,3)

c (θ = 45◦) ≈ 0.0544eD is found for the
(1,3) soliton, while the k = 2 domain wall and k = 1 soliton
are even worse with V (1,2)

c (45◦) ≈ 0.0501eD and V (1,1)
c (63◦) ≈

0.0382eD.
The proliferation of (0,1) domain walls washes out the

y harmonic and dilutes the particles along the y axis,
thereby establishing the bb′ lattice; the transformation to
the (rotated) triangular lattice at V = 0+ then involves an
additional PT solitonic transition at lower V which smoothly
eliminates the x harmonic. The analytic result for V PT

c again
can be improved with a numerical calculation and we find
a maximal critical potential V PT

c (θ ≈ 44.5◦) ≈ 0.046eD (see
Fig. 2); at this value of the substrate potential, the domain-wall
phase has approached the bb′ lattice to within ≈10%, as
measured by the ratio of amplitudes Ap of the periodic
deformation vp generated by the (0,1) domain-wall array,
Ap(V PT

c )/Ap(V (0,1)
c ) = 0.019/0.25 ≈ 0.08.

Depending on the specific situation at hand, alternative
scenarios can be realized. All of these have to respect that a
phase transition establishing an array of identical solitons with
shift vector d [e.g., (1,k) solitons or domain walls] necessarily
has to be followed by a further transition at lower V ; since
the global distortion field in the soliton array is slaved to
d, the rotated triangular phase at V = 0+ cannot be reached

without the appearance of other defects. The completion of the
transformation may then involve the formation of a network of
crossing solitons. Furthermore, if the most favorable solitons
have close critical potentials and intersect with a negative
energy, the two smooth transitions can merge into a single
first-order one.

To conclude, we discuss the prospects for an experimental
realization and detection of these competing structures in a
cold molecule system. In order to serve as a classical simulator,
quantum fluctuations have to remain small. While in usual cold
atom systems the latter are limited by the optical lattice, here
it is the long-range interaction between the molecules that
bound the zero-point motion. In estimating the importance
of quantum fluctuations, we have to compare the interaction
energy eD with the recoil energy er = �

2/mb2. Evaluating the
quantum parameter rQ = eD/er ≈ 15 ZD[D2]/b[nm] (with Z

denoting the molecular mass and D the Debye unit) for
favorable but reasonable parameter settings (Z ∼ 100, b ∼
500 nm,

√
D ∼ 5D), we obtain rQ ∼ 102. This is substantially

larger than the critical value rQ = rsf ≈ 18 [10] marking the
transition to the superfluid state where quantum fluctuations
dominate [24]. Hence molecular systems can serve as classical
simulators, although some renormalization effects due to
quantum fluctuations may occur. Furthermore, sufficiently
large amplitudes V must be reached for the optical lattice;
in a recent experiment [25], dipolar molecules have been
localized in deep wells V ∼ 102er, which should be sufficient
to reach the critical value V�. Finally, a promising way to
identify the various structural phases is via their different
dynamical response under an applied force field f, with the
square and period-doubled phases characterized by symmetric
and asymmetric (reduced along y) pinning, respectively. For
practical purposes, the exponentially weak pinning of solitons
can be neglected; the force field f induces a drive f · dj,k

along z and the resulting soliton motion generates a mass
flow along dj,k which allows one to identify the two solitonic
phases.
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