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Anisotropic criteria for the type of superconductivity
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The classical criterion for classification of superconductors as type I or type II based on the isotropic Ginzburg-
Landau theory is generalized to arbitrary temperatures for materials with anisotropic Fermi surfaces and order
parameters. We argue that the relevant quantity for this classification is the ratio of the upper and thermodynamic
critical fields Hc2/Hc, rather than the traditional ratio of the penetration depth and the coherence length λ/ξ .
Even in the isotropic case, Hc2/Hc coincides with

√
2λ/ξ only at the critical temperature Tc and they differ as T

decreases, the long-known fact. Anisotropies of Fermi surfaces and order parameters may amplify this difference
and render false the criterion based on the value of κ = λ/ξ .
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I. INTRODUCTION

The classification of superconductors as type I and type II
introduced within the Ginzburg-Landau (GL) theory near Tc is
based on the value of the GL parameter κ = λ/ξ (λ is the weak
field penetration depth and ξ is the coherence length) [1,2]. An
isotropic bulk material is of the type II if κ > 1/

√
2; in fields

H > Hc1 ≈ (φ0/4πλ2)(ln κ + 0.5) vortices are nucleated [3].
The lower critical field Hc1 is related to the line energy εl of a
single vortex which is found by solving the GL equations for
the order parameter and supercurrents: Hc1 = φ0εl/8π . The
mixed phase with vortices exists in fields up to Hc2 = φ0/2πξ 2

such that Hc1 < Hc < Hc2, where the thermodynamic critical
field is related to the condensation energy density F = H 2

c /8π .
In the GL domain, Hc = φ0/2

√
2πξλ. If κ < 1/

√
2, the bulk

material is in the Meissner state in fields H < Hc and is
classified as type I.

The question of this classification for low temperatures
in isotropic materials was addressed by Eilenberger who
evaluated the upper critical field Hc2 along with Hc to show
that κ1 = Hc2(T )/

√
2Hc(T ) increases on cooling to T = 0 by

about 30% [4]. Hence, taking κ as governing material behavior
in magnetic field, one concludes that if κ > 1/

√
2 at Tc, it

certainly exceeds this value at all temperatures and, therefore,
the GL classification should hold at any T . It is worth noting
that this classification holds for Fermi spheres and constant
order parameters (s wave).

When anisotropic materials came forth, it was realized that
a mere fact of anisotropy may cause λ/ξ to change with the
field orientation. It became clear that in principle an anisotropic
material can be type I for one field orientation and type II for
another [5]. This prediction had been confirmed in experiments
with intercalated crystals of CxK [6,7]. Later, similar ideas
were explored in Ref. [8].

The situation is even more complicated with multiband
materials and with other than s-wave order parameters for
which the temperature and angular behavior of Hc2 (along with
ξ ) differs from that of λ, while both these quantities depend
on the Fermi surface and on the order-parameter anisotropy.
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The general formalism for calculating Hc2 and λ in the clean
case has recently been developed for arbitrary Fermi surfaces
and order parameters [9–11]. We argue that minute details of
the Fermi surfaces are usually of little effect on Hc2 and λ

because the equations governing these quantities contain only
integrals over the whole Fermi surfaces. Therefore, one can
consider the simplest Fermi shapes of spheroids (for tetragonal
materials) for which the Fermi surface averaging is a well-
defined procedure. Hence, κ(T ) is now accessible for various
anisotropies of Fermi surfaces and order parameters.

However, for anisotropic materials at arbitrary tempera-
tures, the GL criterion based on the value of κ = λ/ξ is
questionable because the GL theory per se only works near
Tc. We use in this text a different approach based on the fact
that in type-II superconductors the two characteristic fields
Hc1, at which vortices nucleate in the bulk material, and Hc2,
the maximum field at which the mixed state exists, satisfy
Hc1 < Hc < Hc2. Either part of this inequality Hc1 < Hc or
Hc < Hc2 (or for this matter Hc1 < Hc2) can be used to classify
the material behavior as that of type II. However, to have
Hc1(T ) one should evaluate the vortex line energy within
the microscopic theory, a difficult problem if at all doable.
On the other hand, both Hc2(T ) and Hc(T ) can be evaluated
for anisotropic Fermi surfaces and order parameters at any
temperature. It is the criterion Hc(T ) < Hc2(T ) that we study
in this work.

Following, we calculate the condensation energy for
anisotropic situation at arbitrary temperatures. Then, we
review methods for evaluation of Hc2 and λ and present
numerical results to show that the criterion based on the ratio
Hc2/Hc differs substantially from that employing λ/ξ .

II. CONDENSATION ENERGY

Perhaps, the simplest for our purpose is the approach
based on the Eilenberger quasiclassical formalism that holds
for a general anisotropic Fermi surface and for any gap
symmetry [12]. The theory deals with two functions f and
g, which are integrated over the energy Gor’kov Green’s
functions. For a uniform state of clean superconductors of
interest here f,g satisfy

�g − �ωf = 0, g2 + f 2 = 1. (1)
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Here, �ω = πT (2n + 1) with an integer n. We employ
the approximation of a separable coupling responsible for
superconductivity: V (k,k′) = V0
(k)
(k′), k is the Fermi
momentum [13]. In this approximation, the order parameter
�(T ,k) = �(T )
(k). 
(k) determines the k dependence of
� and is normalized so that the average over the Fermi surface
〈
2〉 = 1. Equations (1) give

f = �/β , g = ω/β , β2 = �2 + ω2. (2)

The order parameter should satisfy the self-consistency equa-
tion of the theory (see, e.g., Ref. [9]):

�

2πT
ln

Tc

T
=

∑
ω>0

(
�

�ω
− 〈
f 〉

)
, (3)

where 〈. . .〉 stands for averaging over the Fermi surface.
Equations (1) and (3) can be obtained as minimum

conditions for the energy functional [12]

F
N (0)

= �2 ln
Tc

T
+ 2πT

∑
ω>0

[
�2

�ω
− 2〈�f + �ω(g − 1)〉

]
,

(4)

where g =
√

1 − f 2 and N (0) is the density of states per
spin on the Fermi level. Substituting here the solutions (2)
and taking into account the self-consistency relation (3), one
obtains the condensation energy density F :

F

2πT N (0)
=

〈∑
ω>0

(β − �ω)2

β

〉
. (5)

At T = 0 (replace 2πT
∑

ω → ∫ ∞
0 � dω),

F (0) = N (0)

2
〈�2(0)〉 = N (0)

2
�2(0) (6)

[recall the isotropic result F (0) = N (0)�2(0)/2]. To find the
value of �(0), one considers the first sum in Eq. (3) as
extended to nmax = �ωD/2πT , while the second is replaced
with

∫
�ωD

0 d(�ω)/2πT (ωD is the Debye frequency for the
phonon mechanism or a proper cutoff for others):

ln
Tc

T
= ln

2eC
�ωD

πT
−

〈

2 ln

2�ωD

�|
|
〉
, (7)

where C ≈ 0.577 is the Euler constant. This gives

�(0) = πTc

eC
e−〈
2 ln |
|〉. (8)

Hence, we have Hc(0) = 2
√

πN (0) �(0).
Near Tc, Eq. (3) yields

�2 = 8π2T 2
c (1 − t)

7ζ (3)〈
4〉 , (9)

where t = T/Tc. The condensation energy is readily found:

F = 7ζ (3)N (0)〈
4〉�4

16π2T 2
c

= 4π2T 2
c N (0)

7ζ (3)〈
4〉 (1 − t)2. (10)

Given F (T ), it is straightforward to obtain the difference of
specific heats Cs − Cn at any T and in particular the specific

heat jump at Tc [14,15]:

�C

Cn

= 12

7ζ (3)〈
4〉 = 1.43

〈
4〉 . (11)

Near Tc, we have

Hc = 8πTc

√
πN (0)

14ζ (3)〈
4〉 (1 − t) . (12)

For the numerical work at arbitrary temperatures, we rewrite
the energy as

F = 4π2T 2
c N (0) t2S,

(13)

S =
∞∑

n=0

〈
[
√

(n + 1/2)2 + ψ2
2 − (n + 1/2)]2√
(n + 1/2)2 + ψ2
2

〉
,

where ψ = �/2πT . Thus, the general scheme of evaluation
of the thermodynamic critical field consists of solving the
self-consistency equation (3) for �(T ) at each T and then
evaluating F of Eq. (13) and Hc = √

8πF .
As mentioned in the Introduction, describing Fermi surface

shapes within problems of Hc and Hc2, one can consider Fermi
ellipsoids, for which the averaging is a well-defined analytic
procedure [11,16]. Although straightforward, this procedure
is quite involved, and a brief description is given in the
Appendix.

Hence, we characterize Fermi surfaces for tetragonal
materials by a single parameter ε, the squared ratio of the
spheroid semiaxes. We consider only representative order
parameters: s wave (
 = 1), d wave (
 = √

2 cos 2ϕ with
ϕ being the azimuth of spherical coordinates with the polar
axis along the c crystal direction), and order parameters
of the form 
 = 
0 cosn θ with the polar angle θ . The
latter were recently suggested as possibilities for at least
some of the Fe-based materials [17,18]; the “equatorial”
node n = 1 has also been observed in the ARPES data on
BaFe2(As0.7P0.3)2 [19].

Numerical results for the thermodynamic critical field Hc

in units of 2πTc

√
N (0) are shown in Fig. 1. This normalization

is chosen because for the s-wave order parameter on a sphere
we have a close to 1 value of

hth(0) = Hc(0)

2πTc

√
N (0)

=
√

π

eC
≈ 0.995 (14)

(the notation hth for the normalized Hc is to avoid confusion
with the c direction). As is seen in Fig. 1, nodes suppress the
condensation energy and Hc. Besides, we observe that while
the shape of the Fermi surface does not affect Hc for s- and
d-wave order parameters, the equatorial node clearly makes a
difference.

III. UPPER CRITICAL FIELD

The theory of the orbital Hc2 of clean superconductors
has recently been developed by the authors for arbitrary
anisotropies of Fermi surfaces and order parameters [11].
Within this theory, H

(c)
c2 along the c axis of uniaxial crystals is
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FIG. 1. (Color online) Dimensionless thermodynamic critical
field hth(t) = Hc/2πTc

√
N (0). Each curve on the upper panel in

fact is three coinciding curves for Fermi sphere and prolate and oblate
spheroids, ε = 1,0.2, and 5. The lower panel is for the order parameter

 ∝ cos θ with the normalization 
0 evaluated separately for each
Fermi shape (see Appendix).

found by solving an equation:

ln t = 2h(c)
∫ ∞

0
s ln tanh(st)

〈

2μce

−μch
(c)s2 〉

ds, (15)

h(c) = H
(c)
c2

�
2v2

0

2πφ0T 2
c

,

μc = v2
x + v2

y

v2
0

, (16)

v3
0 = 2E2

F

π2�3N (0)
.

Here, vx,vy are Fermi velocities in the a,b plane, EF is the
Fermi energy, the velocity v0 = vF for the isotropic case.
Hence, both μc depending on the Fermi surface and 


describing the order-parameter anisotropy, enter the equation
for h(c) under the integral over the Fermi surface. This is the
reason why the simple spheroid with the shape fixed by a
single parameter, the ratio of semiaxes, suffices to describe
major features of quantities of interest here.

The theory of Ref. [11] allows one to evaluate also
the anisotropy parameter γH = H

(a)
c2 /H

(c)
c2 . Given h(c)(t), one

solves Eq. (15) in which μc is replaced with μa = (v2
x +

γ 2
Hv2

z )/v2
0.

In general, Eq. (15) can be solved numerically, but if T = 0
or T → Tc, the solutions are exact [11]:

h(c)(0) = exp(−C − 〈
2 ln μc〉),
(17)

h(c)(t → 1) = 8(1 − t)

7ζ (3)〈
2μc〉 .

For the isotropic case, 〈μc〉 = 2/3, 〈ln μc〉 = 2 ln(2/e), and
one reproduces the Helfand-Werthamer clean limit results [20].

After simple algebra, we obtain

H
(c)
c2 (0)

Hc(0)
= φ0Tc

�2v2
0

√
πN (0)

exp

〈

2 ln

|
|
μc

〉
, (18)

H
(c)
c2

Hc

∣∣∣∣
Tc

= 2
√

2φ0Tc

�2v2
0

√
7ζ (3)πN (0)

√
〈
4〉

〈
2μc〉 . (19)

In the isotropic case near Tc, Hc2/Hc = √
2 κGL with

κGL = 3φ0Tc

�2v2
F

√
7ζ (3)πN (0)

(20)

(see, e.g., Ref. [21]); this coincides with the isotropic limit of
Eq. (19).

As mentioned above, if the ratio R = Hc2/Hc > 1, the
material in question is of the type II, if R < 1 it behaves
as type I. Using Eqs. (18) and (19), we compare these ratios at
T = 0 and Tc for the c direction:

R(c)(0)

R(c)(Tc)
=

√
7ζ (3)

8

〈
2μc〉√
〈
4〉

exp

〈

2 ln

|
|
μc

〉
. (21)

It is worth noting that this ratio depends on the Fermi surface
shape and the order-parameter symmetry, but not on other
material characteristics.

As an example, we take 
 = √
3 cos θ on a Fermi sphere

to obtain R(c)(0)/R(c)(Tc) ≈ 1.365. We note again that for
the same order-parameter anisotropy, say, for 
 = 
0 cos θ ,
the normalization 〈
2〉 = 1 imposes different 
0 for different
Fermi surfaces (see Appendix and Fig. 8). Hence, the criteria
for type-I or -II behavior depend on the Fermi surface shape
and the order-parameter symmetry.

IV. PENETRATION DEPTH

The inverse tensor of squared penetration depth for the
general anisotropic clean case is [9,10]

(λ2)−1
ik = 16π2e2N (0)T

c2

∑
ω>0

〈
�2vivk

β3

〉
. (22)

Here, � = �
, β = √
�2 + �2ω2, and �(T ) satisfies the

self-consistency equation

− ln t =
∞∑

n=0

(
1

n + 1/2
−

〈

2√

ψ2
2 + (n + 1/2)2

〉)
, (23)

where ψ = �/2πT .
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The density of states N (0), Fermi velocities v, and the
order-parameter anisotropy 
 are the input parameters for
evaluation of λaa and λcc. N (0) is not needed if one is interested
only in the anisotropy γλ = λcc/λaa:

γ 2
λ = λ−2

aa

λ−2
cc

=
∑

n

〈

2v2

a/η
3/2

〉
∑

n

〈

2v2

c /η
3/2

〉 ,
(24)

η = ψ2
2 + (n + 1/2)2.

It is easy to show that this gives [9,22]

γ 2
λ (0) =

〈
v2

a

〉
〈
v2

c

〉 , γ 2
λ (Tc) =

〈

2v2

a

〉
〈

2v2

c

〉 . (25)

At first sight, γλ should approach Tc as a constant or at least
as some power (1 − t)p with p > 1. This would mean that
γλ ≈ const in a practically finite GL domain. This, however,
is not the case. To see this, we evaluate γλ near Tc where

η3/2 = (n + 1/2)3

(
1 + 3ψ2
2

2(n + 1/2)2

)
(26)

since ψ2 
 1. Expanding Eq. (24) for γλ in powers of ψ2 we
obtain the first correction

γλ = γλ(Tc) − 93 ζ (5)

28 ζ (3)

(〈

4v2

a

〉
〈

2v2

a

〉 −
〈

4v2

c

〉
〈

2v2

c

〉
)

ψ2. (27)

Since ψ2 ∝ (1 − t), γλ approaches Tc with a nonzero slope
for all order parameters except the s wave with 
 = 1. We
will see in the following that for general anisotropies, the
ratios Hc2/Hc and λ/ξ also attain their GL values only at Tc

approaching them with finite slopes [23].

V. ISOTROPIC CASE

This well-studied case is worth recalling because already
here one can see that the criterion based on the value of λ/ξ

cannot be applied at arbitrary temperatures. We obtain, using
Eq. (21),

R(0)

R(Tc)
=

√
7ζ (3)

8
e2−ln 4 ≈ 1.263, (28)

the value originally obtained by Eilenberger [4]. We thus see
that if at Tc an isotropic material has R(Tc) = √

2κGL = 1 at
the boundary between type I and type II, it is of the type II at
T = 0. For the material to be of the type I at all T ’s, i.e., to have
R(t) < 1 at all temperatures, one needs R(Tc) < 1/1.263 =
0.792, or κGL < 0.792/

√
2 = 0.560. Moreover, if 0.560 <

κGL < 1/
√

2 = 0.707 at Tc, the material should undergo the
transition from type I to type II at some temperature under Tc.

It is easy to see that at all temperatures T �= Tc the criterion
based on the ratio Hc2/Hc differs from that based on κ =
λ/ξ . To this end, we take microscopically calculated values at
T = 0:

λ−2(0) = 8πe2N (0)v2
F

3c2
,

(29)

ξ 2(0) = φ0

2πHc2(0)
= �

2v2
F

π2T 2
c

eC−2,
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t

FIG. 2. (Color online) The upper curve is Hc2(t)/
√

2κGLHc(t)
and the lower one is κ(t)/κGL for the isotropic case. Note the different
slopes of these quantities at Tc.

which give

κ2(0) = 3πc2T 2
c

8e2N (0)�2v4
F

e2−C . (30)

Using the GL value for κ(Tc) (20) we obtain [4]

κ(0)

κ(Tc)
=

√
7ζ (3)

24
e2−C = 1.206. (31)

This differs from R(0)/R(Tc) = 1.263 obtained above using
the Hc2/Hc criterion. The difference is not large, still it shows
that even in the isotropic case the value of κ = λ/ξ is not
a correct criterion for the type of superconductivity at any
temperature except Tc. Basically, this is because Hc2/Hc =
κ
√

2 only at Tc.
These arguments are supported by the numerical calculation

at arbitrary temperatures shown in Fig. 2, where the upper
curve is the ratio R(t) = Hc2(t)/Hc(t) for κGL = 1/

√
2; the

lower curve is κ(t)/κGL. A feature worth noting in this figure
is that the two curves have finite and different slopes at Tc.
In other words, in fact there is no however small temperature
interval in the immediate vicinity of Tc in which the GL “κ
criterion” works, except Tc itself.

This feature is related to the mentioned above accuracy of
GL theory: the energy expansion within GL is accurate up
to terms of the order τ 2 with τ = 1 − t , the order parameter
�2 ∼ τ along with λ−2, Hc2, and Hc, all ∼τ . Their ratios,
within the GL theory, should be considered as constant. To
get next corrections to these constants one has to overstep the
accuracy of the GL theory, i.e., to go to the microscopic theory
which shows that these ratios approach Tc with finite slopes.

VI. NUMERICAL RESULTS

The situation for anisotropic materials is, of course, more
involved. To begin, we recall the standard notation. Introducing
the geometric average λ = (λ2

aλc)1/3 and γλ = λc/λa , one
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obtains λa = λγ
−1/3
λ and λc = λγ

2/3
λ [for brevity we use the

notation λa instead of λaa for the square root of one of diagonal
elements of the tensor (λ2)ik]. For the coherence lengths, we
have ξa = ξγ

1/3
H and ξc = ξγ

−2/3
H , where γH = H

(a)
c2 /H

(c)
c2 =

ξa/ξc and ξ 3 = ξ 2
a ξc. In general, γH (T ) �= γλ(T ), but at Tc the

anisotropies of both λ and Hc2 are determined by the same
“mass tensor” so that γH (Tc) = γλ(Tc) [16,22–24]. Different
γH (T ) and γλ(T ) demonstrate particularly well the common
but misleading association of superconducting anisotropies
with the effective mass tensor of the band theory.

Direct calculations of the thermodynamic critical field
Hc(Tc), either using the microscopic theory or the anisotropic
GL equations, yield

Hc(Tc) = φ0

2
√

2πλaξa

= φ0

2
√

2πλcξc

= φ0

2
√

2πλξ
. (32)

Hence, we have

H
(c)
c2

Hc

∣∣∣∣
Tc

=
√

2
λξ

ξ 2
a

=
√

2
λa

ξa

=
√

2 κa (33)

because γλ/γH = 1 at Tc. Using known λa and ξa we obtain,
skipping the algebra,

κa = φ0Tc

�2v0

√
2〈
4〉

7ζ (3)πN (0)
〈

2v2

a

〉〈
2μc〉
. (34)

In the isotropic case, κa reduces κGL of Eq. (20).
For the in-plane field we have

H
(a)
c2

Hc

∣∣∣∣
Tc

=
√

2
λξ

ξaξc

=
√

2
λc

ξa

=
√

2 κ‖. (35)

Hence, for this field orientation, one should operate with
parameter κ‖ = λc/ξa . This choice is also dictated by the
surface energy of the S-N boundary, say, in (c,b) plane in
field along b; the screening currents flow along c whereas the
order parameter is changing along a. Thus, the relevant lengths
in this case are λc and ξa . We obtain

κ‖ = λc

λa

= γλκa =
√〈


2v2
a

〉
〈

2v2

c

〉 κa

= φ0Tc

�2v0

√
2〈
4〉

7ζ (3)πN (0)
〈

2v2

c

〉〈
2μc〉
. (36)

For an arbitrary T , we have

H
(c)
c2

Hc

= h(c)(t)

hth

φ0Tc

�2v2
0

√
N (0)

, (37)

H
(a)
c2

Hc

= h(a)(t)

hth

φ0Tc

�2v2
0

√
N (0)

. (38)

Presenting the numerical results, we normalize the ratio
R(c) = H

(c)
c2 /Hc to its value at Tc, i.e., to

√
2κa , whereas

for the in-plane direction R(a) = H
(a)
c2 /Hc is normalized to√

2κ‖. Figure 3 shows R(c) = H
(c)
c2 /Hc for s- and d-wave order

parameters for three Fermi surfaces: prolate spheroid ε = 0.2,
sphere, and oblate spheroid ε = 5.
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FIG. 3. (Color online) The ratio R(t)/R(Tc) for s and d waves;
R(t) = Hc2(t)/Hc(t). Although the effect of the Fermi surface
anisotropy is weak, in both cases it results in increasing ratio of
Hc2/Hc at low T ’s.
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FIG. 4. (Color online) The ratio R(t)/R(1) for two principal

directions and three Fermi surface shapes: prolate spheroid ε = 0.2,
sphere, and oblate spheroid ε = 5. The order parameter has an
equatorial node 
 = 
0 cos θ .
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FIG. 5. (Color online) The upper panel: h(c)/hth and h(a)/hth for
the s-wave order parameter 
 = 1 on a Fermi spheroid with ε = 0.2
for the constant of Eq. (39) C ≈ 1. A hypothetic superconductor with
such characteristics is of type II in magnetic field along the ab plane
and of type I in fields along the c axis. The lower panel shows the
situation for ε = 5. For comparison, we also show the ratio Hc2/Hc

for the isotropic case.

Figure 4 is for the order parameter with an an equatorial
node, 
 = 
0 cos θ . Note that R(a)(t) increases on cooling
slower than R(c)(t) and can even go through a maximum as
it is in the oblate case of ε = 5. This behavior is related to
the fact that R(a) = γHR(c) and γH (t) decreases on cooling for
this order parameter (see Ref. [23] and references therein). One
should bear in mind that for determining the material type at
a particular temperature and for a given field orientation, one
should know not only the ratio R(t)/R(1), but the value of
R = Hc2/Hc itself, i.e., R(Tc) or the material parameters κa

and κ‖.
Other interesting possibilities are depicted in Fig. 5, which

shows the ratios h(c)/hth and h(a)/hth for the s-wave order
parameter, 
 = 1, and the prolate (oblate) Fermi spheroid at
the upper (lower) panel. According to Eq. (38), to get the ratio
of actual H

(c)
c2 /Hc one has to multiply h(c)/hth by a material-

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10 0 cos
5

Ω = Ω
=

type - I for H || ab

( )c
thh h

t

( )a
thh h

type - II for H || c

FIG. 6. (Color online) The ratios h(c)/hth and h(a)/hth for the
order parameter 
 = 
0 cos θ on a Fermi spheroid with ε = 5 vs
reduced temperature. For C ≈ 0.2 [Eq. (39)], this corresponds to
H

(c)
c2 /Hc|Tc

= √
2κa(Tc) ≈ 1.32 and H

(a)
c2 /Hc|Tc

= √
2κ‖(Tc) ≈ 0.26.

A hypothetic superconductor with such characteristics is of type II
in magnetic field along the c axis and of type I in fields along the ab

plane.

specific dimensionless constant C which is roughly estimated
as

C = φ0Tc

�2v2
F

√
N (0)

≈ 0.1 Tc(K), (39)

where we took vF ≈ 108 cm/s and N (0) ≈ 1033 1/erg cm3.
For Fig. 5, this constant is chosen as C = 1 just for simplicity.
Clearly, varying this constant one obtains different material
behavior. For example, taking C ≈ 1.4 we obtain type-I
behavior for H ‖ c, but for in-plane fields we have type I at high
temperatures and type II at low temperatures. For C ≈ 0.6,
the situation is different: type-II behavior for H ‖ ab at all
temperatures, but a change from type I to type II on cooling.

In Fig. 6, the ratios h(c)/hth and h(a)/hth for the order
parameter 
 = 
0 cos θ on a Fermi spheroid with ε = 5
are plotted versuss temperature. If, for example, C ≈ 0.2,
according to Fig. 6 the ratio H

(c)
c2 /Hc > 1, while H

(a)
c2 /Hc <

1 for all temperatures. In other words, in this hypothetic
situation, the material is of type II in fields along the c axis
and of type I in fields perpendicular to c.

Given these results, it is interesting to mention the data on
superconductivity of potassium intercalated graphite CxK. As
reported in Ref. [7], changing x between 8 and 14.7 does
not affect Tc of this compound, but in fields along c the
material is of type I, whereas for H ‖ ab the superconducting
characteristics change from type I to type II. The Fermi
surface of these compounds consists of nearly cylindrical piece
attributed to graphite and a three-dimensional part presumably
due to K. Our one-band model is not directly applicable
to this case, not to speak about unknown symmetry of the
order parameter. Still, a variety of possibilities demonstrated
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FIG. 7. (Color online) The ratio h(a)/hth = (H (a)
c2 /Hc)/C vs t for

ε = 20, 
 = 
0 cos θ . The boundary between the type II and type I
corresponds to the constant of Eq. (39) C ≈ 0.42.

in Figs. 5 and 6 suggest that our theory (generalized for two
bands and given needed input parameters) is potentially able
to explain a quite complicated behavior of these and related
compounds.

The lower panel of Fig. 4 shows that when the field is
in the ab plane, the ratio R(a) = H

(a)
c2 /Hc is a nonmonotonic

function of t for an oblate Fermi spheroid. The source of
this behavior is in the fact that R(a) = γHR(c) and, as shown
in Ref. [23], for the order parameter ∝ cos θ , γH increases on
warming. To verify that this behavior is not accidental, we have
calculated this ratio for ε � 1 which corresponds to nearly
one-dimensional situation (Fig. 7). This example shows that,
in principle, situations are possible for which two transitions
from type I to type II and back happen with changing
temperature.

VII. DISCUSSION

We have shown that the criterion for the type of supercon-
ductivity based on the value of λ/ξ established for the GL
domain near Tc cannot be used at arbitrary temperatures. The
criterion based on the inequality Hc1 < Hc is not convenient
since there is apparently no straightforward way to calculate
the line energy of a single vortex at arbitrary T which is
directly related to Hc1. On the other hand, both the upper
critical field Hc2 and the thermodynamic one Hc can be
evaluated exactly at any T for any anisotropy. This qualifies
the inequality Hc2(T ) > Hc(T ) as an exact criterion for the
type-II superconductivity.

While evaluating R = Hc2/Hc within the microscopic
theory, we do not observe any peculiarities near R(Tc) = 1
of the sort discussed in literature in the frame of extended
GL equations for κGL ≈ 1/

√
2 (see Ref. [25] and references

therein). Of course, if the curves of Hc2(T ) and Hc(T ) cross
at some T ∗ < Tc, the material should undergo transition from
type I to type II or otherwise so that in the vicinity of T ∗ one
should take fluctuations into account (along with the sample

shape and possibility of hysteresis), which are beyond the
mean-field BCS theory. We, however, note that the argument
for existence of a broad region of the HT phase diagram
well under Tc with degenerate vortex configurations [26]
in materials with κGL ≈ 1/

√
2 is essentially mean field as

well [25].
Clearly, models based on an extended GL functional are

perfectly legitimate for systems described by this functional,
provided this functional is considered as exact. However,
for superconductors, the GL theory is an approximation
which holds for T → Tc within certain accuracy. To study
superconductors behavior in extended T domain, one should
use, if possible, the microscopic theory instead of considering
exact consequences of an approximate GL functional. As far
as relative values of Hc2 and Hc are concerned, this has been
done for isotropic bulk materials by Eilenberger [4], who found
that even if Hc2(Tc) = Hc(Tc) or κGL = 1/

√
2, Hc2 increases

faster than Hc when T decreases, dHc2/dT |Tc
> dHc/dT |Tc

.
Hence, there is no finite region of temperatures near Tc where
Hc2(T ) = Hc(T ). This in fact contradicts the claim of Ref. [25]
that such a region does exist.

For anisotropic one-band superconductors considered here,
the microscopic approach also does not give an indication of
peculiarities of the system properties for R(Tc) = 1 (such as
degeneracy of different vortex configurations [26] in a broad
region of the HT phase diagram).
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APPENDIX: AVERAGING OVER FERMI SPHEROIDS

Consider a uniaxial superconductor with the electronic
spectrum

E(k) = �
2

(
k2
x + k2

y

2mab

+ k2
z

2mc

)
, (A1)

so that the Fermi surface is a spheroid with z being the
symmetry axis. In spherical coordinates (k,θ,φ) we have

E(k) = �
2k2

2mab

(
sin2 θ + mab

mc

cos2 θ

)
= �

2k2

2mab

�(θ ), (A2)

so that

k2
F (θ ) = 2mabEF

�2�(θ )
. (A3)

The Fermi velocity is v(k) = ∇kE(k), with the derivatives
taken at k = kF :

vx = vab sin θ cos φ√
�(θ )

, vy = vab sin θ sin φ√
�(θ )

,

(A4)

vz = ε
vab cos θ√

�(θ )
, ε = mab

mc

, vab =
√

2EF

mab

.
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FIG. 8. (Color online) The normalization constant 
0 for the
order parameter 
 = 
0 cos θ as a function of the Fermi surface
shape parameter ε. The dashed curve is a convenient approximation
to 
0(ε).

The value of the local Fermi velocity v = (v2
x + v2

y + v2
z )1/2 is

given by

v = vab

√
sin2 θ + ε2 cos2 θ

sin2 θ + ε cos2 θ
= vab

√
�1(θ )

�(θ )
. (A5)

The density of states is

N (0) =
∫

�
2d2kF

(2π�)3v
= m2

abvab

2π2�3

∫
d


4π
√

�(θ )�1(θ )
, (A6)

where the integration is over the solid angle d
 = sin θ dθ dφ.
The Fermi surface average of a function A(θ,φ) is

〈A(θ,φ)〉 = 1

D

∫
d
A(θ,φ)

4π
√

�(θ )�1(θ )
, (A7)

D =
∫

d


4π
√

�(θ,ε)�1(θ,ε)

= F (cos−1 √
ε,1 + ε)√

1 − ε
, (A8)

where F is an incomplete elliptic integral of the first kind. If A

depends only on the polar angle θ , one can employ u = cos θ :

〈A(θ )〉 = 1

D(ε)

∫ 1

0

duA(u)√
�(u,ε)�1(u,ε)

, (A9)

� = 1 + (ε − 1)u2, �1 = 1 + (ε2 − 1)u2. (A10)

It is useful to have a relation between vab = √
2EF /mab and

v0 of Eq. (16) for a one-band situation:

v3
ab = D(ε) v3

0 . (A11)

As an example, we show in Fig. 8 how the averaging over
Fermi spheroids affects the normalization constant 
0 for the
order parameter of the form 
 = 
0 cos θ .
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