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Dissipation in Josephson tunneling junctions at low temperatures
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It is important to know the decoherence mechanism of a qubit based on Josephson junctions. At low
temperatures, as quasiparticle concentration becomes exponentially small, one needs to consider energy transfer
from tunneling electrons to other degrees of freedom to find dissipation in Josephson junctions and decoherence
in qubits. Here we discuss the energy transfer to two-level systems, i.e., the transitions between two different
configurations of ions inside an insulating layer separated by a potential barrier. We derive a general equation
of motion for the phase difference between two superconducting electrodes and we find a retarded dissipation
term due to electromagnetic mechanism and also contribution due to electron tunneling mechanism. Using the
equation of motion we calculate the decay of Rabi oscillations and frequency shift in qubits due to the presence of
the two-level systems. In the long-time limit our results coincide with those obtained by Martinis et al. [Martinis
et al., Phys. Rev. Lett. 95, 210503 (2005)] within the Fermi’s Golden Rule approach up to a numerical factor.
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I. INTRODUCTION

A Josephson tunneling junction can operate effectively as
a phase qubit if one can achieve a long coherence time by
reducing dissipation and the corresponding noise [1–4]. It
is well established that dissipation in tunneling Josephson
junctions near the critical temperature Tc and at intermediate
temperature is caused by quasiparticles [5,6]. However, at very
low temperatures, T � 2�g , the quasiparticles are frozen
out and their contribution to dissipation is exponentially
small being proportional to exp(−2�g/T ), where �g is the
superconducting gap [7,8]. Here we have assumed that the
electrodes are made of s-wave superconductors. Hence, an-
other mechanism of irreversible energy transfer from tunneling
Cooper pairs to other degrees of freedom should be at work,
because experimental data have confirmed the existence of
dissipation and phase decoherence in qubits at very low tem-
peratures [1,2,9] We consider in the following only sources of
dissipation intrinsic to Josephson junctions excluding external
sources such as the photon-induced tunneling discussed in
Ref. [10]. Dissipation due to excitation of phonons discussed
in Refs. [11–14] is not effective at very low energies and we
will not account for it here.

Following the discussions by Martinis et al. [1] we will
consider the dissipation at low temperatures T � �g originat-
ing from two-level systems, i.e., the transitions between two
different configurations of ions inside an amorphous insulating
layer separated by a potential barrier. It was well established
experimentally that two-level systems are responsible for
specific heat and ac dielectric losses at low temperatures and
frequencies below 20 GHz in amorphous dielectrics [15] which
are inevitably present inside Josephson junctions.

In Ref. [1], the decay of Rabi oscillations was obtained
using the Fermi’s Golden Rule approach. The dynamics of
Josephson junctions is governed by an equation of motion for
the gauge invariant phase difference. In the present work, we
derive such an equation of motion by accounting for both the
electromagnetic and tunneling mechanisms for the dissipation
caused by two-level systems. The resulting general equation
of motion can be used to describe the dynamics of junction
at arbitrary time after the junction is perturbed away from
equilibrium.

We will derive a general form of the dissipation term in
the equation of motion for the phase difference in tunneling
junctions with an amorphous dielectric layer. We model
this dielectric layer as an ensemble of two-level systems.
Interaction of the phase difference with the two-level systems
is electromagnetic in nature and results in retarded dissipation,
i.e., the dissipative term in the equation for the phase difference
is nonlocal in time and the corresponding equation for the
phase difference is an integral one with respect to time. We
also consider the tunneling mechanism for dissipation and
show that it is less effective than the electromagnetic one. We
then treat a qubit as a two-level system and use the Bloch
equations for a “spin” to describe the qubit and two-level
systems in the insulating layer. We show that in the long time
limit the dissipation of the low-amplitude Rabi oscillation in
qubit differs from the results of Martinis et al. [1] only by a nu-
merical factor and a weakly frequency-dependent logarithmic
factor.

II. ELECTROMAGNETIC MECHANISM

We consider low-energy excitations inherent to two-level
systems in amorphous dielectrics (i.e., SiO2 and SiNx) between
junction electrodes. Specifically, oxygen ions in SiO2 or
nitrogen ions in SiNx may occupy two close positions in a
Si matrix separated by a distance bα of the order of atomic
length. In energy space these two configurations are separated
by a potential barrier. We denote these positions as L and R, we
take the energy of such states as εLL = �α and εRR = −�α .
In the space of states |L〉 and |R〉 tunneling of ion between
these two configurations results in the off-diagonal matrix
elements εLR = −εRL = �0,α in the Hamiltonian describing
the two-level systems. The value of �0,α is related to the
distance bα between the two ions in the states |L〉 and |R〉 as

2�0,α(bα) = εa exp(−bα/a), (1)

where εa is of the order of atomic energy and a is a charac-
teristic atomic length. For a given junction, we assume that εa

and a are fixed while bα varies from site to site with an index
α. In the presence of an electric field E = �φ̇/2ed between
junction electrodes, the diagonal energies admit additional
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contributions ±e∗bαE cos ηα for εLL and εRR , respectively.
Here φ is the superconducting phase difference and φ̇ is its first
time derivative. d is the junction thickness, e∗ is the effective
charge of tunneling ions, and ηα is the angle between the vector
bα and the direction of the electric field between electrodes,
z. These contributions due to the electric field describe
the interaction Hint between the two-level systems and the
phase difference φ(t). The eigenstates of the two-level system
are

|−〉 = sin(θα/2)|L〉 − cos(θα/2)|R〉, (2)

|+〉 = sin(θα/2)|L〉 + cos(θα/2)|R〉, (3)

with the eigenvalues ±��α/2 ≡ ±(�2
α + �2

0,α)1/2. Here
tan θα = �0,α/�α . The dipole moment of the two-level sys-
tems is (e∗bα) cos θα(|+〉 − |−〉). The matrix element Hint

between states |±〉 is 〈−|Hint|+〉 = Ee∗bα sin θα cos ηα . The
distribution of two-level system parameters �α and bα is
assumed to be uniform,

P (�α,bα)d�αdbα = Pd�αdbα, (4)

where the normalization parameter P will be defined later.
Such a tunneling model describes the experimental data on the
specific heat and electric losses in amorphous dielectrics quite
well up to frequencies about 20 GHz [15]. This frequency
is much higher than the Josephson frequency and we take
this frequency as a cutoff frequency in our theory. In the |±〉
representation the Hamiltonian of interaction between the
two-level system with the index α and the phase difference
φ is

Hs = �[�αŜz + λαφ̇(cot θαŜz + Ŝx)], (5)

λα = (2e∗bα/ed) sin θα cos ηα, (6)

where Ŝk = σ̂k/2 and σ̂k are Pauli matrices with k = x, y, z.
The junction Hamiltonian is

HJ = J0A
[
1 − cos φ + ω−2

J φ̇2/2 − Iφ
]
, (7)

where J0 is the Josephson coupling density, A is the junction
area, ωJ is the Josephson frequency, and I is the bias current
IB via the junction in units of the Josephson critical current Ic,
I ≡ IB/Ic.

Using the Heisenberg equation, we obtain the Bloch
equations for “spin” variables Sα

Ṡx,α = −(�α + λαφ̇ cot θα)Sy,α, (8)

Ṡy,α = (�α + λαφ̇ cot θα)Sx,α − λαφ̇Sz,α. (9)

The solution in the case of weak coupling, i.e., small
Sx,α, Sy,α � 1 and Sz,α ≈ 1 when λαφ̇ � �α , is

Sx,α = λα

∫ t

0
dt ′φ̇(t ′) sin[�α(t − t ′)],

(10)

Ṡx,α = λα�α

∫ t

0
dt ′φ̇(t ′) cos[�α(t − t ′)],

and the two-level system frequency is renormalized from �α

to �α + φ̇λα cot θα . We replace �α + φ̇λα cot θα by �α in
the following discussions. Initially the junction is assumed

in equilibrium, φ̇(t = 0) = 0. In the equation for the phase
difference we obtain the dissipation contribution due to the
two-level systems:

ω−2
J φ̈ + sin φ −

∑
α

(�λα/J0A)Ṡx,α = I. (11)

We replace summation over α by integration over � and b

with a uniform distribution function Eq. (4). In the integral
over � and b we replace variables � and b by new variables
�� = (�2 + �2

0)1/2 and sin θ = �0/(��):

d�db = − a

�0
d�d�0 = a�

�0||W ||d�d(sin θ ), (12)

||W || = �
(
∂��∂�0 sin θ − ∂�0�∂� sin θ

) = cos θ/(��),

(13)

The last term in the left-hand side of Eq. (11) gives the
dissipation term

2�μσd

J0�m

∫ �m

0
d��d(sin θ )dη tan θ ln2

(
εa

�� sin θ

)
cos2 η

×
∫ t

0
dt ′φ̇(t ′) cos[�(t − t ′)]

≈
∫ �m

0

d�

�m

E(�)
∫ t

0
dt ′φ̇(t ′) cos[�(t − t ′)], (14)

E(�) = π�μσ�d

2J0
ln2

(
�a

�

)
= ��0

ω2
J

ln2

(
�a

�

)
,

�0 = 2π2μσd2e2

εd�
, �a = εa

�
, (15)

where μ = 2e∗a/ed, while the cutoff frequency is �m ≈
20 GHz and σ is the volume density of the two-level systems.
Here εd is the high frequency dielectric function. In obtaining
Eq. (14), we have neglected sin θ inside the logarithm. It only
results in a numerical factor of the order of unity inside the
logarithm, ln2(εa/��), which is omitted within logarithmic
accuracy. The logarithmic factor ln(�a/�) is valid only for
� > ω0 ≈ �a exp(−1/σ 1/3a) as we have assumed that the
two-level systems do not overlap. At lower frequencies, �

inside the logarithmic factor should be replaced by ω0.

III. TUNNELING MECHANISM

Displacements of ions described by the two-level-system
model induce the electric field inside the dielectric and thus
change the electric potential V barrier for the tunneling
electron. The electron tunneling integral β is given as

β = εa exp

[
−�

−1
∫ d

0
dz{2me[eV (z) − εe]}1/2

]
, (16)

where me is the electron mass and εe is its energy. We consider
the case that the frequencies � of two-level systems are much
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lower than the inverse transversal time for tunneling, 1/τT ,
where τT is given by the quasiclassical formula

τT =
∫ d

0
dz

√
me

2[eV (z) − εe]
. (17)

The change of β due to ion displacements, δβ = β − β0, is

δβ

β0
= meed

�2 ln(εa/β0)

∫ d

0
dz δV (z) = ln(εa/β0)

V0d

∫ d

0
dz δV (z),

(18)

where V0 ≈ e/a. The change of potential, δV (z), induced
by the dipoles pα = e∗bα of two-level systems positioned at
rα, zα , with rα = (xα, yα), is

δV (z) = e∗

εd

(b · ∇)

[
1

[(r − rα)2 + (z − zα)2]1/2

]
. (19)

The change in the Josephson coupling density δJ0 caused
by the change in electron tunneling δβ is δJ0/J0 ≈ 2δβ/β0. For
the tunneling mechanism the Hamiltonian for the interaction
between the two-level systems with index α and the phase
difference is

HT ,α = −J0

∫
dr

ln(εa/β0)

V0d
(1 − cos φ)Ŝx

∫ d

0
dzδV (r,z)

= J0A
ln(εa/β0)

V0d
(1 − cos φ)Ŝx

∫ d

0
dzδV (r = 0,z).

(20)

Using the Bloch equations for a “spin” we find

Sx,α(t) = −�αBα

∫ t

0
dt ′[1 − cos φ(t ′)] sin[�α(t − t ′)]

= −Bα

∫ t

0
dt ′ sin φ(t ′) cos[�α(t − t ′)], (21)

Bα =
∫ d

0
dz[bz,α(z − zα) − (bx,αxα − by,αyα)]R−3(z),

R2(z) = (z − zα)2 + r2
α. (22)

The coordinates rα, zα are defined up to the size of the two-
level system dipole b. In the equation for the phase difference,
Eq. (11), we have an additional two-level-system contribution
due to the tunneling mechanism[

e∗ ln(εa/β0)

εdV0d

]2 ∑
α

Aα sin φ(t)

×
∫ t

0
dt ′ sin φ(t ′) cos[�(t − t ′)],

Aα =
∫ d

0
du

∫ d

0
dv

× b2
z,α(u − zα)(v − zα) + (bx,αxα + by,αyα)2

R3(u)R3(v)
.

We replace the summation
∑

α by integration over coordinates
rα, zα of two-level systems

A =
∑

α

Aα ⇒ σ

∫
drα

∫ d

0
dzαA(rα,zα). (23)

Integration over rα and averaging over directions of two-level-
system dipoles bα gives

A = πb2σ

2

∫ d

0
dz

∫ d−z

−z

∫ d−z

−z

du dv

[
2uv

|u||v|(|u| + |v|)2

+
√

2(u4 + v4)1/2

(u2 + v2)2 + √
2(u2 + v2)(u4 + v4)1/2

]

≈ π2b2σd ln

(
d

b

)
. (24)

We estimate the contribution to the dissipation due to the
tunneling mechanism in the equation for the phase difference,
Eq. (11), as∫ �m

0

d�

�m

T (�) sin φ(t)
∫ t

0
dt ′φ̇(t ′) sin φ(t ′) cos[�(t − t ′)].

T (�) =
(

πe∗ ln(εa/β0)

εde

)2
a4σ ln(d/a)

d
ln2

(
�a

�

)
. (25)

The ratio r of the tunneling contribution to the dissipation and
that of the electromagnetic mechanism at a given � and small
φ is

r ≈ φ2 π2 ln(εα/β0)

ε2
d

(
a

d

) (
�dω2

J

e2�

)
ln

(
d

a

)
. (26)

Due to a � d and ωJ � e2/(�d) the tunneling mechanism
contribution is small everywhere except at low �, where it
remains nonzero in the limit � → 0, while the electromagnetic
contribution vanishes in this limit. The different behavior
for both mechanisms in this limit is because the two-level
system interacts directly with the phase difference via cos φ

for the tunneling mechanism as shown in Eq. (20), while in
the electromagnetic mechanism it interacts with φ̇ as shown
in Eq. (5). We note that the tunneling mechanism gives a
contribution to the dissipation which is nonlinear in the phase
difference and thus it is negligible at small deviations from the
equilibrium.

IV. DECAY OF RABI OSCILLATIONS IN THE ABSENCE
OF BIAS CURRENT

We consider dissipation for small-amplitude oscillations at
IB = 0 neglecting the tunneling contribution. We need to solve
the equation

ω−2
J φ̈ + φ +

∫ �m

0

d�

�m

E(�)
∫ t

0
dt ′φ̇(t ′) cos[�(t − t ′)] = 0.

(27)

Note that if E is frequency independent and �m is infinite, we
would obtain for the last term in the left-hand side the standard
dissipation term γ̃ φ̇.

Neglecting the logarithmic factor in E(�), we integrate over
�. After changing variables t − t ′ = u/�m, we get

ω−2
J φ̈ + φ + �0

ω2
J

∫ �mt

0
du φ̇(t − u/�m)f (u) = 0,

(28)
f (u) = sin u/u − (1 − cos u)/u2.
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To understand the long-time behavior we take φ(t) = exp(iωt)
in Eq. (28) and obtain for the left-hand side[

−ω−2
J ω2φ + φ + iω�0

ω2
J

∫ �mt

0
du exp(−iωu/�m)f (u)

]
× exp(iωt).

We see that φ(t) = exp(iωt) is indeed the solution of Eq. (28)
in the long-time limit �mt � 1 if we take the complex number
ω as ω = ωJ + δω + iγ with

γ ≈ πωJ �0

4�m

, δω ≈ �0ωJ

2�m

ln

(
�m

ωJ

)
(29)

for ωJ � �m. The parameter γ is the dissipation rate and δω

is the shift of Rabi oscillation frequency due to interaction with
two-level systems. Accounting for the logarithmic factor, we
obtain

γ ≈ πωJ �0

4�m

ln2

(
�a

�m

)
, (30)

δω ≈ �0ωJ

2�m

ln

(
�m

ωJ

)
ln2

(
�a

�m

)
. (31)

Thus the retardation effect is not important at �m � ωJ in the
stationary solution which is established in the long-time limit
�mt � 1.

V. DISSIPATION OF RABI OSCILLATIONS IN A QUBIT

We consider now a Josephson junction in the presence of a
bias current. Then energy levels in the quantum regime become
nonequidistant and we consider the operation only between the
ground state and the first excited state by ignoring the other
energy levels valid for a sufficiently high bias current IB . We
replace φ̇ by the momentum operator, and the Hamiltonian for
a qubit takes the form

HJ = J0A(1 − cos φ) − 4Ec∂
2/∂φ2 − �IBφ/(2e), (32)

where Ec = e2/2C and C is the junction capacitance. The bias
current consists of a dc and an ac component, IB = Iac + Idc.
We find the Hamiltonian of interaction between the oscillator
and two-level systems by replacing φ̇ by the momentum
operator P̂ = i∂/∂φ according to the relation φ̇ → 8P̂Ec/�.
Then the qubit is described by a two-level system with the
Pauli matrices Q̂ for a qubit “spin.” The matrix element of the
operator P̂ between the ground state and the first excited state
of the oscillator is given by the expression i(�ω10e

2/2C)1/2 and
we write the total Hamiltonian for the qubit and the two-level
systems as

H = �

[
ω10

2
Q̂z − IacQ̂y/(2e) +

∑
α

�α

2
Ŝz,α

]
+ Hint,

(33)

Hint = 1

2

∑
α

PαQ̂xŜx,α, Pα = i
4bz,α

d

(
�ω10ee

∗

2C

)1/2

,

(34)

where ω10 is the energy difference between the first excited
state and the ground state of the qubit. This Hamiltonian

describes the transfer of energy from the qubit to the two-level
systems, and then back from the two-level systems to the qubit.
Experimentally, a coherent state of qubit oscillation between
the ground and the first excited state is prepared at time t = 0
and then the probability to find the qubit in the excited state at
time t is measured. Using the Heisenberg equation of motion
for “spin” operators, we obtain the Bloch equations for the
system

Q̇x = −ω10Qy − IacQz/e,

Q̇y = ω10Qx −
∑

α

PαSx,αQz/�, (35)

Ṡx,α = −�αSy,α, Ṡy,α = �αSx,α + PαSz,αQx/�.

These equations describe the dynamics of a qubit in the
presence of Iac and two-level systems in the insulating layer.
For weak excitations, Qx, Qy � 1, Sx,α, Sy,α � 1, and
Qz ≈ 1, Sz,α ≈ 1 at Iac = 0, after excluding the operators for
the two-level systems, we obtain the equation for the qubit

Q̈x + ω2
10Qx +

∑
α

|Pα|2
�2

∫ t

0
dt ′Qx(t ′) sin[�α(t − t ′)] = 0.

After summation over all two-level systems, this equation
within a logarithmic accuracy takes the form

ω−2
10 Q̈x + Qx

+�0 ln2

(
�a

�m

) ∫ t

0
dt ′Qx(t ′)

1 − cos[�m(t − t ′)]
�m(t − t ′)

= 0.

(36)

We assume that the qubit is perturbed away from equilibrium
state at time t = 0, i.e., Qx(t = 0) = 0. For time t < �−1

m ,
dissipation is absent due to its retarded nature. In the stationary
state at time t � �−1

m , the retardation becomes ineffective and
we take the solution as Qx(t) ∼ exp(iωt) with ω = ω10 +
δω + iγ determined by

1 − ω2

ω2
10

+ �0

�m

ln2

(
�a

�m

)∫ ∞

0
du exp

[
iωu

�m

]
g(u) = 0,

g(u) = (1 − cos u)/u. (37)

We then obtain for the dissipation rate and the frequency shift

γ ≈ πω10�0

2�m

ln2

(
�a

�m

)
. (38)

δω ≈ ω10�0

�m

ln

(
�m

ω10

)
ln2

(
�a

�m

)
. (39)

At intermediate time t ∼ �−1
m , one needs to solve Eq. (36).

The result for γ coincides with that of Martinis et al. [1],
γ ≈ πω10�0/(6�m), except for a numerical factor and the
logarithmic factor ln2(�a/�m) missed in their treatment.
In our approach, as well as that of Ref. [1], transfer of
energy to noninteracting two-level systems was assumed,
i.e., the dipole-dipole interaction of two-level systems was
neglected. As shown in Ref. [16], this is possible if the
amplitude of Rabi oscillations, Qx(t = 0), is small, i.e.,
(4πσ/��m)(e∗a)2√Qx(t = 0) � 1. For σ/��m ≈ 3 × 1029

(erg cm3)−1, see Ref. [1], this condition is fulfilled very well.
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Excitation of Rabi oscillations by an ac current is described
by Eqs. (35). For short external current pulses with duration
τ , the retarded dissipation due to two-level systems may be
neglected at any current if �mτ � 1. Otherwise, the condition
of ignoring dissipation is Idc/e � γ . For stationary solutions,
the retarded nature of the dissipation term is not important.

VI. CONCLUSIONS

In conclusion, we have derived a general form of two-level-
system-driven dissipative terms in an equation of motion for
the phase difference in tunneling junctions with an amorphous
dielectric layer at very low temperatures when dissipation
caused by quasiparticles is negligible. We account for the direct
electromagnetic mechanisms of phase and two-level-system
interaction and also for the effect of two-level systems on elec-
tron tunneling in junctions. We show that they give terms which

are nonlinear and linear in phase, respectively. We find that the
dissipation from the tunneling mechanism is less effective than
the electromagnetic one. Finally we have derived the decay
rate of the Rabi oscillations due to the presence of two-level
systems in the insulating layer of Josephson junctions. Our
results are consistent with those obtained in Ref. [1] up to a nu-
merical factor and a weakly frequency-dependent logarithmic
factor.
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