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Time-reversal-invariant topological superconductors have a full paring gap in the bulk and gapless Majorana
states at the edge or on the surface. Here, we theoretically propose topological superconductivity in a doped
quantum spin-Hall insulator. We study the pairing symmetry of a doped two-dimensional tin film within a
two-orbital model, and find that a novel spin-triplet pairing is favored when the interorbital attractive interaction
is stronger than the intraorbital interaction. We propose that a doped tin film is a good candidate for a 2d topological
superconductor. Edge channels are studied in a tight-binding model numerically. Finally, we discuss the robustness
of topological superconductivity in two-dimensional tin films by comparing to 3d superconductivity in bulk tin.
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I. INTRODUCTION

The search for topological states of quantum matter has
generated intensive interest in condensed matter physics [1–4].
Recently, the quantum spin-Hall (QSH) state in two di-
mensions (2D) and topological insulators in three dimen-
sions (3D) have been theoretically predicted and experimen-
tally observed in a number of materials [5–8], and both
of them are characterized by the Z2 topological indices
[9–11]. Soon afterwards, the concept of time-reversal-invariant
(TRI) topological superconductors has been proposed [12–14].
Closely related to QSH state and topological insulators, the
2d and 3d TRI topological superconducting state has a
full pairing gap in the bulk, and gapless Majorana states
at the edge and on the surface, respectively, which have
potential applications in fault-tolerant topological quantum
computation [15]. Moreover, an emergent supersymmetry is
naturally present in these systems as a consequence of the
time-reversal symmetry [12]. Great efforts have been made
to search for topological superconductors; however, finding
candidate materials for these new topological phases of matter
is still challenging.

A simple and general criterion has been proposed to test
for TRI topological superconductors based on the pairing
amplitude on the Fermi surface [16]. A 2d TRI superconductor
is nontrivial if there are an odd number of Fermi surfaces
with a negative pairing order parameter [16]. This physical
criterion suggests searching for topological superconductors
in nonconventional superconducting materials with inversion
symmetry breaking [16] and strong correlation [17]. Recently,
superconductivity has been realized in a doped topological
insulator CuxBi2Se3 [18]. Such material has been proposed to
be a 3d topological superconductor, where a novel spin-triplet
pairing with odd parity is favored by strong spin-orbit coupling
(SOC) based on a two-orbital model [19]. However, the pairing
symmetry in doped Bi2Se3 is still under active debate [20–23].
On the other hand, the 2d TRI topological superconductor
has not yet been discovered. There are some theoretical
discussions on possible TRI topological superconductivity in
noncentrosymmetric superconductors with the Rashba spin
splitting [24–26]. The key point here is that for the spin-split
bands, one is paired into the (px + ipy) state, and the other
is paired into the (px − ipy) state. However, to realize a TRI

topological superconductor, the spin-triplet p-wave pairing
should be dominant over spin-singlet s-wave pairing in the
two spin-split bands [12,24].

Doped band insulators with strong SOC may be good
candidate materials in realizing an exotic pairing [27]. The
QSH effect has been realized in heterostructures [3]; these
systems have the advantage of great controllability of structure,
doping, symmetry, and SOC. In this paper, we theoretically
propose topological superconductivity in a doped QSH insu-
lator. We study the pairing symmetry of the newly predicted
QSH insulator in decorated stanene films SnX (X = -OH,
-F, -Cl, -Br, and -I) [28] within a two-orbital model for its
band structure. When the interorbital attractive interaction is
stronger than the intraorbital interaction, the resulting state
realizes a topological superconductor. We explicitly calculate
the Majorana edge spectrum in a tight-binding model. Finally,
we discuss the robustness of topological superconductivity in
doped SnX films by comparing to 3d superconductivity in
bulk β-tin.

The organization of this paper is as follows. After this
introductory section, Sec. II describes the effective two-orbital
model for the superconductivity in a doped QSH insulator.
Section III presents the results on the pairing symmetry, phase
diagram, and edge state. Section IV presents discussion and
possible experimental realization of topological superconduc-
tivity in tin film.

II. MODEL

The study of superconductivity in a doped QSH insulator
requires the knowledge of its band structure and pairing
mechanism. The general results presented in this paper are
generic for any doped QSH insulators. Here, we would like to
start from a simple model describing the 2D QSH insulator
SnX for concreteness [28]. In fact, 3D β-Sn was one of
the first superconductors to be studied experimentally, with
the critical transition temperature 3.72 K. Therefore, it is
likely that doped SnX film is also a superconductor. In
the following, we assume that 2D SnX is superconducting,
and study under what condition it would also be a 2d TRI
topological superconductor. We leave the discussion on pairing
mechanism to the end.
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FIG. 1. (Color online) (a) Crystal structure for SnI film with Ag adatom from the side (top) view [upper (lower)]. Inversion symmetry is
broken due to Ag doping. (b) First-principles calculations of band structure for SnI with one Ag adatom on a 4 × 4 surface supercell. The
Fermi level is indicated by the dashed line. Inset shows the spin splitting. (c) Fermi energy vs Ag doping concentration.

A low-buckled geometry for 2D SnI is shown in Fig. 1(a),
where it has a stable sp3 configuration analogous to graphane.
The lattice symmetry is D3d . As shown in Fig. 1(b) by first-
principles calculations, the band structure of AgxSnI is similar
to its parent compound SnI. The low-energy bands of SnI
consist of an antibonding state of the s orbital and a bonding
state of the px,y orbitals, labeled by |s−,↑(↓)〉 and |p+

x,y,↑(↓)〉,
respectively, which are similar for HgTe quantum wells [5].
The effective Hamiltonian describing these four bands near
the � point is given by the model of Bernevig, Hughes, and
Zhang [5]:

H0(k) = ε(k) + M(k)1 ⊗ σ3 + A(kxs3 ⊗ σ1 − ky1 ⊗ σ2);

(1)

here, si and σi (i = 1,2,3) are Pauli matrices acting on
the spin and orbital, respectively. To the lowest order in
k, M(k) = M0 + M1(k2

x + k2
y) and ε(k) = D0 + D1(k2

x + k2
y)

account for the particle-hole asymmetry [29]. M0 > 0 and
M1 < 0 guarantee that the system is in the inverted regime.
The basis of Eq. (1) is |s−, ↑〉, |p+

x,y, ↑〉, |s−, ↓〉, |p+
x,y, ↓〉,

and the ± in the basis stand for the even and odd parity and ↑,
↓ represent spin-up and spin-down states, respectively.

With the chemical doping by Ag adatom or electrical gating,
the lattice symmetry is reduced to D3. Therefore, additional
Rashba terms will be added to the effective Hamiltonian due
to inversion symmetry breaking [30]. To the lowest order, the
only possible term is

HR(k) = α(s2kx − s1ky) ⊗ (σ3 + 1), (2)

where α determines the strength of spin splitting. The effective
model for AgxSnI is given by H = H0 + HR . The band
structure is plotted in Fig. 1(b), and the bands show small spin
splitting which can be tuned to be large by gating. Because of
Ag doping, the Fermi energy μ lies in the conduction band
approximately 0.31 eV above the band edge, which leads
to a small Fermi surface respecting full rotation symmetry
around the z axis. Figure 1(c) shows the linear relation between
chemical potential and doping concentration, and matches well
with the parabolic band structure in 2D.

As for the fermion pairing, we consider the following short-
range density-density interactions:

Hint(x) = −U
[
n2

1(x) + n2
2(x)

] − 2V n1(x)n2(x), (3)

where nσ=1,2(x) = ∑
s=↑,↓ c

†
σs(x)cσs(x) is the electron density

in orbital σ . σ = 1,2 represent s− and p+
x,y , respectively. U

and V are effective intraorbital and interorbital interaction,
respectively. We assume that at least one of them is attractive,
say due to phonons as in the case of superconductivity of 3D
tin. The two-orbital U -V model for 2D AgxSnI is

H =
∫

dkc
†
k [H(k) − μ] ck +

∫
drHint(r). (4)

In the following, we shall apply the criterion of Ref. [16]
to investigate topological superconductivity in this noncen-
trosymmetric model.

III. RESULTS

A. Pairing symmetry

To determine the superconducting phase diagram of the
U -V model, we construct the Bogoliubov–de Gennes (BdG)
Hamiltonian with mean-field approximation

HBdG =
∫

dk�
†
k [(H(k) − μ) τ3 + 	(k)τ1] �k. (5)

Here τx,z are Pauli matrices in Nambu space and
the basis �

†
k ≡(c†1k↑,c

†
2k↑,c

†
1k↓,c

†
2k↓,c1−k↓,c2−k↓, − c1−k↑, −

c2−k↑). The low-energy physics with a small Fermi surface
has full rotation symmetry around the z axis Rz instead
of 3-fold rotation symmetry C3 of the point group D3 in
the lattice. We classify all possible pairing potentials 	(k)
according to time-reversal symmetry T ≡ (is2 ⊗ 1)K with
K complex conjugation, and Rz = ei(θ/2)�z with �z = s3 ⊗
(2 − σ3). In the weak-coupling limit with purely short-range
interaction, the mean-field pairing potential is k independent.
In Table I, only 6 forms can have nonzero values among the
16 possible products of (1,s1,s2,s3) and (1,σ1,σ2,σ3). We find
three different pairing symmetries with angular momentum
lz = 0,1,2 under Rz. The form of the corresponding pairing
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TABLE I. Three possible nonvanishing pairing potentials of the
two-orbital U -V model, 	1, 	2, and 	3. Matrix representation are
off-diagonal elements of BdG Hamiltonian.

	 Matrix Rz T

	1 1 ⊗ 1, 1 ⊗ σ3 0 +
	2 (s3 ⊗ σ2,1 ⊗ σ1) 1 +
	3 (s1 ⊗ σ2,s2 ⊗ σ2) 2 +

order parameter 	i , i = 1,2,3 is shown explicitly:

	1 : c1↑c1↓ + c2↑c2↓,c1↑c1↓ − c2↑c2↓,

	2 : (i(c1↑c2↓ + c1↓c2↑),c1↑c2↓ − c1↓c2↑), (6)

	3 : (c1↑c2↑ + c1↓c2↓,i(c1↑c2↑ − c1↓c2↓)).

	1 is a spin singlet, whereas 	2 and 	3 are interorbital spin
triplets. The symmetry properties of 	i are shown in Table I.

B. Phase diagram

The excitation energies of quasiparticles are obtained by
diagonalizing the BdG Hamiltonian Eq. (5) with fixing the
pairing potential to each 	i . We find that the superconducting
gap for 	2 has point nodes (in the kx direction when one
choose s3 ⊗ σ2), and the others have full gap. To obtain
the phase diagram, we estimate the superconducting critical
temperature Tc by analyzing superconducting susceptibility for
each pairing potential. The standard pairing susceptibility χ0

is defined as χ0 = −T
∑

k,n Tr[τ1G(k,iωn)τ1G(k,iωn)], with
G(k,iωn) = {iωn − [H(k) − μ]τ3}−1 the Matsubara Green’s
function. All other susceptibilities χ1, χ2, and χ3 can be
obtained by replacing τ1 with their corresponding pairing
potential τ11 ⊗ σ3, τ1s3 ⊗ σ2 (or τ11 ⊗ σ1), and τ1s1 ⊗ σ2 (or
τ1s2 ⊗ σ2) in Table I. A straightforward calculation shows that
they can be expressed by χ0, which contains the logarithmic
divergence at the Fermi surface. The linearized gap equations
for Tc in each pairing channel are as

	1 : det

[
U

(
χ0(Tc) χ01(Tc)
χ10(Tc) χ1(Tc)

)
− 1

]
= 0,

(7)
	2,3 : V χ2,3(Tc) = 1.

Using the band structure of H, we can calculate the phase
diagram numerically. In the limit of α → 0, we obtain the val-
ues of χ ’s analytically: χ0 = ∫

dξD(ξ ) tanh(ξ/2T )/2ξ , where
D(ξ ) is the density of states. χ01 = χ10 = (M0/μ)χ0, χ1 =
(M0/μ)2χ0, χ3 = 2χ2 = [1 − (M0/μ)2]χ0. Because χ2 < χ3,
we find that 	2 always has a lower Tc than 	3. From the
highest Tc, only 	1 and 	3 appear in the phase diagram. By
calculating their Tc’s from (7), we obtain the phase boundary

U

V
= 1 − (M0/μ)2

1 + (M0/μ)2
. (8)

Figure 2 shows the phase diagram as a function U/V and
M0/μ, for positive (attractive) V . A significant part of the
phase diagram is the 	3 phase, especially for the inversion
symmetry breaking α �= 0.
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FIG. 2. (Color online) Phase diagram of superconductivity in the
two-orbital U -V model, showing highest Tc phase as a function
of M0/μ and U/V . 	2 cannot be leading instability in this phase
diagram, for all the pairing states in 	1,3 are fully gapped. Solid
(blue) and dashed (red) line are phase boundary for α �= 0 and α = 0,
respectively.

C. Criterion

Next we consider the topological nature of the pairing
state. The present system belongs to the symmetry class DIII
in 2D [13,14], which is characterized by a Z2 topological
invariant in contrast to Z in 3D. Since the system has T
symmetry without inversion symmetry, the criteria in Ref. [16]
can be applied. Namely, a TRI superconductor is a topological
superconductor if (1) it has a full superconducting gap and (2)
there are an odd number of Fermi surfaces each of which
encloses one TRI point (which satisfy �a = −�a up to a
reciprocal lattice vector) in the Brillouin zone and has negative
pairing. The Z2 invariant is

N2D =
∏
j

[sgn(δj )]mj . (9)

Here j labels the Fermi surface, mj is the number of the
TRI points enclosed by the j th Fermi surface, sgn(δj ) ≡
sgn[〈j,k|T 	†|j,k〉] denotes the sign of the paring amplitude
of the j th Fermi surface, |j,k〉 are the eigenvectors of H(k).
Here in our system, the 	3 pairing has opposite sign on
the two Fermi surfaces which gives rise to a topological
superconductor phase, while 	1 has the same sign as shown
in Fig. 3. If we take the limit α → 0, the two Fermi surfaces
become degenerate; still the only odd-parity pairing 	3 phase
is topological [19,31,32]. As shown in Fig. 2, the topological
superconductor phase 	3 is more favorable when inversion
symmetry is breaking.

D. Edge state

We confirm that the system is exactly in the topological
phase under such conditions. To obtain the topological pro-
tected gapless edge states, we solve the following tight-binding
model describing continuous model Eq. (5) in the low-energy
regime,

H =
∑
〈rr′〉

c†rtrr′cr′ −
∑

r

μ′c†rcr +
∑

r

[c†r	c†r − H.c.],
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FIG. 3. (Color online) Bulk Z2 topological number, Fermi sur-
face pairing amplitude, and edge energy spectrum. (a) N2D = −1 for
	3 pairing, and (c) edge spectrum shows that helical edge modes
appears at each edge of the sample in the superconducting gap; while
(b) N2D = +1 for 	1 pairing, and (d) no edge states. All parameters
are taken from Ref. [29].

where 〈rr′〉 denotes the nearest-neighbor site. The hop-
ping parameters μ′ = μ − (D0 + 4D1) − (M0 + 4M1)1 ⊗
σ3, trr±ax̂ = −(D1 + M11 ⊗ σ3) ± (i/2)[As3 ⊗ σ1 + αs2 ⊗
(σ3 + 1)], and trr±aŷ = −(D1 + M11 ⊗ σ3) ∓ (i/2)[A1 ⊗
σ2 + αs1 ⊗ (σ3 + 1)]. We consider the 	3 pairing state in
the cylindrical geometry with a periodic boundary condition
in the x direction and an open one in the y direction.
The energy spectrum of this model is shown in Fig. 3(c).
One can see that there are helical Majorana states crossing
the bulk superconducting gap, where the right-going and
left-going states are spin splitting (very small), and localized
at opposite edges. Therefore, nontrivial Z2 number in the
bulk will lead to helical states at the edge. However, there
are no edge states with 	1 pairing as in Fig. 3(d), which
is consistent with the previous study on bulk topological
invariants.

IV. DISCUSSION

Finally, we discuss the robustness of topological supercon-
ductivity obtained from the two-orbital U -V model and the
possible pairing mechanism. As the phase diagram shows,
the interorbital spin-triplet 	3 phase wins as long as the
interorbital interaction exceeds the intraorbital one (V > U ).
This arises from the specific form of SOC in the band structure,

which favors 	3 pairing. Also, inversion symmetry breaking
and multiorbital systems would result in more unconventional
pairing. Therefore, doped QSH insulators with strong SOC
would offer a better way to find topological superconductors.
The realistic values of U and V in tin films are difficult to
estimate. Nonetheless, the 3d superconductivity in bulk β-Sn
is s-wave pairing from the s orbit via a phonon-mediated
mechanism. It is likely that 2D SnX is also a superconductor
with a phonon-driven pairing mechanism. The bare value of
attractive Uph and Vph are given by the electron-phonon cou-
pling λ2d as Uph,Vph ∝ λ2

2d. Such electron-phonon coupling
strength λ2d in 2D can be modulated and could even be larger
than that in 3D [33]. With 2D SnX film on different insulating
substrates such as CdTe or InAs, the strain from the substrate
can cause expansion and shrinkage of interlayer spacing, and
therefore the phonon spectrum can be greatly modulated.
The topological property persists in SnX with lattice constant
mismatch from −7% to 5% [28]. Thus, one could maximize
λ2d without changing the topological properties of SnX. In
reality, Uph is usually larger than Vph, and results in a largest
energy gain by forming the s-wave pairing. However, the
effective interaction given by U and V should include effects of
the Coulomb interaction and other possible renormalizations.
The Coulomb repulsion Ucoul and Vcoul renormalizes the
bare value of Uph and Vph, respectively. Ucoul 
 Vcoul due
to smaller interorbital wave function overlap, and weaker
Coulomb screening in 2D makes Ucoul larger than that in 3D.
The effective interaction parameters are given by U = Uph −
Ucoul, and V = Vph − Vcoul. Therefore the stronger intraorbital
repulsion would lead to U < V .

V. CONCLUSION

In summary, we have studied topological superconductivity
in a doped QSH insulator and propose 2D doped SnX as
a potential candidate. A wealth of QSH insulating materials
could lead to the discovery of the TRI topological supercon-
ductor, which supports the existence of Majorana edge states
and Majorana zero-energy modes in vortex cores. We hope
the theoretical work here can aid the search for topological
superconductor phases in real materials.
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[30] D. G. Rothe, R. W. Reinthaler, C.-X. Liu, L. W. Molenkamp,
S.-C. Zhang, and E. M. Hankiewicz, New J. Phys. 12, 065012
(2010).

[31] M. Sato, Phys. Rev. B 79, 214526 (2009).
[32] M. Sato, Phys. Rev. B 81, 220504 (2010).
[33] Y. Guo, Y.-F. Zhang, X.-Y. Bao, T.-Z. Han, Z. Tang, L.-X. Zhang,

W.-G. Zhu, E. G. Wang, Q. Niu, Z. Q. Qiu, J.-F. Jia, Z.-X. Zhao,
and Q.-K. Xue, Science 306, 1915 (2004).

054503-5

http://dx.doi.org/10.1038/nphys1270
http://dx.doi.org/10.1038/nphys1270
http://dx.doi.org/10.1038/nphys1270
http://dx.doi.org/10.1038/nphys1270
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevLett.102.187001
http://dx.doi.org/10.1103/PhysRevLett.102.187001
http://dx.doi.org/10.1103/PhysRevLett.102.187001
http://dx.doi.org/10.1103/PhysRevLett.102.187001
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/PhysRevB.81.134508
http://dx.doi.org/10.1103/PhysRevB.81.134508
http://dx.doi.org/10.1103/PhysRevB.81.134508
http://dx.doi.org/10.1103/PhysRevB.81.134508
http://dx.doi.org/10.1103/PhysRevB.34.8190
http://dx.doi.org/10.1103/PhysRevB.34.8190
http://dx.doi.org/10.1103/PhysRevB.34.8190
http://dx.doi.org/10.1103/PhysRevB.34.8190
http://dx.doi.org/10.1103/PhysRevLett.104.057001
http://dx.doi.org/10.1103/PhysRevLett.104.057001
http://dx.doi.org/10.1103/PhysRevLett.104.057001
http://dx.doi.org/10.1103/PhysRevLett.104.057001
http://dx.doi.org/10.1103/PhysRevLett.105.097001
http://dx.doi.org/10.1103/PhysRevLett.105.097001
http://dx.doi.org/10.1103/PhysRevLett.105.097001
http://dx.doi.org/10.1103/PhysRevLett.105.097001
http://dx.doi.org/10.1103/PhysRevLett.107.217001
http://dx.doi.org/10.1103/PhysRevLett.107.217001
http://dx.doi.org/10.1103/PhysRevLett.107.217001
http://dx.doi.org/10.1103/PhysRevLett.107.217001
http://dx.doi.org/10.1103/PhysRevB.86.064517
http://dx.doi.org/10.1103/PhysRevB.86.064517
http://dx.doi.org/10.1103/PhysRevB.86.064517
http://dx.doi.org/10.1103/PhysRevB.86.064517
http://dx.doi.org/10.1103/PhysRevLett.108.057001
http://dx.doi.org/10.1103/PhysRevLett.108.057001
http://dx.doi.org/10.1103/PhysRevLett.108.057001
http://dx.doi.org/10.1103/PhysRevLett.108.057001
http://dx.doi.org/10.1103/PhysRevLett.110.117001
http://dx.doi.org/10.1103/PhysRevLett.110.117001
http://dx.doi.org/10.1103/PhysRevLett.110.117001
http://dx.doi.org/10.1103/PhysRevLett.110.117001
http://dx.doi.org/10.1103/PhysRevB.79.060505
http://dx.doi.org/10.1103/PhysRevB.79.060505
http://dx.doi.org/10.1103/PhysRevB.79.060505
http://dx.doi.org/10.1103/PhysRevB.79.060505
http://dx.doi.org/10.1103/PhysRevB.79.094504
http://dx.doi.org/10.1103/PhysRevB.79.094504
http://dx.doi.org/10.1103/PhysRevB.79.094504
http://dx.doi.org/10.1103/PhysRevB.79.094504
http://dx.doi.org/10.1103/PhysRevLett.108.147003
http://dx.doi.org/10.1103/PhysRevLett.108.147003
http://dx.doi.org/10.1103/PhysRevLett.108.147003
http://dx.doi.org/10.1103/PhysRevLett.108.147003
http://dx.doi.org/10.1038/ncomms5144
http://dx.doi.org/10.1038/ncomms5144
http://dx.doi.org/10.1038/ncomms5144
http://dx.doi.org/10.1038/ncomms5144
http://dx.doi.org/10.1103/PhysRevLett.111.136804
http://dx.doi.org/10.1103/PhysRevLett.111.136804
http://dx.doi.org/10.1103/PhysRevLett.111.136804
http://dx.doi.org/10.1103/PhysRevLett.111.136804
http://dx.doi.org/10.1088/1367-2630/12/6/065012
http://dx.doi.org/10.1088/1367-2630/12/6/065012
http://dx.doi.org/10.1088/1367-2630/12/6/065012
http://dx.doi.org/10.1088/1367-2630/12/6/065012
http://dx.doi.org/10.1103/PhysRevB.79.214526
http://dx.doi.org/10.1103/PhysRevB.79.214526
http://dx.doi.org/10.1103/PhysRevB.79.214526
http://dx.doi.org/10.1103/PhysRevB.79.214526
http://dx.doi.org/10.1103/PhysRevB.81.220504
http://dx.doi.org/10.1103/PhysRevB.81.220504
http://dx.doi.org/10.1103/PhysRevB.81.220504
http://dx.doi.org/10.1103/PhysRevB.81.220504
http://dx.doi.org/10.1126/science.1105130
http://dx.doi.org/10.1126/science.1105130
http://dx.doi.org/10.1126/science.1105130
http://dx.doi.org/10.1126/science.1105130



