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Temperature dependence of the magnetocrystalline anisotropy energy and magnetization of the prototypical
rare-earth magnet YCo5 is calculated from first principles, utilizing the relativistic disordered local-moment
approach. We discuss a strategy to enhance the finite-temperature anisotropy field by hole doping, paving the
way for an improvement of the coercivity near room temperature or higher.
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I. INTRODUCTION

Ferromagnetism in permanent magnets has been a long-
standing problem in solid-state physics and materials science.
The mechanism of coercivity, resistance of the spontaneous
magnetization against the externally applied magnetic field in
the reverse direction, is not yet entirely known after almost 70
years since Brown’s paradox [1]. Development of modern rare-
earth magnets such as Nd2Fe14B [2] and SmCo5 [3,4] triggered
material-specific investigations of the coercivity mechanism
[5]. They culminate in today’s state-of-the-art technological
optimization of the microstructure of ferromagnetic materials
for the enhanced coercivity [6] on the phenomenological
and empirical basis. More fundamental understanding and
controlling on the basis of solid-state physics and statistical
physics is desired to better use these technological advances.
Especially the temperature decay of coercivity is a problem
in industrial applications and thus more and more demands
for the control of finite-temperature properties of permanent
magnets are rising.

The high-temperature tail of the magnetism is mostly
carried by 3d electrons [7] in the intermetallic system between
transition-metal and rare-earth (RE) elements while the low-
temperature magnetism is dominated by 4f electrons. Thus
developing an understanding and the theoretical control over
the temperature decay of 3d-electron magnetism has the
universal utility for the optimization of high-temperature
magnetism of RE magnets. Thus we focus on YCo5 as
our target system, extracting the 3d-electron part out of
the SmCo5 family. The so-called 1-5 magnets represent the
RE magnets with one of the simplest crystal structures and
SmCo5-based magnets are second in magnetic performance
only to the champion-magnet family including Nd2Fe14B;
SmCo5 currently serves for some special applications under
extreme conditions [8] with its high Curie temperature and
stability against corrosion. Also the large magnetocrystalline
anisotropy energy (MAE) of 5.5 MJ/m3 at room temperature
T = 295 K in YCo5 [9] can let itself qualify for permanent
magnet applications [8].

Describing the magnetic properties of such a material
presents significant challenges to ab initio theory. Itinerant
electron magnetism in realistic magnetic materials has often
been addressed in the ground state with the application of
the density-functional theory (DFT). Incorporation of finite
temperature physics and description of correlated electron

behavior can be issues for DFT which does not always
include localized electron effects adequately into its scope.
Both issues require a combination of DFT and statistical
physics in some way. Here we follow the idea of disordered
local moments [10–13] to incorporate the physics of thermal
fluctuations of well-developed magnetic moments into the
spin-polarized DFT for ferromagnetic materials [14–17]. A
relativistic version of the disordered local-moment (DLM)
approach has recently been developed [18,19] and successfully
applied to finite-temperature magnetic anisotropy in L10-FePt
alloys [18,19] and Co films [20] where magnetism is all carried
by d electrons. Thus the d-electron part in the magnetism of
rare-earth magnets can be a good target for DLM.

In this work we present ab initio calculations based
on DLM for YCo5 at finite temperatures. From calculated
temperature dependence of the magnetization M and the
MAE, which we denote by Ku1 as it mostly comes from the
uniaxial magnetocrystalline anisotropy (MCA) for YCo5, we
address the thermal decay of the anisotropy field estimated
as HA = 2Ku1/M which generally shows the approximate
proportionality to the coercivity field Hc [21]. The relation
is practically Hc ∼ 0.2HA with the practical hard upper limit
being Hc � 0.5HA that is reached only in some exceptional
samples [22]. Assuming such rough proportionality, we pro-
pose a strategy to improve HA(T ) at high temperatures in the
range T ∼ 400–500 K. Our main message is encapsulated in
Fig. 1 which shows that hole-doped YCo5 with the number
of doped holes being 0.24 and 0.35 per unit cell has the
stronger anisotropy field than pure YCo5 in the temperature
range T � 450 K and T � 550 K, respectively.

Experimentally, doping-enhanced coercivity has been
known for YCo5−xNix and other RECo5−xCux magnets (RE =
Ce, Sm) [28]. The coercivity is indeed significantly affected
by doping, which is seen in our calculated results on the filling
dependence of MAE near the ground state as shown in Fig. 2.
On top of such a filling dependence of coercivity determined
by the electronic structure, our idea is to let the electronic states
below the peak of MAE in Fig. 2 be thermally populated so
that the high-temperature MAE is enhanced. Experimentally
observed doping-enhanced coercivity had been discussed in
conjunction with intrinsic pinning [28]. Our results on the
finite-temperature physics together with the electron-band-
filling-sensitive nature of MAE point to a new scenario for
doping-enhanced coercivity at high temperatures.
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FIG. 1. (Color online) Calculated temperature dependence of the
anisotropy field HA for pure and hole-doped YCo5, where doping-
induced enhancement of HA is observed in the temperature range
T � 450–550 K with the number of doped holes being Nh = 0.24
and 0.36, respectively.

The rest of the paper is organized as follows. Our proposal
on the strategy to enhance the high-temperature coercivity
is found in Sec. IV. This follows an outline of the DLM
methodology underpinning the calculations in Secs. II and
III. Conclusions are given in Sec. V.
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FIG. 2. (Color online) Calculated magnetic anisotropy energy
plotted as the function of the valence electron number for YCo5

near the ground state T = 0 K. The numbers on the left-hand side
of the vertical axis indicate the results per the formula unit of YCo5

and those on the right-hand side of the vertical axis give the same
quantities converted to per the unit volume using the experimental
lattice constants in Ref. [26]. The previous theoretical result for MAE
at T = 0 is taken from Ref. [27]. The number of valence electrons
per formula unit of YCo5 is 54 (a, Ku1 = 7.38 MJ/m3 at T = 4.2 K
from Ref. [23]; b, Ku1 = 6.3 MJ/m3 at T = 77 K from Ref. [24];
c, K = 6.03 MJ/m3 from Ref. [25] at T = 293 K. We assume Ku1

dominates in K as was shown in Ref. [23], and d, Ku1 = 5.5 MJ/m3

at room temperature from Ref. [8]).

II. METHODS

Our computational method, the DLM approach, is based
on the Korringa-Kohn-Rostoker (KKR) method [29,30] and
coherent potential approximation (CPA) [31] for ab initio
electronic structure calculations. Especially to address the
temperature dependence of MAE which is brought about
by spin-orbit interaction (SOI), we follow the relativistic
formulation [18,19]. These aspects in Secs. II A and II B,
describe the general framework and how to extract MAE,
respectively, at the level of sketching the basic ideas. The
MAE as our key observable is focused on and for the rest
of the observables that we present in Sec. III, we refer to the
original works [15,19] and a recent review article [32] for their
explicit expressions in terms of KKR-CPA. In Sec. II C we give
the details of the application to the case of YCo5.

A. Framework

1. Separation of fast and slow dynamics

Under the situation that spin-fluctuation dynamics are much
slower than the characteristic time scales of electronic motions
[15], well-developed classical local moments ê are assumed
to exist on each site i = 1 · · · N in the unit cell, with N being
the number of magnetic atoms in the unit cell. The thermal
average 〈 〉 of the local moment

〈êi〉 =
∫

· · ·
∫

êiP
(n̂)({ê})d ê1 · · · d êN (1)

is assumed to be aligned with the magnetization direction n̂ for
a ferromagnet. Here n̂ is fixed in the calculation by hand. We
have specified the configuration of the local moments by {ê}
and statistical weight P (n̂)({ê}) given in terms of the Boltzmann
weights at finite temperatures. 〈êi〉 = mi is a magnetic order
parameter. For a ferromagnet, magnetized along a direction n̂,
mi = mi n̂.

2. DLM as a realistic mean-field theory

DLM is implemented as a realistic mean-field theory for the
local moments embedded in a sea of electrons given by spin-
polarized DFT for the target material. For a given configuration
of the local moments

{ê} ≡ {ê1,ê2, . . . ,êN },
the Boltzmann weight is defined as

exp
[ − β�(n̂)({ê})],

referring to the grand potential �(n̂)({ê}) in the spin-resolved
density functional theory for a given target ferromagnet (β =
1/kBT ). The partition function is accordingly written as

Z(n̂) =
∫

· · ·
∫

exp
[ − β�(n̂)({ê})]d ê1 · · · d êN

and the probability distribution function (PDF) in Eq. (1) of
the local-moment configuration {ê} is

P (n̂) = exp
[ − β�(n̂)({ê})]

Z(n̂)
.
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Here we use the mean-field approximation (MFA)

�
(n̂)
0 ({ê}) MFA=

N∑
i=1

h(n̂)
i · êi , (2)

where the Weiss field h(n̂)
i = h

(n̂)
i n̂ is written as follows [15]:

h
(n̂)
i =

∫
3

4π
(êi · n̂)〈�(n̂)〉êi

d êi (3)

for i = 1 · · · N where i runs over the local moments in
the unit cell and the thermal average denoted by 〈·〉êi

implies
the restriction in the averaging process with the direction of
the local moment on site i fixed to that specified by êi . [Further
terms proportional to, say, (êi · n̂)2, can be added to Eq. (2) to
improve the mean-field description [41] but have a rather small
effect.] With the MFA in Eq. (2) the overall partition function
factorizes into contributions from each of local moments

Z(n̂) =
N∏

i=1

Z
(n̂)
i

and the partition function is written in terms of the Weiss field

Z
(n̂)
i =

∫
exp

( − βh(n̂)
i · êi

)
d êi

= 4π

βh
(n̂)
i

sinh βh
(n̂)
i (4)

and the PDF is written as follows:

P
(n̂)
i (êi) = exp

( − βh(n̂)
i · êi

)
/Z

(n̂)
i

= βh
(n̂)
i

4π sinh βh
(n̂)
i

exp
( − βh(n̂)

i · êi

)
. (5)

With this expression for the PDF, the free energy is written as
follows:

F (n̂) = 〈�(n̂)〉 + 1

β

N∑
i=1

∫
P

(n̂)
i (êi) log P

(n̂)
i (êi)d êi , (6)

where the first term describes the internal energy and the
second describes −T S with the magnetic entropy

S = −kB

N∑
i=1

∫
P

(n̂)
i (êi) log P

(n̂)
i (êi)d êi .

The magnetization is given using the PDF in Eq. (5) as
follows:

m(n̂)
i = 〈êi〉 ≡ m

(n̂)
i h(n̂)

i , (7)

m
(n̂)
i = − 1

βh
(n̂)
i

+ coth βh
(n̂)
i = L

(
βh

(n̂)
i

)
. (8)

Here L(x) is the Langevin function.

3. CPA to embed the thermal disorder into DFT

CPA [31] is an approach to deal with the disorder physics
on a mean-field level by averaging over the random potentials
to introduce an effective uniformly distributed potential.
Following the original idea by Hasegawa [11] and Hubbard

[12], thermal disorder in local moments is embedded into the
description of the electronic states [15] on the level of CPA.

The way that the CPA determines the effective medium is
by letting the motion of an electron simulate the motion of an
electron on the average. The scattering problem at the heart
of KKR is solved to get the single-site t matrix t i for each
local moment i where the underlined t matrix is that in orbital
and spin angular momentum space. Some more elaboration
on that solution is given below with Eq. (12). For the system
magnetized along the direction n̂, the medium is specified by
a set of CPA-imposed t matrices [33]

t (n̂)
c

≡ (t1,c,t2,c, . . . ,tN,c)

which is determined (for details we refer to Ref. [19]) for a
given set of Weiss fields h

(n̂)
i as in Eq. (3) and corresponding

P
(n̂)
i (êi) as in Eq. (5), where the finite-temperature physics is

encapsulated.
The t matrices t (n̂)

c
that specify the effective medium comes

into the formulation of DFT as follows. By magnetic force
theorem we consider only the single-particle energy part of
the spin-resolved DFT grand potential as our effective local-
moment Hamiltonian

�(n̂)({ê}) � −
∫

dE fFD(E; μ(n̂))N (n̂)(E; {ê}), (9)

where fFD(E; μ(n̂)) is the Fermi-Dirac distribution function
with the chemical potential being μ(n̂) and N (n̂)(E; {ê}) is the
integrated density of states [19,34] with the given direction of
magnetization n̂ and the given configuration of local moments
{ê}. Using the Lloyd formula [35] for N (n̂)(E; {ê}) on the right-
hand side of Eq. (9), the grand potential is expressed in terms
of the t matrices [19].

B. Calculation of magnetic anisotropy energy

1. Defining the MAE for the uniaxial MCA

For uniaxial magnets, the free energy takes the form

F (n̂) = Fiso + Ku1 sin2 θ,

where Fiso is the isotropic part, Ku1 > 0 is the MAE for
uniaxial MCA, and θ is the angle between the direction of
magnetization and the easy axis. Then

Tθ = −∂F

∂θ

= −2Ku1 sin θ cos θ. (10)

Thus in order to extract MAE for the uniaxial MCA we fix
the direction of magnetization to be n̂ = (1,0,1)/

√
2, that is,

n̂ = (sin θ cos φ, sin θ sin φ, cos θ ) with θ = π/4 and φ = 0
and calculate the magnetic torque Tθ=π/4. Our target MAE is
obtained as

Ku1 = −Tθ=π/4. (11)

2. Spin-orbit interaction in relativistic KKR

For a given set of self-consistent potentials, electronic
charge, and local-moment magnitudes, the directions of local
moments are described by the unitary transformation of the
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single-site t matrix for local moment i,

t i(E; êi) = R(êi)t i(E; ẑ)R(êi)
†, (12)

where t(E; ẑ) is the t matrix with the effective field pointing
along the local z axis for given energy E, and R(êi) is for
the O(3) unitary transformation that rotates the z axis along
the direction of êi . The scattering problem at the heart of
KKR is solved incorporating spin-orbit interaction (SOI) with
a magnetic field pointing along the z axis [36] and the single-
site t matrix t i(E; ẑ) is obtained.

In the absence of SOI, an element of the single-site
scattering t matrix

ti;l,m,σ ;l′,m′,σ ′ = ti;l,σ δl,l′δm,m′ . (13)

where l is the angular momentum quantum number and m the
azimuthal component, and

t i(E; êi) = t+i 1 + t−i σ · ei , (14)

where an element t
+(−)
l,m;l′,m′ = 1

2 [ti;l, 1
2
+ (−)ti;l,−1/2]. When SOI

is included, the t matrix is no longer independent of m which
leads to the generation of magnetic anisotropic effects.

3. Torque-based formula in KKR-CPA

The uniaxial MAE is obtained as the derivative of the free
energy following Eq. (10). Inserting Eq. (6) for the free energy,
we get the following [19]:

T
(n̂)
θ = − ∂

∂θ

∑
i

∫
P

(n̂)
i (êi)〈�(n̂)〉êi

d êi . (15)

This is our working formula to produce the results for the
finite-temperature MAE of YCo5 which we now go on to
describe.

C. Specifics with the case of YCo5

The past decade has seen the successful application of
DLM theory to L10-FePt alloy [18,19] which is a uniaxial
ferromagnet and the magnetism is carried largely by 3d and
5d electrons. Since YCo5 involves mostly 3d electrons for
its magnetism, success of DLM description on the same level
as was achieved for L10-FePt is expected provided that the
assumption of localized moment on the magnetic atoms works
well. Some care must be taken in the application of DLM
for Co-based magnets since the trend among Fe, Co, and Ni
[13] shows that the assumption of localized moment works
well for Fe, faces challenge for Ni, and Co sits somewhere
in-between. Stability of local moments on the Co sublattices
in the present case is discussed in Sec. II C 2. Indeed we
will see below some inherent underestimate near the Curie
point in our calculations which might indicate some fragile
nature of the local moments in YCo5. This problem can
be cured by extending the calculation to that based on the
nonlocal CPA [37,38]. For now we are mostly concerned with
the lowest-temperature properties and the middle-temperature
range of T � 600 K which is well below the Curie temperature
at TCurie = 920 K [26]. So we proceed with the single-site
theory within the scope of the present project.
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FIG. 3. (Color online) Crystal structure of YCo5: (a) bird’s-eye
view and (b) top view seen along the c axis. Nearest-neighbor
pairs in the Co(2c)-Co(3g) network are only partially drawn for the
illustration. Labels for atoms in (b) follow Table I.

1. Crystal structure

We take the experimental crystal structure of YCo5 with the
space group No. 191 a = 4.948 Å and c = 3.975 Å [26]. The
unit cell consists of one formula unit: Y, Co(2c), and Co(3g)
sublattices. The atomic configuration in the unit cell is shown
in Fig. 3(a) as a bird’s-eye view. The top view along the c axis
is shown in Fig. 3(b) to illustrate the relative positions of the
Co(2c) atoms and the Co(3g) atoms. Within the layer along
the ab plane, it is seen that nearest-neighbor Co(3g) atoms
form a kagome lattice. Between those kagome layers, Co(2c)
atoms sit right on the center of Co(3g) triangles to form a
hexagonal lattice on the same ab-plane layer as Y atoms. The
ratio c/a � 0.80 means that the tetrahedron formed by the
Co(3g) triangle and the Co(2c) atom is close to the regular
one. So the Co(2c)-Co(3g) atomic distance is almost equal to
the Co(3g)-Co(3g) distance which is 0.5a. On the other hand,
the Co(2c)-Co(2c) distance which is a/

√
3 � 0.58a spans the

longest distance among the nearest-neighbor Co atom pairs.
We set the position of each atom and the direction of the
translation vectors as shown in Table I in our calculation. The
labeling scheme for the atoms and the directions is illustrated
in Fig. 3(b).

2. Robustness of local moments in YCo5

We inspect the validity of the DLM approach at finite tem-
peratures in the present calculation. Calculated temperature
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TABLE I. Setup of the unit cell of YCo5 in the present calculations.

Sublattice Atom Atomic coordinates
Y (0,0,0)

Co(2c) Co(1) (1/(2
√

3),1/2,0)
Co(2) (1/

√
3,0,0)

Co(3g) Co(3) (
√

3/4, −1/4,1/2)
Co(4) (

√
3/4,1/4,1/2)

Co(5) (0,1/2,1/2)
Primitive translation vectors
t1 (

√
3/2, −1/2,0)

t2 (0,1,0)
t3 (0,0,1)

dependence of each of the local moments in YCo5 are shown
in Fig. 4. The DLM picture of magnetism in metals at finite
temperature is based on the assumption that there are some
aspects of the interacting electrons of a material that vary
slowly in comparison with faster degrees of freedom. These
are captured in terms of the orientational unit vectors, {ê}, the
transverse part of the magnetic fluctuations. The electronic
grand potential �(n̂)({ê}) is, in principle, available from
spin-resolved DFT (SDFT) generalized for the noncollinear
magnetic profiles which are labeled by {ê} [15]. Within the
tenets of SDFT the charge and magnetization densities depend
on these configurations, i.e., ρ(r,{ê}), 	M(r,{ê}). In the space
around an atom at a site i the magnetization is constrained
to follow the orientation êi there but its magnitude μ(r)
can depend on the surrounding orientational environment,
μ(r) = μ(r,{ê}). In many of the materials where the DLM
theory has been successfully applied, the magnitudes are
found to be rather insensitive to the environment and can
be modeled accurately as rigid local moments. In other
materials, e.g., Ni [39], the magnetism is driven by the coupling
of the magnitudes (longitudinal magnetic fluctuations) with
these transverse modes. When there is short-range aligning
of the orientations or long-range magnetic order, a finite
magnetization magnitude can be established; whereas in
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FIG. 4. (Color online) Calculated temperature dependence of the
total (including both spin and orbital) local moment for each magnetic
sublattice in YCo5.

environments where the orientations differ significantly over
short distances, the magnitudes shrink.

Figure 4 indicates the extent of this effect in YCo5. We
have started with a SDFT calculation of the charge and
magnetisation density ρ(r) and 	M(r) for the T = 0 K ferro-
magnetic state {ê = n̂} and find the magnetization magnitude
per site is 1.9 and 1.6μB for the Co(2c) and Co(3g) sites,
respectively. When we use the self-consistent field potentials
that these produce in a frozen potential approximation in our
DLM theory for increasing temperatures when the moment
orientations become disordered, the average magnetization
magnitude per site output from this calculation diminishes.
For temperatures up to ∼600 K, this decrease is slight, and
thereafter more significant as seen in the figures. Up to 600 K,
therefore, the DLM theory as applied is adequate and we
can examine the effects of transverse fluctuations on the
MAE that it describes. For higher temperatures, however, the
effects of short-ranged correlations among the ê orientation
(via the use of the nonlocal CPA, for example [37,38]) and
longitudinal fluctuations [40] need to be addressed for a more
complete picture. Comprehensive analyses on bcc-Fe, where
the robustness of the local moments are established, can be
found in a recent work [41].

Further details about the calculations are described in the
Appendix.

III. RESULTS

We start with the calculated MAE near the ground state
to demonstrate its sensitivity to the filling of the electrons in
Fig. 2. Corresponding data for the magnetization is shown
in Fig. 5. We see that even the sign of the MAE sensitively
changes depending on a fraction in the filling of electrons,
which is reasonable in the physics of magnetic anisotropy
where adding/removing one electron in an electronic cloud
that points to a particular real-space direction in a given
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FIG. 5. (Color online) Calculated magnetization of YCo5 plotted
as a function of the number of electrons near the ground state at m =
0.967. Our calculated result 8.03μB at around T = 100 K falls onto
the experimental numbers within two digits. For the closeness of such
data to the ground state, see Fig. 7 (a, M = 8.33μB at liquid-helium
temperature from Ref. [23] and b, M = 7.99μB at room temperature
from Ref. [26]).
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crystal-field environment indeed affects which direction the
magnetic moment should prefer under the presence of SOI. So
the challenge is how precisely we can pinpoint the electron
number right onto the realistic one, on which details are
given in Sec. A 3 of the Appendix. Fixing the electron
number by a fine-tuning of the chemical potential in the DLM
runs, we obtain the temperature dependence of MAE and
magnetization. The temperature dependence of the anisotropy
field is deduced from them. These data for the bulk are shown
in Sec. III A. Then we inspect how our calculated MAE scales
with respect to the calculated magnetization, resolving into
sublattices and temperature ranges in Sec. III B. Comparison
to the single ion anisotropy model analyses by Callen and
Callen [42] and more recent ones [18,43] is carried out to help
uncover the key mechanisms.

A. Bulk observables

Calculated temperature dependence of MAE for YCo5

by DLM at the fixed correct valence-electron number is
shown in Fig. 6. We have a systematic underestimate of
MAE for the overall temperature range as compared to the
experimental results found in the literature. However, the
qualitative temperature dependence is well reproduced. In a
similar manner to MAE, calculated temperature dependence
of magnetization at the fixed valence-band filling is shown
in Fig. 7. Fitting the calculated temperature dependence of
magnetization as it decreases to zero in the temperature range
T > 900 K to the relation

M(T ) = AM|T − TCurie|β,

we get TCurie = 965 K, β = 0.50, and AM = 0.33. The critical
exponent falls onto the mean-field value β = 1/2 within the
numerical accuracy as it should, which gives a check of the
data. Our ab initio result for the Curie temperature compares
with the experimental Curie temperature TCurie,expt. = 920 K
[26] within the deviation of 5%. A mean-field result on
the transition temperature typically gives an overestimate by
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FIG. 7. (Color online) Calculated temperature dependence of
magnetization for YCo5. Experimental Curie temperature, 920 K,
is taken from Ref. [26] (a, Ref. [23] and b, Ref. [26]).

O(10)% as was observed for the L10-FePt alloy calculated by
exactly the same method [18] as the one we utilize here; the
apparent absence of such an overestimate might rather indicate
the fragility of the local moments close to TCurie.

We obtain the ab initio result for the temperature
dependence of the anisotropy field HA as shown in
Fig. 8(a) following the simple coherent magnetization rotation
picture,

Ku1 = 1
2MHA, (16)

with Ku1 and M being the calculated uniaxial MAE in Fig. 6
and magnetization in Fig. 7, respectively. The underestimate
by 30% of Ku1 on the left-hand side of Eq. (16) leads to a
similar underestimate of HA.
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FIG. 8. (Color online) Temperature dependence of the
anisotropy field for YCo5 as deduced from the numbers presented in
Figs. 6 and 7, following Eq. (16). The experimental data at 293 K is
taken from Ref. [25].
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FIG. 9. (Color online) Calculated temperature dependence of
local-moment-resolved MAE.

B. Scaling MAE and magnetization

Scaling relation concerning MAE with respect to magneti-
zation

Ku1(T ) = A [M(T )/M(0)]α (17)

has been discussed for magnetic materials of which the rep-
resentative one was established by Callen and Callen [42] on
the basis of single-ion theory. Their exponent α = l(l + 1)/2
at low temperatures, where l is the order of the expansion
in terms of the spherical harmonics, has been challenged in
some materials [18,43]. The Callen-Callen argument for a
ferromagnet with the uniaxial anisotropy predicts an exponent
α = 3 with l = 2. Here we inspect what sort of scaling relation
holds for our target magnet YCo5. YCo5 is an intermetallic
compound and the single-ion theory is not directly applicable
to it. On top of that, the particular crystal structure of YCo5

comes with multiple magnetic sublattices in the unit cell. The
bulk scaling between MAE and magnetization might not be
exactly the same as sublattice-resolved scaling considering
the fact that each sublattice is exposed to its own crystal-field
environment, depending on its own characteristic temperature
dependence.

We start with the temperature dependence of local-moment-
resolved MAE as shown in Fig. 9. Exceptional behavior seen
for Co(5) in the Co(3g) sublattice originates in the effect of
SOI with the magnetization direction n = (1,0,1). Out of the
data in Fig. 9, the sublattice-resolved MAE as a function of
the order parameter m = M(T )/M(0) is plotted in Fig. 10 to
which we apply the scaling relation, Eq. (17), for each of the
contributions from the magnetic sublattices as well as for the
bulk data. The bulk scaling analysis is shown representatively
in Fig. 11. Experimental bulk data is taken from the past
literature [23]. For the temperature range where the reliable
experimental data set seems to be available, we tabulate the
extracted scaling exponents in Table II. The scaling exponents
do depend on the magnetic sublattices. We find that the bulk
scaling exponent is observed only in a phenomenological
way after summing up the contribution of each magnetic
atom in the unit cell. The overall calculated trend from the
high-temperature side with larger α to the low-temperature
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FIG. 10. (Color online) Calculated MAE plotted as a function of
the order parameter m ≡ M(T )/M(0) for each local moment i. The
inset is a zoomed-in plot in region M(T )/M(0) � 1.

side with smaller α is shared by all of the sublattices and the
bulk. The bulk scaling exponent around the room temperature
is calculated to be α ∼ 5.6 which reasonably compares with
the experimental exponent α ∼ 6.1 that was extracted in the
temperature region including the room temperature.

We note that our calculated data in Fig. 11 shifts from
experimental data on the m axis when compared at the same
temperatures. Our calculated data for m > 0.96 are for below
the liquid-nitrogen temperatures while for the experimental
data [23] the room-temperature data is already in the parameter
range m > 0.96. That deviation could be related to the inherent
underestimate in our calculations.
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FIG. 11. (Color online) Scaling of the bulk MAE, Ku1,bulk(T ),
with respect to the order parameter m = M(T )/M(0). The scaling
exponent α in Ku1,bulk(T ) = Amα depends on the temperature-
dependent scaling region: (i) α = 3.5 for m > 0.975 which cor-
responds to 41 K < T < 75 K, (ii) α = 5.6 for 0.83 < m < 0.95
which corresponds to 186 K < T < 477 K, and (iii) α = 6.5 for
0.75 < m < 0.86 which corresponds to 428 K < T < 610 K.
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TABLE II. Focus temperature range and the extracted scaling
exponents α in Ku1 ∝ mα for each local moment on the magnetic
sublattice in the unit cell of YCo5 and for the bulk.

T = 177 K 186 K 300 K

Co(1)/Co(2) – α = 5.6
Co(3)/Co(4) – α = 4.9
Co(5) α = 7.7
Bulk (Our calc.) – α = 5.6
Bulk (Expt.a) α = 6.1 for 150 K � T � 300 K

aReference [23].

IV. DISCUSSIONS

We discuss the strategy to improve the persistence of
coercivity against temperature decay. It has been known that
the coercivity is approximately proportional to the anisotropy
field HA [5,21]. A significant part of the reduction factor
Hc/HA originates from the microstructure which is beyond the
scope of the bulk electronic structure considerations. Now our
interest lies in how to improve HA(T ) or equivalently Ku1(T )
for high T . We propose a scheme to exploit the peak position
of MAE in Fig. 2 and how the electrons are thermally excited
from the ground state following the Fermi-Dirac distribution.
The idea is to let the thermally excited electrons populate the
targeted electronic state which lies below the peak in Fig. 2
to enhance MCA. For that, we artificially lower the chemical
potential to make some place for thermally excited electrons to
populate at high temperatures. Then we sacrifice the optimal
values of the MCA at low temperatures but we can extract the
optimal anisotropy field over the operating temperature ranges.

The results for the calculated temperature dependence of
the MAE in the hole-doped YCo5’s is shown in Fig. 12. Hole
doping is implemented by artificially lowering the Fermi level
in DLM runs for YCo5. Measuring the position of the lowered
Fermi level, EF,doped, from the undoped one, EF,undoped, in units
of Kelvin helps us to figure out around which temperature
range the thermally excited electrons would reach the peak
position in Fig. 2. We found that for the reduction range
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FIG. 12. (Color online) Calculated temperature dependence of
MAE for the hole-doped YCo5.

150 K � �EF � 300 K, with �EF ≡ (EF,doped − EF,undoped),
some enhancement of the MAE around T ∼ 500 K is numer-
ically observed. The data with �EF = 314 and 471 K were
extracted with the corresponding reduction in the electron
number being �Ne = −0.24 and −0.35, respectively, as the
main message of this paper in Fig. 1, where MAE is expressed
in terms of the anisotropy field following Eq. (16).

Remarkably, nonmonotonic temperature dependence of HA

is found for the computational “sample” in the low-coercivity
region with the electron number reduced by around 0.9 in
Fig. 12. This nonmonotonic temperature dependence of MAE
is reminiscent of what has been known experimentally for
Y2Fe14B since 1986, where the temperature enhancement
in MAE in the order of 0.2–0.3 MJ/m3 is observed around
T ∼ 300 K [44]. The common factor among Y2Fe14B and
YCo5 is that 3d-electron contribution in the MCA of rare-earth
magnets is extracted out. The nonmonotonicity in our finite-
temperature data for the chemical-potential-controlled YCo5

comes from the following two factors: (a) thermal population
of the particular electronic states that corresponds to the peak
of MAE in Fig. 2, and (b) various contributions at finite
temperatures from multiple sublattices in the unit cell. We
speculate that analogous physics may be at work in Y2Fe14B
which would require more extensive computations than those
for the present project.

We note that the Curie temperature shifts as the chem-
ical potential is reduced. The temperature dependence of
magnetization shifts rather monotonically with respect to
the artificially manipulated chemical potential while Ku1(T )
behaves nonmonotonically, and the high-temperature enhance-
ment seen in Figs. 1 and 12 is to be considered as a
finite-temperature reflection of the nonmonotonic ground-state
behavior in Fig. 2 rather than a reflection of the plain shift of
the Curie temperature.

V. CONCLUSIONS

The temperature dependence of MAE and the magneti-
zation for YCo5 has been calculated from first principles
within the assumption of local moments to give the qualitative
agreement with the experimental data. We have proposed a way
to improve the high-temperature coercivity by hole doping as
was demonstrated by calculations with the filling controlled by
the chemical potential manipulation. That can be implemented
as applying the gate voltage for the case of a thin film sample,
or alloying Co with some other elements to slightly reduce the
valence electron number in the bulk. Since Co is an expensive
element, replacing it with some cheaper ingredients with the
improved coercivity in the practical operation temperature
range is quite welcome. Thus we have proposed a way to
improve the practical utility of YCo5 from the perspective of
the electronic structure and statistical physics.
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APPENDIX: DETAILS OF THE CALCULATIONS
FOR YCo5

1. Adjustment of the valence electron number

The overall calculation consists of two steps:
(1) The first step is to generate the grand potentials

for each of the assumed local-moment configurations by a
scalar-relativistic KKR calculation. We do a spin-polarized
calculation for YCo5 as parametrized by Vosko et al. [45] to
reach the ferromagnetic ground state and yield the potentials
for each local moment on the magnetic sublattices.

(2) Then the second step consists of solving the fully
relativistic equation of state under the potentials generated by
the electronic structure calculation in step 1 and the direction
of magnetization is fixed to be n = (1,0,1) with the motivation
to address MAE using the torque-based formula in Eq. (15).
Solutions are obtained so that Eqs. (3) and (5) are solved
self-consistently to yield the results on MAE, magnetization,
and the temperature. In these KKR-based calculations we
set the cutoff order in the expansion of spherical harmonics
lmax = 3 all through the above two steps.

In step 1, we follow the atomic-sphere approximation
(ASA) considering the deformed shape of the unit cell to avoid
the complication caused by overlapping muffin-tin spheres or
too large an interstitial region. We have confirmed that this
ASA construction is adequate from full-potential (FP) linear
muffin-tin orbital (LMTO) calculations where we find the ASA
and FP-LMTO densities of states for the T = 0 K cases to
compare well.

Having a difference in the treatment of the SOI between
steps 1 and 2, an adjustment of the Fermi level needs to be done
to exactly fix the number of electrons, which is demonstrated in
Fig. 13. The adjustment is done in the order of O(0.01) (Ry) ∼
O(0.001) (eV). We describe the practical procedure for this in
Sec. A 3 of the Appendix.

2. Achieving the self-consistency in DLM with multiple
magnetic sublattices in the unit cell

Further iterations within DLM is taken for YCo5 to achieve
the self-consistency of the calculation to incorporate the effects
of multiple mean fields that depend on the magnetic sublattice
within the unit cell. The target material YCo5 has at least
two different magnetic sublattices, Co(2c) and Co(3g), and
the magnetic moments on them can be different from each
other as was found in the neutron scattering experiments [26].
The Weiss fields are obtained from Eqs. (3) and (5) solved
self-consistently for the sites on the sublattice where there are
local moments residing. We proceed as follows.
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FIG. 13. (Color online) Calculated Fermi-level dependence of
the number of electrons for pure YCo5 near the ground state at
m = 0.967 [m = L(βh) with βh = 30 as in Eq. (8)]. Equation of
state is solved with the artificially given Fermi level to adjust the
valence electron number exactly to the number as set up by the
calculation.

(1) We start with a run with βh uniformly set over all of the
local moments in the unit cell so that mi = L(βh). We refer to
this run as the zeroth round of the correction process.

(2) With the output of the zeroth round, the input βh’s
are reset by using the output Weiss fields produced by the
calculation from Eq. (3):

β = (βh)i/hi (A1)

for all i’s. We note that the left-hand side, inverse temperature,
is sublattice independent. This imposes the self-consistency
condition: We fix the input βh for the Co(2c) sublattice
and adjust βh for other local moments that sit on the other
sublattices according to the following relation:

(βh)Co(3g)

hCo(3g)
≡ (βh)Co(2c)

hCo(2c)
. (A2)

Using the output of the zeroth round for h’s, the input numbers
for (βh)Co(3g) = hCo(3g)(βh)Co(2c)/hCo(2c) is used for the first
round.

(3) The process is iterated, making the second, third, . . .
rounds in the correction process, until the input S1 and the
output S1’s are identical within the numerical accuracy.

We have observed that for (βh)Co(2c) � 10 the convergence
within four digits for h’s is quickly reached typically after
three iterations while for (βh)Co(2c) � 0.1 the convergence
takes around ten iterations. The iteration can run into a limit
cycle of a few periods beyond the fifth digit of βh. At such
stage of the iteration, we note that the convergence was reached
within the numerical precision of four digits for S1 which we
believe is sufficient.

3. Determining and varying the chemical potential in the DLM

In addressing magnetic hardness from first principles, MAE
needs to be calculated as precisely as possible. The behavior
of the calculated MAE as a function of the valence electron
number for YCo5 is shown in Fig. 2. This data is obtained in
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a series of DLM runs by artificially modulating the chemical
potential near the ground state. Here the data near the ground
state means the order parameter is fixed to be m = 0.967 =
L(βh) with βh = 30. MAE has a strong dependence on the
electron filling and only after fixing the electron number
by a fine-tuning of the chemical potential in the DLM run,
can we discuss the temperature dependence of MAE and
magnetization from first principles: Here we fix the valence
electron number down to four digits by manually tuning the
chemical potential. The fine-tuning follows Newton’s method
in spirit, where we keep on shifting the chemical potential by
�μ with

�μ = (Ne,desired − Ne)/n(μ),

where Ne is the electron number given as N (n̂)(μ) and
n(μ) is the density of states at μ, until the desired electron
number Ndesired = 54 is numerically reached by iterating the
calculations with the shifted chemical potential (μ + �μ).
At this determined chemical potential and the electron number
Ne = 54.00 near the ground state, we find the low-temperature
MAE to be 2.3 meV/unit cell as shown in Fig. 2. Using
the experimental lattice constants [26], this is equivalent to
4.4 MJ/m3, which compares with the experimental result
at liquid-nitrogen temperature, 6.3 MJ/m3 [24], with an
underestimate of 30%.

The above fine-tuning of the chemical potential also
depends on the temperature. At each data point on the
temperature axis, the valence electron number is fixed to be
54.00 within the numerical accuracy which practically gives a
temperature-dependent chemical potential from 0.636 09 Ry
at the lowest temperatures to 0.633 57 Ry at the calculated
highest temperature 965 K.

4. Magnetization and local moments

The total magnetization, and its spin part and the or-
bital part, is calculated to be 8.03μB, 7.44μB, and 0.59μB,

TABLE III. Calculated magnitude of local moments in μB.
Experimental numbers are taken from Ref. [26].

Total Spin Orbital

Co(2c) (our calc.) 1.88 1.81 0.0667
Co(2c) (expt.) 1.77 1.31 0.46
Co(3g) [our calc. for Co(3)/Co(4)] 1.59 1.44 0.150
[our calc. for Co(5)] 1.60 1.44 0.164
Co(3g) (expt.) 1.72 1.44 0.28

respectively, as shown in Fig. 5 for low temperature. The
calculated total magnetization amounts to Js = 1.11 T using
the experimental lattice constants [26]. These results agree
with the experimental numbers found in the literature of
7.99μB [26] or Js = 1.1 T [8] within 0.5%.

However, we note that this apparent excellent agreement
is actually realized by a cancellation of overestimates and
underestimates, which is revealed by inspecting each local
moment’s contribution to the total magnetization. At the
fixed filling, our results are extracted as summarized in
Table III. Our calculated local moments on the Co(2c)/Co(3g)
sublattices are 1.88 and 1.59μB which compare with the
results from neutron experiments 1.77/1.72μB [26] within
6%–8%. Those polarizations are given by DLM in the fully
relativistic calculation near the ground state, based on the
potentials generated by the scalar-relativistic KKR calculation
at T = 0 which gave the polarization as 1.48 and 1.52 for
Co(2c) and Co(3g), respectively. In the present local-moment
approach for YCo5 we have systematic underestimate of the
orbital moments compared with the neutron measurements.
However, the resolution of the neutron data into spin and
orbital contributions also involves some subtlety [46]. The
accurate ab initio estimation of the orbital contribution to the
magnetization is left for future projects.
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