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Magnetic anisotropic effects and electronic correlations in MnBi ferromagnet
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The electronic structure and numerous magnetic properties of MnBi magnetic systems are investigated using
local spin density approximation (LSDA) with on-cite Coulomb correlations (LSDA+U ) included. We show that
the inclusion of Coulomb correlations provides a much better description of equilibrium magnetic moments on
Mn atoms as well as the magnetic anisotropy energy behavior with temperature and magneto-optical effects. We
found that the inversion of the anisotropic pairwise exchange interaction between Bi atoms is responsible for the
observed spin reorientation transition at 90 K. This interaction appears as a result of strong spin orbit coupling
on Bi atoms, large magnetic moments on Mn atoms, significant p-d hybridization between Mn and Bi atoms,
and it depends strongly on lattice constants (anisotropic Bi-Bi exchange striction). A better agreement with the
magneto-optical Kerr measurements at higher energies is obtained. We also present the detailed investigation of
the Fermi surface, the de Haas—van Alphen effect, and the x-ray magnetic circular dichroism in MnBi.
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I. INTRODUCTION

MnBi is an intriguing ferromagnetic material, both mag-
netically and structurally. Manganese alloys usually tend to
exhibit antiferromagnetic order, because they have nearly
half-filled 3d bands, but MnBi is one of the few known
ferromagnetic manganese compounds which can be used
as a permanent magnet [1]. Its other interesting magnetic
properties include an extraordinarily large Kerr rotation [2],
with a Curie temperature above room temperature (RT) [3],
a large perpendicular anisotropy in thin films at RT [4],
and a high coercivity that increases with temperature [5].
The low-temperature phase (LTP) of MnBi is ferromagnetic
and has the hexagonal NiAs structure. With increasing tem-
perature, the material remains ferromagnetic up to 628 K
and then undergoes a coupled structural and magnetic phase
transition to a paramagnetic high-temperature phase (HTP).
The HTP is a disordered NiAs phase where 10%—-15% of
the large bipyramidal interstitial sites are occupied by Mn
atoms [6]. Rapid cooling of HTP MnBi yields a quenched
high-temperature phase, which is also ferromagnetic with even
larger uniaxial magnetocrystalline anisotropy energy (MAE),
but smaller magnetization and Curie temperature.

At RT MnBi is known to have an extremely high MAE
(K ~ 107 ergs/cm?). This decreases rapidly, however, with
decreasing temperature and vanishes at ~90 K (Tsg) [7].
The experiments indicated the presence of a spin-reorientation
transition during this temperature decrease [5]. Among known
hard magnetic materials, MnBi is one of few alloys where the
coercive field increases with increasing temperature, reflecting
the magnetic anisotropy trend.

Historically, the ferromagnetic nature of manganese-
bismuth alloys was first reported by Heusler around 1904 [8].
In 1914 Bekier considered the formation of a phase MnBi
as probable; the phase results from a peritectic reaction
at 450°C between pure manganese and the melted alloy
containing 9% of manganese [9]. Parravano and Perret [10]
established the phase diagram for this system and isolated
crystals containing 19.9% manganese, which they considered
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to be the MnBi phase. Hilpert and Dieckmann [11] noted
the strong ferromagnetism of these alloys and placed the
Curie temperature at around 360—380 °C. Furst and Halla later
concluded from x-ray studies that a single compound was
present with the structure Mn,Bi [12]. Montignie, however,
showed that MnBi represented the only stable compound [13].
In further studies by Halla and Montignie, the same results
were obtained [14].

The most comprehensive studies of this material were
performed by Guillaud in 1943 in Strasbourg. As a part of his
Ph.D. thesis, he was the first to prepare the hexagonal MnBi
compound and study its numerous magnetic properties [15].
In addition to measuring the saturation moment, MAE, and
Curie temperature, he established the dependence of the high
coercive force of MnBi on its magnetic anisotropy and reduced
particle size. He also was first to observe the spin reorientation
and a corresponding increase of magnetic anisotropy with
temperature. Because of these considerations, around 60 years
ago, MnBi was chosen for investigation by the U.S. Naval
Ordnance Laboratory. As a result, a new permanent magnetic
alloy “bismanol” was developed [16]. Bismanol has very high
coercive force and moderate energy density, making it a good
choice for small electric motors. However, due to oxidation
and corrosion problems, bismanol has not been used much as
a practical magnet.

Nevertheless, studies of both fundamental and applied
properties relevant for permanent magnetism have never been
abandoned and this material attracted the attention of a new
generation of researchers. Hihara and Koi [17] studied the
temperature dependence of the easy axis of the magnetization
in MnBi using the nuclear magnetic resonance method. They
found that for high temperatures above 142 K, the easy axis
of magnetization is along the c direction. As the temperature
is decreased between the Tsg; = 142 K and Tsz = 90 K (spin
canting interval), the polar angle 6 gradually deviates from
the ¢ axis to Gexper ~ 37°. The magnetization flops into the ab
basal plane at 90 K. This spin reorientation was also observed
by neutron diffraction [5,7] and magnetization measurements
on MnBi single crystals [18]. To our knowledge, no theoretical

©2014 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.90.054404

ANTROPOV, ANTONOV, BEKENOV, KUTEPOV, AND KOTLIAR

explanation of all these observed effects has been proposed in
literature.

Nearly simultaneously with bismanol’s development, MnBi
became the subject of another research activity after being
recognized that, in the form of thin films, it had quite favorable
properties with regard to potential applications for magneto-
optical (MO) recording [19-22] (see references prior to 1988
and discussion in Ref. [23]). The MO properties of MnBi were
measured by several authors [2,24-26]. The most extensive
study was carried out by Di et al. [2,25]. Their measured Kerr
angle spectrum for MnBi has peaks at 1.84 and 3.35 eV. The
former have a relatively large magnitude of 2.31° at 85 K.

The electronic band structure of MnBi has been calculated
by several authors [5,27-44]. The optical and MO spectra
of MnBi have been calculated in Refs. [29,30,32,33,35].
However, there are still disagreements about the interpretation
of the MO spectra. The major disagreement concerns the lack
of theoretical description of a high energy peak of the Kerr
rotation observed experimentally at 3.35 eV.

Kohler and Kiibler [32,33] obtained only one peak at 1.8 eV.
They hypothesized that the thin-film samples may have
considerable impurities from materials in contact with them.
They found that oxygen, as an impurity, produced a second
peak, but energies of both peaks were not in good agreement
with the experiment. Ravindran et al. [35], on the other
hand, did find a second peak in their calculated Kerr-angle
spectrum for pure MnBi. Oppeneer et al. [30] obtained a large
negative peak at 1.8 eV. This is in agreement with experiment.
They then found only a shoulder around 3.4 eV. Here, the
experimental data has a pronounced peak. Since the data of
Di et al. [2,25] were taken on a sample with the composition
Mn, 5, Bi, Oppeneer et al. [30] simulated this material and
found a calculated Kerr-angle spectrum with a similar but
weaker peak at 1.8 eV and a second peak at 4.3 eV. This
is higher in energy than that for MnBi. All previous studies
of MO properties of MnBi were performed in the local spin
density approximation (LSDA) approximation and value of
magnetic moment was significantly underestimated.

Below we provide a theoretical explanation for the long-
standing experimental puzzles in the measured MO properties,
magnetic anisotropy and spin orientation. We show that all
the physical properties under consideration can be properly
described only taking into account spin-orbit (SO) interaction
and a proper strength of Coulomb electron-electron correla-
tions.

The paper is organized as follows. The crystal structure
of MnBi and computational details are presented in Sec. II.
Section III presents results and discussions of electronic and
magnetic structures, magnetic moments, Fermi surface (FS),
orbital dependence of the cyclotron masses, extremal cross
sections of the FS, MO Kerr spectra, x-ray magnetic circular
dichroism, and temperature dependence of the MAE of MnBi.
The results are summarized in Sec. IV.

II. CRYSTAL STRUCTURE AND CALCULATION DETAILS

A. Crystal structure

Figure 1 depicts the crystal and magnetic structure of MnBi.
It exhibits large trigonal-bipyramidal interstitial sites, which
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FIG. 1. (Color online) Crystal lattice of MnBi LTP phase.

may be occupied by dopant or Mn atoms. It is speculated that
octahedral Mn atoms are ferromagnetically coupled with the
spin parallel to the ¢ axis, and the bipyramidal Mn atoms are
antiferromagnetically coupled to the octahedral Mn atoms and
result in reduced net magnetization [7,45].

The LTP phase of MnBi is ferromagnetic and has a
hexagonal NiAs-type structure with unit cell dimensions
a =429 A, ¢ =6.13 A. On heating above 360 °C (T,) there
is a first order phase transition to a paramagnetic [3] state
(HTP). The MnBi compounds in the LTP phase have the NiAs
structure (P63/mmc symmetry, group number 194). The unit
cell consists of two Mn atoms at the Wyckoff 2a sites (0, 0, 0)
and (0, 0, 1) and two Bi atoms at the Wyckoff 2c sites (3, 3,

1 21 3
pand (3, 3, 7)-

B. Calculation details

(a) Magneto-optical properties and x-ray magnetic circular
dichroism. For the polar Kerr magnetization geometry and a
crystal of tetragonal symmetry, where both the fourfold axis
and the magnetization M are perpendicular to the sample
surface and the z axis is chosen to be parallel to them, the
dielectric tensor is composed of the diagonal ¢,, and ¢,,, and
the off-diagonal ¢,, components in the form

—Exy  Exx 01]. €))]

The various elements £, are composed of real and
imaginary parts as follows: 8,5 = sélﬂ) +1i egﬂ) where o, =
X,V,2, Exx = (M 41 k)2, and n and k are refractive index and
extinction coefficient, respectively. The optical conductivity
tensor G, = Uli/ls) + iao([? is related to the dielectric tensor g4
through the equation
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The Kerr rotation 6 and ellipticity n are expressed as
follows [46]:

_Sxy
_— 3
(8):): - 1)\/ Exx ( )

The optical conductivity of MnBi has been computed
from the energy band structure by means of the Kubo-
Greenwood [47] linear-response expression [48]:
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where f(e,x) is the Fermi function, hw,, (K) = €,x — €,k is
the energy difference of the Kohn-Sham energies ¢,, and y
is the lifetime parameter; it is included to describe the finite
lifetime of the excited Bloch electron states. The ITj, , are the
dipole optical transition matrix elements. In a fully relativistic
description, these are given by

I, (K) = (Vx| cot| i) (&)

with the four-component Bloch electron wave function ¥,
velocity of light ¢, and Dirac operator «. The combined
correction terms were also taken into account in the optical
matrix element calculations. A detailed description of the
optical matrix elements in the Dirac representation is given
in Refs. [49,50].

Within the one-particle approximation, the absorption
coefficient ,u’}(a)) for incident x ray of polarization A and
photon energy Aw can be determined as the probability of
electronic transitions from initial core states with the total
angular momentum j to final unoccupied Bloch states

(@) =Y 3 (Wl T W ) P8 (Enie — Ejm, — o)

m;j nk

X Q(Enk — EF), (6)

where W jm; and Ej,, are the wave function and the energy of
a core state with the projection of the total angular momentum
mj; Wy and E,x are the wave function and the energy of
a valence state in the nth band with the wave vector Kk;
E is the Fermi energy. I1, = —eaa, is the electron-photon
interaction operator in the dipole approximation (5), a, is the
A polarization unit vector of the photon vector potential, with
ay = l/ﬁ(l,:lzi,O), a; = (0,0,1). Here, + and — denotes,
respectively, left and right circular photon polarizations with
respect to the magnetization direction in the solid. X-ray
magnetic circular and linear dichroism are given then by
(14 — p-)and [ — (u4 + pn—)/2], respectively.

Usually, the exchange splitting of a core shell is small
compared to the bandwidth of final valence states and can
be neglected. However, the exchange splitting of the 2py,2 3,2
states of 3d transition metals may be as large as 0.4 eV. Then,
transitions from core states with different m ; in Eq. (6) occur at
different photon frequencies. This may lead to the appearance
of giant x-ray magnetic linear dichroism in cubic 3d metals
and its strong dependence on the magnetization direction [51].
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At the core level, x-ray magnetic circular dichroism
(XMCD) is not only element specific but also orbital specific.
For 3d transition metals, the electronic states can be probed by
the K, L, 3, and M, 3 x-ray absorption and emission spectra.
In Bi, one can use the K, L2,3, Mj 3, M4 s5,N>3,Nys, N6,7, and
0, 3 spectra. For unpolarized absorption spectra 11°(w) allows
only transitions with Al = 1, Aj = 0, £ 1 (dipole selection
rules). Therefore only electronic states with an appropriate
symmetry contribute to the absorption and emission spectra
under consideration.

(b) Magnetocrystalline anisotropy. The internal energy of
ferromagnetic materials depends on the direction of spon-
taneous magnetization. Here we consider one part of this
energy, the MAE, which possesses the crystal symmetry of
the material. For the material exhibiting uniaxial anisotropy,
such as a hexagonal crystal, the MAE can be expressed as [52]

K = K, sin’> 0 + K,sin*0 + K; sin® 0
+ K3sin” @ cos[6(¢p + ¥)] + - -, @)

where K; is the anisotropy constant of the ith order, 6 and ¢
are the polar angles of the Cartesian coordinate system where
the ¢ axis coincides with the z axis (the Cartesian coordinate
system was chosen such that the x axis is rotated through 90°
from the hexagonal axis) and 1 is the phase angle.

Here, we study MAE caused only by the SO interaction
and define it as the difference between two self-consistently
calculated and fully relativistic total energies for two different
magnetic field directions, K = E(6) — E({0001)).

(c) Calculation details. The calculations presented in this
work were performed using the spin-polarized fully relativistic
LMTO method [53] (denoted further as LSDA+SO). To
understand the influence of the SO interaction on the MO
properties and MAE, we used the scalar relativistic magnetic
Hamiltonian with SO coupling added variationally [54]. The
basis consisted of s, p, d, and f LMTOs. While our fully
relativistic treatment still has some approximations of the
second order over 1/c [55], it has more complete basis set
due to presence of both the large and small components of the
Dirac wave function. The k-space integration was performed
with an improved tetrahedron method [56]. To attain good
convergence in total energy, a large number of k points has to
be used in the calculations. To resolve the difference in total
energies and to investigate the convergence, we used 12 008
and 18986 k points in the irreducible part of the Brillouin
zone. This corresponds to 46 656 and 74 088 k points in full
zone.

(d) Treatment of the Coulomb correlations. It is well known
that the LSDA fails to describe the electronic structure and
properties of the systems in which the interaction among the
electrons is strong. In recent years, more advanced methods
of electronic structure determination such as LSDA plus
self-interaction corrections [57], the LSDA+U [58] method,
GW approximation [59,60], and dynamical mean-field the-
ory [61,62] have sought to remedy this problem and have
shown considerable success. Among them, the LSDA+U
method is the simplest and most frequently used. We used
the “relativistic” generalization of the rotationally invariant
version of the LSDA+U method [63] which takes into
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account SO coupling so that the occupation matrix of localized
electrons becomes nondiagonal in spin indexes.

The screened Coulomb U and exchange J integrals
enter the LSDA+U energy functional as external parameters
and have to be determined independently. We tried several
approximations to obtain Hubbard U in this work and decided
on the value U =4 eV and J = 0.97 eV. These are used
throughout the paper.

The value of U can be estimated from the photoemission
spectroscopy and x-ray Bremsstrahlung isochromat spec-
troscopy experiments. Because of difficulties with unambigu-
ous determination of U it can be considered as a parameter
of the model. Its value can therefore be adjusted to achieve
the best agreement of the results of LSDA+U calculations
with photoemission or optical spectra [64]. While the use of
an adjustable parameter is generally considered an anathema
among first-principles practitioners, the LSDA+U approach
does offer a plausible and practical method to approximately
treat strongly correlated orbitals in solids. The Hubbard U and
exchange parameter J can be determined from supercell LSDA
calculations using Slater’s transition state technique [65,66]
or from constrained LSDA calculations (cLSDA) [66—68].
Recent extensions of the cLSDA method may be found in
Refs. [69,70]. The cLSDA method, however, is known from
early on to yield values of U that are too large in some
cases [71]. For example, Anisimov and Gunnarsson [65]
computed the effective on-site Coulomb interaction in metallic
Fe and Ce. For Ce the calculated Coulomb interaction was
found to be about 6 eV in good agreement with empirical and
experimental estimates ranging from 5 to 7 eV. The result for Fe
(also about 6 eV) was surprisingly high since U was expected
to be in the range of 2-3 eV for elemental transition metals,
with the exception of Ni [72,73]. We applied the cLSDA
method to MnBi and obtained U = 4.57 eV, J = 0.97 eV.

Another method for determining the effective interaction is
a scheme based on the random-phase approximation (RPA).
Early attempts of this can be found in Refs. [74,75]. A method
for calculating the Hubbard U, called the constrained RPA
(cRPA) scheme was proposed by Aryasetiawan et al. [76]
some years ago. Subsequently, a combined cLSDA and cRPA
method was also proposed [77]. The main merit of the cRPA
method over currently available methods is that it allows for
a precise elimination of screening channels. They are instead
to be included in a more sophisticated treatment of the model
Hamiltonian [78]. This method allows easy access to obtaining
not only on-site matrix elements but also off-site matrix
elements as well as screened-exchange matrix elements. These
are usually taken to be the atomic value. Another merit is the
possibility of obtaining the frequency-dependent Hubbard U,
and may prove to be important. The cRPA method has now
been applied to a number of systems with success [71,79-81].

We have calculated an effective interaction for MnBi using a
general method of cRPA proposed by Aryasetiawan et al. [76].
In this method one divides the full polarizability P(r,r’;v)
into two parts: the first part P4(r,r'; v) which is defined
by all transitions strictly between chosen (usually strongly
correlated) eigenstates of one-particle Hamiltonian, and the
second part P"(r,r’;v) = P(r,r’;v) — P4(r,r';v). After that,
the effective interaction U(q;v) can equivalently be found
either using P?(q; v) (we write the equations in q space and
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omit product-basis indexes for brevity here),

[1+ W(g;v)P(q; ]U(q; v) = W(g; v), ®)
or using P"(q;v),
[1-V(@P (q;IU(q;v) = V(q). &)

At this point, it is extremely important to understand that
such defined partial polarizabilities P¢ and P” both should
possess proper asymptotic behavior at small q (namely, their
Pqu(;/:o components in plane-wave representation should
be proportional to g2) in order to cancel the corresponding
1/¢* divergency in V(q) or W(q;v) as seen from the above
equations.

It is easy to show that the above requirement is auto-
matically satisfied when one uses band eigenstates of some
Hamiltonian of the solid to construct the polarizabilities. But
the orbital character of the selected bands does not always
correspond perfectly to the character of orbitals in which we
are interested.

Therefore in our present work, we followthis procedure: we
pick up the bands with proper orbital character (of course we
admix some amount of wrong orbital character in this way).
Having the proper bands (d bands) picked up for every k point
we calculate d polarizability P9 (r,r’) which comes only from
these bands. We perform this in q space,

Pil@ == Y Y (MM wNG ()

K AVAAY

x (W W MY GLAB — 1), (10)

where « is the spin index, and the summations are performed
over the group of d bands only. In (10), G‘ﬂ‘,(r) is a full GW
Green’s function which we express in the basis of LDA bands
(indexes A,A’,A",A""). The above d polarizability defines an
effective interaction among 3d electrons U,(r,r’) which we
again calculate in q space: Ud_1 (qQ) = W~'(q) + P(q), and in
product basis representation.

Finally, we calculate matrix elements of such found Uy in
a basis of atomic orbitals

Uppprpr(v) :Z/dr/dr/

X @i (e (OUe e (e (), (1)

where the integrations are performed over the corresponding
muffin-tin (MT) sphere where 3d orbitals are defined. As
atomic orbitals we use the solutions of radial equations inside
of the MT spheres (which we define when we solve LDA
equations).

Having calculated the full matrix we average it to obtain
the effective value U,

Uw) = iz > Uprw ), (12)
Ng LL
where N is the degeneracy of d set.

As follows, our method does not use mapping onto Wannier
representation like in the work by Miyake et al. [82]. We think,
however, for materials with well localized d electrons, the
resulting effective interaction is not sensitive to such details.
In our opinion, much more important is the question, which
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FIG. 2. (Color online) Real and imaginary parts of the partially
screened effective interaction U for 3d shell of Mn for ferromagnetic
MnBi analytically continued to the real axis. One-shot GW (starting
with LSDA) and self-consistent GW results.

Green’s function (LDA, quasi particle, or self-consistent GW)
is used when one calculates full and d polarizabilities.

We have performed one shot (starting with LSDA) and fully
self-consistent GW calculations. We have used the mesh of
k points 6 x 6 x 6 in Brillouin zone (results obtained with
4 x 4 x 4 k mesh differ very little). Green’s function was
expanded over the full-potential linearized augmented-plane-
wave (FLAPW) band Bloch states [83]. The number of bands
in this expansion was 222-240 depending on the k point.
Inside the MT spheres we have expanded the functions of the
fermionic type (Green’s function and self-energy) in spherical
harmonics up to Ln,x = 4. Bosonic functions (polarizability
and interaction) have been expanded up to Lp,x = 6. In the
interstitial region, each function was expanded in plane waves.
We have used more plane waves for the bosonic functions
(340) than for fermionic ones. Our full basis size to expand the
bosonic functions (add muffin-tin and interstitial) was about
880 functions depending again on the point in the Brillouin
zone. We calculated the effective U as a function of Matsubara
frequency and then we analytically continued it to the real
frequency axis.

We present in Fig. 2 our calculated effective interaction U
for MnBi obtained in one-shot GW and self-consistent GW
calculations. The one-shot result for U at zero frequency is
about 2 eV whereas the result from self-consistent calculation
is approximately 3.6 eV; both of them are smaller than the
cLSDA value of 4.57 eV. As mentioned above, the cLSDA
method usually overestimates the values of U for transition
metals. On the other hand, the cRPA underestimates Hubbard
U. Therefore, in our calculations we use U =4 eV and J =
0.97 eV, and we use them throughout the paper.

III. ENERGY BAND STRUCTURE

Figure 3 shows the spin-polarized energy band structure
of MnBi calculated in the LSDA without SO interaction
(two upper panels), fully relativistic Dirac approximation
(LSDA+SO, third panel from the top), and a fully relativis-
tic Dirac LSDA4-SO+4-U approximation (lower panel). The
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FIG. 3. (Color online) Energy band structure of MnBi in close
vicinity of the Fermi level using “fat band” representation: a
nonrelativistic (two upper panels), fully relativistic (third panel from
the top), and fully relativistic LSDA+SO+U (lower panel) energy
bands.

LSDA+SO results are in good agreement with previous LSDA
studies [40—44]. In “fat band” representation, the open red
circles show the Mn 3d character of the wave function in
each k point. Closed blue circles indicate the Bi 6 p character.
The larger circle corresponds to the larger contribution of the
corresponding character in the wave function for a given k
point.

The splitting of the energy bands in the H and A symmetry
point in the —0.6 to —1 eV energy interval is enhanced more
than two times after the inclusion of the Coulomb repulsion
(compare third panel from the top with lower panel in Fig. 3).
Due to the shift of Mn 3d states from the Fermi level in the
LSDA+SO+U approach the character of the electronic states
at the Fermi level are changed towards the decreasing of a Mn
3d partial contribution at the Fermi level.

Figure 4 shows partial densities of states for MnBi calcu-
lated within LSDA+-SO as well as LSDA+-SO—+U. The Mn d
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FIG. 4. (Color online) The LSDA+SO and LSDA+SO+U par-
tial densities of states for MnBi.

states are split by the on-site exchange interaction into nearly
completely filled majority-spin and unoccupied minority-spin
states. The crystal field at the Mn site (D3, point symmetry)
causes the splitting of d orbitals into a singlet a;, (3z> — 1)
and two doublets e, (yz and xz) and ez (xy and x* — y?).
Bi 6s states situate —12.2 to —10.3 eV below the Fermi level.
Bi 6p states occupy the —5.2 to 7.5 eV energy range and
strongly hybridize with Mn 3d states in the —4 to 3 eV energy
range. The spin splitting of the Bi p states is quite small.
The LSDA+4U Mn 3d partial DOSs are also presented in
Fig. 4. Usually the failure of the LSDA method generally
occurs toward the right end of the 3d transition-metal series.
For Mn, which is in the middle of the 3d series, no strong
correlation would be expected. As can be seen below, however,
the correlation effects are quite important in MnBi for a correct
description of the MO properties as well as the MAE.

Our fully relativistic LSDA band structure calculations
produce M of 3.572up at the Mn site in MnBi. The M; of
—0.114up induced at the Bi site is antiparallel to that of Mn.
The orbital magnetic moment (M;) at the Mn and Bi sites are
equal to 0.156upg and —0.028 4, respectively. An additional
empty sphere also carries small M; and M; of —0.015ug
and 0.001ug, respectively. The net magnetic moment in the
fully relativistic LSDA band structure calculations is equal
to 3.572up. Experimental numbers have been obtained for
different samples and for samples of different purity in a range
from 3.82up, [84] to 4.25up [85]. For most pure samples,
the moment is close to 4.1up and compares favorably with
our LSDA+SO+U moment (4.172up). The spin and orbital
magnetic moments in the LSDA+SO4-U approach at the
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Mn site are equal to 4.224up and 0.125up, respectively, and
M, = —0.134ug and M; = —0.030up at the Bi site.

The opposite sign of M; on Mn and Bi atoms can be
understood already from Fig. 4. In the LSDA, the DOS of
Mn d states near the Fermi level is much larger for a nearly
empty spin down electronic band. The latter band just starts to
populate in Mn reflecting typical more-than-half-filled d-band
behavior. For p states of Bi (upper panel of Fig. 4) the situation
is opposite: The population of p states and their induced
magnetic moments are relatively small, with a larger DOS
for p states for spin up.

The presence of a large amount of Mn spin-down and Bi
spin-up electrons at and near the Fermi level creates favorable
conditions for the appearance of the large transversal p-d
transitions induced by SO coupling.

IV. GROUND STATE PROPERTIES
A. Fermi surface

In this section we present the topology of Fermi surface of
MnBi as well as the de Haas—van Alphen (dHvVA) extremal
cross sections and cyclotron masses.

Figure 5 shows the calculated cross-sectional areas of
MnBi FS in the plane perpendicular to the z direction k, = 0
crossed I symmetry point using a nonrelativistic method
(upper panel), and fully relativistic LSDA+SO (middle panel)
and fully relativistic LSDA+SO+-U (lower panel) approxima-
tions. Figure 6 shows the sheets of the FS in MnBi calculated
with the LSDA+SO (left panels) and LSDA+SO+U (right
panels) approximations. The inclusion of the SO interaction
changes the topology of the FS in MnBi (Fig. 5). Instead of
two sheets in the K symmetry point in the LSDA calculations
we have only one electron FS. Besides, there are four FS cross
sections in the k, = 0 plane in the spin-polarized calculations
and three in the LSDA+SO calculations.

There are five sheets of the FS in the LSDA+SO calcula-
tions. Almost spherical closed hole FS centered approximately
at a half distance between I' and A symmetry points in
Fig. 6(a), has pure Mn 3d character. The 23, 24, and 25 hole
FSs opened along the I'-A direction with sixfold symmetry in
Figs. 6(c), 6(e), and 6(g), respectively, are mostly due to Bi 6p
states with small amounts of Mn 3d states mixed in. A closed
electron FS centered in the K symmetry point in Fig. 6(i) is
the mix of Mn 34 and Bi 6p character.

Inclusion of the Coulomb repulsion increases the size of
the 22nd hole FS in Fig. 6(b) and reconstructs the 24th and
25th hole FSs in Figs. 6(f) and 6(h). It produces a new hole FS
sheet [see Fig. 6(k)] shown by dashed black curve in the lower
panel of Fig. 5 and an additional closed electron FS centered
in M symmetry point (lower panel of Fig. 5).

Figure 7 presents the angular variations of the theoretically
calculated dHvA frequencies in MnBi in the LSDA+SO+-U
approximations for field direction in the (1010), (1120), and
(0001) planes. The obtained six different types of orbits «,
B, v, 8, e, and o belong to the FSs derived by the crossing
of the 22nd, 23rd, 24th, 25th, 26th, and 27th energy bands,
respectively. The o orbits are situated at the almost spherical
closed hole FS which is centered at a half distance between the
I' and A symmetry points [Fig. 6(b)]. Due to smallness and
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&

LSDA + SO +U

FIG. 5. (Color online) The calculated cross sections of MnBi
FS in the plane perpendicular to the z direction k, = O using a
nonrelativistic approach (upper panel), LSDA+4SO (middle panel),
and LSDA+SO+U (U = 4 eV) (lower panel).

the almost spherical shape of these sheets the corresponding
dHvA frequencies are rather small and have almost constant
angle dependence. The B oscillations belong to electron FS
around the K and M points. These orbits split for three separate

PHYSICAL REVIEW B 90, 054404 (2014)

FIG. 6. The LSDA+SO (left panels) and the LSDA+SO+U
(right panels) sheets of MnBi Fermi surface.

Bi., B2, and B3 orbits. The S5 oscillations belong to the closed
electron FS sheets around the M symmetry point. The 8; and
B, orbits are at the electron FS around the K point (see Fig. 5,
lower panel). The y and § orbits exist in wide angle intervals at

054404-7



ANTROPOV, ANTONOV, BEKENOV, KUTEPOV, AND KOTLIAR

T
]
1 s |
£ - P o
102 7% S & s
1" %, %%w\f otngoleccon o, )
Foooo 2000000066 ! ! gt oo
| . o
1 & [ T 00
1 5 cooo000agopas® I %%00500008 o
| Dﬂ"“"“::geﬁummgﬂ““ua }D&% . | € B ““a,g%mmng:,w’"
p 1 | O oo § i %m?owmqw’-’“ ‘;,% 0000000000
N ! i
o i |
o I
A e 3 : ]
| I
18 !
5 1 01 - L |
c E 0000 b, }
(0] 4 K |
] oo o000, | o, | g o
= T T . B -
Q %%mm&lmwww’“ 1
— 7 i |
= | |
1o i ;
S 1 .
J |
I (1010)  (do1) | (1120)
I
o ; |
AAAAAAAAA ] ! JURUSTRISTEL
1 00 4 e, dassaass pasasanss
| | | I

0 30 60 90 120 150 180 210
Angle
<1120> <1010>

<0001> <0001>

FIG. 7. (Color online) The calculated angular dependence of the
dHVA oscillation frequencies in MnBi using LSDA+SO+4-U (U =
4 eV) approximation.

all three planes. The highest dHvA frequencies were observed
for the ¢ orbits situated at the hole surface derived from the
26th energy band.

We also calculated the angular dependence of the cyclotron
masses for MnBi in the LSDA+SO+-U approach (not shown).
The masses for the low-frequency oscillations « range from
—1.0mg to —0.65m, and the dHvA B orbits on the electron FS
sheet around the K symmetry point possess relatively small
cyclotron masses from 0.5mg to 0.8m(. The § orbits also
have relatively small cyclotron masses of —0.8m to —0.4my.
However, some branches of the & orbits possess cyclotron
masses more than 2mg. The masses for the high-frequency
oscillations ¢ are large.

To show how sensitive are the calculations of the FS to
the value of Hubbard U, we run additional LSDA+SO+SO
calculations with Hubbard U = 3.5 and 4.5 eV. Figure 8 shows
the calculated cross sections of MnBi FS for U = 3.5 eV and
U = 4.5 eV. After comparing this figure with Fig. 5 for U =
4.0 eV, we can conclude qualitatively that all three calculations
produce similar FSs with small changes in the size and the
shape of some FS sheets.

However, the dHVA oscillations are quite sensitive to
the value of Hubbard U. The frequencies of the o orbits
are significantly reduced for U = 3.5 eV and increased for
U = 4.5eV in comparison with U = 4.0 eV calculations. The
6 and ¢ orbits have an opposite U behavior: their frequencies
are decreased with the increase of U. On the other hand, the o
and y orbits are less sensitive to the value of U.

The experimental measurement of the dHvVA effect is highly
desired, as it will answer which value of Hubbard U is realized
in MnBi (Fig. 9). From the experimental point of view it would
be no problem to measure the dHvA oscillations in MnBi due
to relatively small cyclotron masses for most dHVA orbits.
However, a single crystal sample of good quality might be
needed.

PHYSICAL REVIEW B 90, 054404 (2014)

LSDA+SO+U U=45eV

FIG. 8. (Color online) The calculated cross sections of MnBi FS
in the plane perpendicular to the z direction k, = 0 using the fully
relativistic LSDA+SO+U method for U = 3.5 eV (upper panel) and
U = 4.5 eV (lower panel).

B. Magnetocrystalline anisotropy

It has been established that such unique temperature
dependence of the coercivity and MAE in MnBi is determined
by the thermal variation of the lattice parameters a and c. In
the following section we explain experimental observations by
examining the dependence of calculated total energy and MAE
on the lattice geometry. We assume that the finite temperature
can be mimicked by the lattice constants corresponding to this
temperature. We confirm that spin reorientation arises from a
change of sign in MAE, which depends on the lattice constants.

Figure 10 shows the experimentally measured temperature
dependence of the lattice constants a and ¢ according to
Refs. [85,86] together with the magnetization [85] in MnBi.
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FIG. 9. (Color online) The calculated angular dependence of
the dHVA oscillation frequencies in MnBi using LSDA+SO+U
approximation for U = 3.5 eV (left panel) and U = 4.5 eV (right
panel).

Yang et al. [85] measured temperature dependence of the
lattice parameters @ and ¢ in a wide temperature range from 10
to 700 K. Koyoma et al. [86], on the other hand, used a smaller
temperature interval (10-300 K). They did use a very fine
temperature mesh in the vicinity of Tgg. Both measurements
show similar behavior for the lattice constant a, but strongly
differ from each other in the temperature behavior of lattice
constant c. The results of Yang et al. [85] show a rather smooth
decrease of parameter ¢ with decreasing of 7 below Tgg.
Koyoma et al. [86] found a discontinuous behavior of constant
c near Tsg (Fig. 10).

Figure 11 shows the MAE as a function of the polar
angle 0 and temperature calculated with the LSDA+4SO and
the LSDA+SO+U methods. Here we used the temperature
dependence of the lattice constants a and ¢ obtained by Yang
et al. [85]. The LSDA+-SO approach gives the value of MAE
equal to —2.2 meV//cell at zero temperature. This value is in
good agreement with a previous FLAPW band structure cal-
culation by Ravindran et al. [35] (—2.0 meV /cell). However,
both of these values are an order of magnitude larger than the
experimental value of —0.13 meV /cell [18,87]. Besides, the
LSDA+SO approximation shows that the easy direction of
the magnetization is in the basal plane for any value of lattice
constant a and axial ratio c¢/a (meaning the entire temperature
range), and therefore provides no explanation of the spin-
reorientation observed experimentally at the 75z ~ 90 K. On
the other hand, the LSDA+SO+4U approach gives the value
of MAE equal to —0.39 meV /cell at zero temperature. This
value is already in better agreement with the experiment, but
still nearly three times larger than the experimentally estimated
value of —0.13 meV/cell [18,87]. Thus the inclusion of the
Coulomb correlations provides a correct easy magnetization
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FIG. 10. (Color online) The temperature dependence of the lat-
tice parameters a and ¢ (upper and middle panels, respectively) of
MnBi according to Refs. [85] (blue curve) and [86] (red curve).
The lower panel shows temperature dependence of magnetization in
MnBi [85].
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FIG. 11. (Color online) The MAE K as a function of the polar
angle 6 and temperature in MnBi calculated in the LSDA+SO (open
blue squares) and the LSDA4-SO+U methods. The temperature
dependence of the lattice constants a and c is from Ref. [85].

054404-9



ANTROPOV, ANTONOV, BEKENOV, KUTEPOV, AND KOTLIAR

25

2.0+

K (meV/cell)
o

0.5+

0.0

051
0 100 200 300 400 500 600 700
Temperature (K)

FIG. 12. (Color online) Theoretically calculated temperature de-
pendence of the MAE K in MnBi using the LSDA+SO+U in
comparison with the experiment [18].

direction along the c axis for the temperatures above Tsg; and
in the plane below Ty for the experimental parameters a and c.

Figure 12 presents the theoretically calculated temperature
dependence of the MAE in MnBi using the LSDA+SO+U
approximation in comparison with the experiment [18].
The theoretical MAE is in very good agreement with the
experiment in the 150 to 450 K temperature range. Thus,
our calculations confirm the experimental claim [86] that the
unusual temperature dependence of MAE is primarily due to
a specific lattice thermal expansion.

To determine a major source of MAE we expanded
MAE over SO coupling parameters by directly varying these
parameters on different sites and fitting the resulting MAE with
on-site and intersite contribution functions. This analysis has
shown that the dominant contribution to the MAE variation
is produced by the anisotropic pairwise interaction between
p states of Bi atoms. Thus, the spin reorientation observed
in MnBi at 90 K can be considered as Bi-Bi anisotropic
pair exchange striction driven transition. Further studies of
this inversion of the anisotropic exchange in materials with
spin reorientation are needed. On this stage, we can conclude
that the major contribution to the MAE in MnBi is produced
by weakly polarized Bi subsystem with dominant interatomic
anisotropic Neel’s type interactions.

With the temperature increase above RT, the experimentally
measured anisotropy energy increases and reaches its maxi-
mum at around 500 K, and then rapidly decreases at higher
temperatures. The LSDA+SO4U results show the same
temperature behavior. They, however, show higher MAE in
the maximum. Besides, the theoretically calculated maximum
of the MAE shifts towards higher temperatures (Fig. 12). Such
disagreement between theory and experiment might be due to
the magnetic spin disorder effect. The temperature dependence
of magnetization in MnBi measured by Yang et al. [85] shows
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FIG. 13. (Color online) The LSDA+SO+U calculations of the
MAE K as a function of the polar angle 0 for the lattice constant
¢ = 6.123 A. This corresponds to the 7 = 300 K and a = 4.272 A
(curve 1) and a = 4.283 A (curve 2) corresponding to 7 = 100 and
300 K, respectively [85].

a drastic reduction of the magnetization from 4.25ug at 0 K
to 1.43up for 600 K. This presumably is due to spin disorder
(see the lower panel of Fig. 10). Such an effect has not been
taken into account in our calculations.

We found a strong dependence of the MAE on in-plane
lattice constant a. Figure 13 shows the MAE as a function of
the polar angle 6 for the lattice constant ¢ = 6.123 A. This
corresponds to T = 300 K, and a = 4.272 A (curve 1) and
a=4283A (curve 2) corresponding to 7 = 100 and 300 K,
respectively [85]. Expansion of in-plane lattice constant a by
0.01 A occurs from 100 K, and 300 K increases the MAE by
approximately 1.2 meV. Corresponding results for ¢ parameter
expansion produce a much smaller result of 0.1 meV (Fig. 13).

To investigate the MAE as a function of the polar angle 8 in
the vicinity of the spin reorientation phase transition, we fixed
the lattice constant a for the spin-reorientation temperature
a =4.274 A [86] and vary ¢ fromc = 6.09 A toc =6.14 A
with a step of 0.01 A (Fig. 14). For the lattice constants ¢ =
6.09 A, c=06.10 A, andc = 6.11 A (curves 1-3, respectively),
the easy magnetization direction is in the basal plane. There are
two local minima in the total energy for the c = 6.12 A (curve
4): one along the ¢ direction and at 6 ~ 41° with a barrier in
between. The last angle is close to the experimentally measured
Oexper = 37° at Tsg = 90 K where the magnetization flops into
the ab basal plane [17] (see Fig. 15). For larger values of the
lattice constant ¢, the easy magnetization direction is along
the ¢ direction in agreement with experimental observation.
We would like to point out that the results presented in Fig. 14
have to be considered only as qualitative ones because by
fixing the constant a and varying c, the c/a has altered the
overall volume per unit cell.

The results shown in Fig. 14 lead to some interesting conclu-
sions. The angular dependence of the total energy demonstrates
the presence of a “double-well” potential. This fact leads to
a hysteresis phenomenon as a function of temperature. For
instance, one can expect a nonsmooth dependence of the
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FIG. 14. (Color online) The LSDA+SO+U calculations of the
MAE K as a function of the polar angle 6 for the lattice constant
a=4274 A. This corresponds to the spin reorientation (Tsg =
90 K) [86] and ¢ =6.09 A (curve 1), c =6.10 A (curve 2),
c=6.11A (curve 3), c =6.12 A (curve 4), c = 6.13 A (curve
5),and ¢ = 6.14 A (curve 6).

magnetization direction change with a “sudden” switch of
easy direction at different temperatures depending on whether
a cooling or heating process is being used. This qualitatively
explains the nonanalytical dependence of easy axes observed
in Ref. [17] (see Fig. 15). The total energy shows a highly
nontrivial angular dependence with several minima confirming
theoretically a ‘jump’ of magnetization direction from 90 to
approximately 40 degrees observed experimentally at 90 K
(Fig. 15). It also leads to a hysteresis behavior of magnetization
as a function of temperature. This in turn creates a condition for
a noncontinuous spin reorientation transition, that can be con-
sidered as a planar to the uniaxial anisotropy phase transition.

One can conclude that the increase of MAE with tempera-
ture presented in Fig. 12 is mostly due to changing the in-plane
lattice constant a.

We examine the dependence of the MAE on the exchange
splitting and the SO interaction. The exchange splitting and the
SO coupling are studied by scaling the corresponding terms
in the Hamiltonian artificially with a constant prefactor. This

110 120 130 140 150
Temperature (K)

FIG. 15. (Color online) Temperature variation of the polar angle
0 between the easy axis of the magnetization and the ¢ axis [17] in
MnBi.
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FIG. 16. (Color online) The effect of scaling of the exchange
splitting (upper panel) and value of SO constant (lower panel) on
either Mn or Bi atoms on the MAE K in MnBi (see the text).

scaling can be atom dependent, i.e., within each atomic sphere.
The outcomes of such constraining calculations for the MAE in
MnBi are shown in Fig. 16. In the upper panel, the importance
of the exchange splitting is illustrated. When the exchange
splitting on Bi is set to zero, the MAE is barely modified.
But when we performed such operation on Mn atoms, the
MAE totally vanishes. Furthermore, an enhancement of the
exchange splitting on Mn by a factor of 2.0 (red open triangles)
leads to a correct easy magnetization along the z direction.
So, two independent methods (LSDA+U and constraining
field application) obtained a much better MAE description
while increasing magnetic moment on Mn site (strongly
underestimated in LSDA). We conclude that the proper value
of Mn atom spin moment is most likely crucial for the magnetic
anisotropy studies.

The lower panel of Fig. 16 shows the dependence on the
SO coupling. If we set SO coupling on Mn to zero, the MAE
does not change significantly (full black squares). On the
other hand, when the SO coupling on Bi is zero, the MAE
almost disappears (magenta full circles). The scaling of the
SO coupling of Bi by a factor of 2.0 leads to an increase of the
MAE by a factor of 5 confirming a dominant contribution of
the SO interaction at the Bi site to the large value of MAE in
this compound.

It is customary to relate the MAE with the anisotropy of
M, [orbital moment anisotropy (OMA)] [88-93]. Figure 17
presents the MAE, M;, OMA, and spin moment anisotropy
(SMA) forT = 0Kand T = 300 K. The M;, OMA, and SMA
are larger at the Mn site than at the Bi one. The OMA is just
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FIG. 17. (Color online) The MAE, M;, OMA (AM,) and SMA
(AM;) for T= 0 K (left panel)and 7= 300 K (right panel).

four times larger than the SMA for both sites. It is somewhat
unusual as a contribution of spin moment to the anisotropy
is normally considered to be negligible. The Bi M; changes
its sign through spin-reorientation transition, therefore the
inversion of the MAE in our calculations is directly correlated
with the sign inversion of M; at the Bi site or inversion of
antiferromagnetic coupling between spin moment on Mn and
orbital moment on Bi atoms.

The MAE is approximately proportional to the OMA
through expression K ~ J—‘)\AMZ [88-93], where A is the SO
parameter (~0.041 eV for Mn and ~0.85 eV for Bi [94]).
Therefore, the major contribution to the MAE is due to the
OMA at the Bi site with some contribution from the SMA. A
direct proportionality of K and OMA above is directly related
to a Hund’s rule for the more than half-filled band. However,
we argued in Ref. [92] that a difference of DOS at E; for the
different spin channels is more important for the sign of this
proportionality. As we discussed above, there are more spin
up p states of Bi atom at E; despite p* configuration. This
in turn leads to inverse proportionality between K and OMA.
Thus, a minimum of orbital moment on Bi site (with more
than half filled p band) corresponds to a minimum of the total

PHYSICAL REVIEW B 90, 054404 (2014)

energy, so K ~ —%)\AM,, which formally corresponds to a
Hund’s rule for a less than half-filled band. This is similar
to the situation in CoPt and FePt, discussed in Ref. [92],
where analogous effect has been obtained for nearly filled 5d
Pt band.

Recently, Zarkevich et al. [95] calculated the total energy
and MAE versus crystal geometry using perturbative SO
interaction inclusion with a Hubbard U correction. They found
that this correction improves a comparison of theoretical and
experimental MAE and showed that MAE is strongly affected
by a. However, their absolute values of MAE are much
smaller than the experimental ones. Also, the spin reorientation
transition in their calculations occurs at the lattice constants
corresponding to approximately 500 K. The differences are
probably related to the different treatment of the relativistic
effects (for Bi-based systems it can be important), different val-
ues of Hubbard parameters, and different LSDA+U schemes.

V. EXCITED STATE PROPERTIES
A. Magneto-optical properties

In this section we provide a theoretical explanation of the
MO properties of MnBi.

The experimental Kerr spectra as well as the calculated
ones are shown in Fig. 18. The Kerr rotation is denoted by 6x
and the Kerr ellipticity by eg. First-principles LSDA theory
predicts a very large Kerr rotation in MnBi of about —2°
at 1.8 eV. This is even larger than the measured peak value
of —1.6° [25]. The experiment shows a second maximum
in the Kerr angle at 3.4 eV. Here the LSDA calculations
give only a shoulder. We found that the reason for such
disagreement is the underestimation of the M in the LSDA.
The M, at the Mn site is equal to 3.572up in the LSDA.
However, the experimental value at low temperature is equal to
4.25up [85]. In Fig. 18, we present the calculated Kerr spectra
in the LSDA+SO+U (red full lines) and the LSDA+SO
calculations with an artificially increased exchange splitting
on the Mn site by 1.5 times (black dotted curves). In both
latter calculations the M; is quite close to the experimental
value (4.234pu and 4.257up for the LSDA+4-SO+U and the
LSDA+SO with increased spin splitting, respectively). Both
spectra have similar shapes with much better reproduction of
the second maximum in the Kerr angle at 3.4 eV. Another
feature of the experimental Kerr rotation is that it exhibits
a sign reversal at 0.9 eV. This sign reversal is actually also
given by the LSDA+SO method, but for a smaller energy.
The LSDA+SO+U method and the LSDA+SO one with
increased spin splitting perfectly reproduces the energy of a
signreversal at 0.9 eV. The LSDA+SO+-U approximation also
better reproduces the observed shape of the Kerr ellipticity and
a sign reversal at around 2 eV (see the upper panel of Fig. 18).

The Kerr spectra depend on the MO conductivity spectra
in an entangled way. Therefore, it is difficult to assign
features in the Kerr spectra to particular band transitions. The
absorptive parts of the optical conductivity oy, and ooyy,
however, relate directly to the interband optical transitions, and
therefore provide more physical insight [50,96]. The calculated
absorptive part of off-diagonal optical conductivity o5, for
MnBi is shown in Fig. 19. The main peak in the Kerr rotation
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FIG. 18. (Color online) Calculated in the LSDA4SO (blue
dashed lines) and LSDA+SO+U (red full lines) approximations
polar Kerr rotation (fx) and Kerr ellipticity (¢x) spectra of MnBi
in comparison with the experimental measurements from Ref. [25].
My, x 1.5 denotes an exchange splitting of 150% of the first-
principles value.

of MnBi is due to the maximum in o,,, at 1.8 eV. The
second fine structure in the MnBi Kerr spectrum at 3.4 eV
corresponds to the high energy peak in oy, at the same
energy. The LSDA+SO calculations strongly underestimate
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FIG. 19. (Color online) Calculated in the LSDA+SO (blue
dashed lines) and LSDA+SO4-U (red full lines) approximations
off-diagonal component (o,,,) of the conductivity tensor for MnBi
in comparison with the experimental measurements in MnBi from
Ref. [25]. My, x 1.5 denotes an exchange splitting of 150% of the
first-principles value.
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FIG. 20. (Color online) The effect of scaling of the exchange
splitting (upper panel) and the value of the SO constant (lower panel)
on either Mn or Bi atoms on the MO Kerr spectra in MnBi (see the
text).

the intensity of the second high energy peak in 05,,. As aresult
of this, the LSDA+SO fails to correctly describe the second
negative peak in the Kerr rotation at 3.4 eV. On the other hand,
the LSDA+SO+U and the LSDA+SO with increased spin
splitting quite well reproduce the intensity of the second high
energy peak in the o2, spectrum and therefore better describes
the 3.4 eV peak in the Kerr rotation.

We can conclude that the main reason for a failure of LDSA
to describe the MO properties in MnBi is the significant
underestimation of spin magnetic moment on the Mn atom.
Two very different techniques (the LSDA+U method and the
application of an external magnetic field on the Mn atom)
produced similar spin moment enhancement and consequently
better MO values.

It is important to identify the origin of the large Kerr effect
in MnBi. To this end, we examine the dependence of the MO
spectra on the exchange splitting and the SO interaction. The
exchange splitting and the SO coupling are studied by scaling
the corresponding terms in the Hamiltonian artificially with
a constant prefactor. These modifications can be done within
each atomic sphere independently, so that we can investigate
the separate effects of these quantities on Mn and on Bi. The
outcomes of these model calculations for the Kerr rotation of
MnBi are shown in Fig. 20. In the lower panel, the importance
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of the exchange splitting is illustrated. When the exchange
splitting on Bi is set to zero, the Kerr rotation remains as it is.
But when we do the same for the exchange splitting on Mn, the
Kerr rotation totally vanishes. This implies that the exchange
splitting due to Mn is crucial for the sizable Kerr rotation, but
that of Bi is not important. Furthermore, an enhancement of the
exchange splitting on Mn by a factor of 1.5 (dotted line) leads
to a much larger peak in the Kerr rotation at 3.4 eV. The upper
panel of Fig. 20 shows the dependence on the SO coupling. If
we set the SO coupling on Mn to zero, the Kerr rotation does
not change very much (dashed red line). On the other hand,
when the SO coupling on Bi is zero, the Kerr rotation almost
disappears (dotted magenta line). Thus, the SO coupling of
Bi is equally responsible for the large Kerr rotation as is the
exchange splitting of Mn. An intermediate scaling of the SO
coupling of Bi by a factor of 0.5 leads to an approximately
half as large Kerr angle, thereby illustrating the almost linear
dependence of the Kerr effect on the SO interaction of Bi in
this compound.

B. X-ray magnetic circular dichroism

Motivated by the developing interest in obtaining element
specific magnetic moment information provided by XMCD
measurements. We calculate the x-ray absorption spectroscopy
(XAS) and XMCD spectra of MnBi at the Mn K and L3, and
at the Bi M5 3, My 5, N23, Nas, Ne 7, and O, 3 edges.

Figure 21(a) shows the theoretically calculated x-ray
absorption spectra at the Mn K edge in MnBi with the
electric field vector of the x rays both parallel (dashed red
curve) and perpendicular (full blue curve) to the ¢ axis. The
associated x-ray linear dichroism (XLD) signal (obtained by
taking the difference of the x-ray absorption spectra for the
two polarizations) is given in panel (b) of Fig. 21. Figure 21(c)
shows the theoretically calculated XMCD in terms of the
difference in absorption Aug = u{ — pg for left and right
circularly polarized radiation in MnBi. After comparing panels
(b) and (c), we can conclude that the XMCD signal is almost
one order of magnitude smaller than the corresponding XLD
signal. Also, the spectra have major peaks in different energy
intervals. Major peaks in the XMCD spectrum are mostly
located in the O to 15 eV energy interval. However, the XML
spectrum possesses the major peaks above 15 eV.

Because dipole-allowed transitions dominate the absorption
spectrum for unpolarized radiation, the absorption coefficient
M%(E ) reflects primarily the density of states (DOS) of
unoccupied 4p-like states N,(E) of Mn above the Fermi
level. Due to the energy-dependent radial matrix element
for the 1s — 4p transition, there is no strict one-to-one
correspondence between ug(E) and N,(E). The exchange
splitting of the initial 1s-core state is extremely small and
therefore only the exchange and SO splitting of the final 4p
states is responsible for the observed dichroism at the K edge.
For this reason, the dichroism is found to be quite small (lower
panel of Fig. 21).

To illustrate the influence of SO interaction on the final
states involved in the transitions, let us introduce a site-
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FIG. 21. (Color online) (a) The theoretically calculated x-ray
absorption spectra of MnBi at the Mn K edge with the electric field
vector of the x rays parallel (red dashed curve) and perpendicular (blue
full curve) to the z axis; (b) theoretically calculated XLD spectra at
the Mn K edge; (c) the theoretically calculated XMCD spectrum at
the Mn K edge (red full curve) and dm, function (blue dashed curve).
The calculations have been done using the LSDA+SO-+U approach.

dependent function dm,;(E) given by [97]

DO (WL W, )SCE — Eno),

mj nk

dmy(E) = 13)

where [, is the z projection of the angular momentum operator,
E,x and \Il,”lk are the energy of the nth band and the part of the
corresponding LMTO wave function formed by the states with
the angular momentum / inside the atomic sphere centered at
site ¢, respectively. In analogy to the /-projected density of
states, dm,;(E) can be referred to as the site- and /-projected
density of the expectation value of .

The 4 p-3d hybridization and the SO interaction in the 4p
states play a crucial role for the Mn K -edge dichroism. As seen
in Fig. 21(c), the K XMCD spectrum and dm,;(E) functions
are closely related to one another and give a rather simple and
straightforward interpretation of the XMCD spectra at the K
edge.

Because of the dipole selection rules and apart from the
4512 states (which have a small contribution to the XAS
due to relatively small 2p — 4s matrix elements [50]), only
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FIG. 22. (Color online) X-ray absorption (top panel) and XMCD
spectra (lower panel) at the Mn L, 3 edges calculated using the
LSDA+SO+U.

3ds, states occur as final states for L, XAS for unpolarized
radiation. Whereas for L3 XAS the 3ds;, states also con-
tribute. Although the 2p3,, — 3d3/, radial matrix elements
are only slightly smaller than elements for the 2p3/, — 3ds,»
transitions the angular matrix elements strongly suppress the
2p3/2 — 3d3 > contribution. Therefore in neglecting the energy
dependence of the radial matrix elements, the L, and the L3
spectrum can be viewed as a direct mapping of the DOS curve
for 3d5, and 3ds,, character, respectively.

In contrast to the K edge, the dichroism at the L, and L3
edges is also influenced by the SO coupling of the initial 2 p-
core states. This gives rise to a very pronounced dichroism in
comparison with the dichroism at the K edge. Figure 22 shows
the theoretically calculated Mn L, 3 XMCD spectra in MnBi.
The XMCD spectra at the L 3 edges are mostly determined
by the strength of the SO coupling of the initial 2 p-core states
and spin polarization of the final empty 3d3/, 5/ states. The
exchange splitting of the 2p-core states as well as the SO
coupling of the 3d-valence states are of minor importance for
the XMCD at the L, 3 edge of 3d transition metals [50].

As mentioned above, XMCD investigations supply infor-
mation on magnetic properties in a component resolved way.
This seems especially interesting if there is a magnetic moment
induced at a normally nonmagnetic element by neighboring
magnetic atoms. The underlying mechanism of the magnetic
and MO properties of the systems considered here is the
well known ability of transition metals to induce large spin
polarization of Bi via strong 3d-6 p hybridization and exchange
interaction.

Results of the theoretical calculations for the circular
dichroism at the L, 3 edge of Bi are shown in Fig. 23. The
XMCD spectrum is negative at the L3 edge and positive at
the L, edge as has been seen for the XMCD spectra at the
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FIG. 23. (Color online) X-ray absorption (top panel) and XMCD
spectra (lower panel) at the Bi L,3; edges calculated using the
LSDA+SO+U.

L, 3 edges of Mn (Fig. 22). The XMCD in Bi at the L3 and
L, edges are of nearly equal magnitude. This suggests that an
orbital magnetic moment almost vanishes in Bi 5d states in
MnBi.

To investigate the influence of the initial state on the
resulting Bi XMCD spectra, we also calculated the XAS and
XMCD spectra of MnBi at the M5 3, My s, N2 3, Na 5, Ng 7, and
0,3 edges. We found a systematic decreasing of the XMCD
spectra in terms of R = A /(2u%) in the row Lj 3-M3 3-Na 3
edges, although the magnetic dichroism of quasicore states
(07,3 and Ng ;7 edges) became almost one order of magnitude
larger as it was at the L, 3 edges (compare Figs. 23 and 25).
Besides, the lifetime widths of the core O, 3 and Ng 7 levels
are much smaller than the L, 3 values [98]. The spectroscopy
of Bi atoms in the ultrasoft x-ray energy range at the O, 3 and
Ng,7 edges may therefore be a useful tool for investigating the
electronic and magnetic structure of MnBi.

Bi M, s and N4 s spectra may be considered as an analog
of the K spectrum to some extent. The K absorption spectrum
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FIG. 24. (Color online) X-ray absorption (top panels) and
XMCD spectra (lower panels) at the Bi M, 5 (left panels) and edges
N, 5 (right panels) calculated using the LSDA+SO+U.
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FIG. 25. (Color online) X-ray absorption (top panels) and
XMCD (lower panels) spectra at the Bi O, 3 (left panels) and Ng 7
(right panels) edges calculated in the LSDA4-SO+-U'.

reflects the energy distribution of empty p;,, and p3,; energy
states. The My (N4) absorption spectrum is due to the dipole
selection rules occurring during the transition from the 3d3/,
(4d3)2) core states to the pi/, p3j2, and f5/, valence states
above the Fermi level. The p3/», f5/2,and f7,, states contribute
to the M5 (Ns) XASs. Results of the theoretical calculations
of the circular dichroism in absorption at the M4 s and N4
edges of MnBi are shown in Fig. 24.

It is interesting to compare the Bi XAS and XMCD spectra
at the Ly 3, Oy 3, and Ng 7 edges. Due to the dipole selection
rules, for unpolarized radiation (apart from the s/, states
which have a small contribution to the XAS) only the 3d3,,
states occur as final states for the L, as well as for the O,
spectra. The L3 and O3 spectra reflect the energy distribution
of both the 3d5,; and 3ds;, empty states. On the other hand,
the N7 absorption spectrum reflects only the 3ds,, states (the
density of the g7/29/» states is really very small), whereas for
the Ng XAS both the 3d3, and 3ds,, states contribute. We
therefore have an inverse situation: The Ng absorption spectra
correspond to the L3 and O3 spectra, and the N is the analog
of the L, and O, spectra. This situation is clearly seen in
Figs. 25 and 23 where the theoretically calculated XMCD
spectra of MnBi at the O, 3, Ng 7, and L, 3 edges is presented.
The XMCD spectra at the L3 edges are almost identical to the
spectra at the Ng edges. The XMCD spectra at the L, edges
are also very similar to the spectra at the N; edges (but not
identical because the energy distribution of the Bi 5d3,, and
5ds)y states is not exactly the same due to SO interaction).
The spectral shape of the magnetic circular dichroism at the
03 (0,) edge also resembles the corresponding dichroism at
the L3 and Ng (L, and N;) edges. However, the intensity
of the XMCD signal at the O3 (0O;) edge is relatively larger
near the edge. One can argue that at least for Bi the L3
and Ng 7 spectra predominantly reflect atomic aspects of the
valence bands. For the O, 3 edges, the itinerant aspects are
more important.

Because of the relatively small SO splitting of the 4 f states
of Bi (~3.0 eV), the Ng and N7 spectra have an appreciable
overlap. For this reason, the N7 spectrum contributes to some
extent to the structure of the total Ng 7 spectrum in the region
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of the N edge (see Fig. 25). To decompose a corresponding
experimental Ng7 spectrum into its Ng and N; parts will
therefore be quite difficult in general. A similar problem also
occurs in the XAS spectra at the O edge (see Fig. 25).

VI. CONCLUSIONS

‘We have performed relativistic LSDA+SO+-U calculations
of the electronic structure and Fermi surface properties in
MnBi. It was found that the SO interaction and Coulomb
correlations strongly affect the shape of the FS by changing
the size and even the topology of some sheets of the FS in
MnBi.

The x-ray absorption and x-ray magnetic dichroism of
MnBi at the Mn K, L3, and M, 3 edges and the Bi L3,
M3, M4 s, Na3, Nas, Ne 7, and O3 3 edges have been studied.

We showed that the SO coupling of Bi, the exchange
splitting of Mn, and the Mn-Bi hybridization are all crucial
components for a large MO Kerr effect in MnBi. It was
determined that the main reason for a failure of previous
LSDA calculations to describe the MO properties in MnBi
is the significant underestimation of spin magnetic moment on
the Mn atom. Two very different techniques (the LSDA+U
method and an application of external magnetic field on the
Mn atom) produce similar spin moment enhancement and
consequently better MO and MAE values.

The LSDA+SO+U approach provides a proper value of
magnetic moment on Mn atoms and correct easy magne-
tization direction for the entire temperature interval. The
LSDA+4SO+U theory produces MAE which is in very
good quantitative agreement with experimental results in the
150-450 K temperature range. The physical reason for the
observed spin reorientation is the unusual dependence of
anisotropic Bi-Bi exchange on the in-plane lattice parameter
or exchange striction mechanism.

It appears that the spin reorientation in MnBi correlates with
the inversion of orbital moment minimum on Bi atom with
temperature according to a Hund’s rule. At lower temperature
a maximum of orbital moment corresponds to a minimum of
the total energy, while at room temperature it corresponds to
the energy maximum.

For a large amount of properties that have been discussed
in this paper, no prior theoretical or experimental studies
have been performed. With high quality single crystal samples
already available, the opportunity to perform the initial experi-
mental study of many the properties discussed above becomes
feasible and therefore our other theoretical predictions can be
tested.
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