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Wave propagation in twisted metamaterials
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Twisted metamaterials, or arrays of identical planar metasurfaces stacked with a sequential rotation, have been
recently introduced to realize broadband circular dichroism. Here we develop a generalized Floquet analysis to
obtain the exact modal solutions for eigenwaves supported by these structures. The dispersion relation and wave
propagation in twisted metamaterials are discussed in detail. Our analysis shows how the modal dispersion in
these metamaterials becomes inherently different from the one of conventional periodic structures and how the
eigenmodes support specific circular polarization properties based on a lattice effect, even when achiral inclusions
are considered. These wave properties are ideal to realize optical devices that manipulate the polarization state
of light over broad bandwidths. By analyzing the physical nature of these modes, including complex modes, we
also extend the application of twisted metamaterials to realize passband and stop-band nanophotonic structures
with strong polarization manipulation properties.
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I. INTRODUCTION

Introducing a sequential rotation in an otherwise periodic
array results in new possibilities for manipulating and engi-
neering wave propagation. These twisted arrays of particles
are the building blocks of nematic liquid crystals and of a
range of newly developed metamaterials with applications to
negative refractive index and partial focusing [1–7], perfect
lenses [8], broadband polarizers [9], optically active media
[10–16], polarization rotators [17], enhanced reflectors [18],
unidirectional optical waveguides [19], photonic crystals
[20,21], chromatic aberration correctors [22], giant chirality
[23], and superchiral light [24,25]. Twisted structures have
also been recently studied to improve the performance of
high-power microwave sources [26–28] in which a waveguide
with helical grooves is used to boost the interaction between
electromagnetic waves and electron beams. The same concept
can be used to obtain circular dichroism in optical waveguides
[29,30]. Since the twisted arrays have different structural sym-
metries compared to conventional periodic arrays, the methods
developed to obtain modal solutions of periodic arrays [31–
34] are not directly applicable to twisted metamaterials. To
study the wave phenomena in twisted structures, ranging
from twisted chains of nanoparticles to three-dimensional
(3D) models of liquid crystals, various methods have been
applied in the literature, including geometrical optics [35,36],
coupled-mode theory [37,38], Riccati’s equation modeling
[39], finite element methods [40], Green’s function methods
[31–42], and the transfer-matrix methods [43–52].

Among these techniques, the transfer-matrix method has
several advantages in terms of rigorousness, speed, and
analytical simplicity. This technique assumes that the medium
is composed of multiple anisotropic layers with a sequential
rotation [52] and each layer is represented by a 4 × 4
transfer matrix so that by cascading the individual matrices,
the collective response of the material may be found. This
method is especially useful when dealing with a small number
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of layers; however, it becomes impractical when the array
becomes large.

Here, based on this approach, we introduce a generalized
Floquet formalism to study the eigenmodes supported by a
3D twisted metamaterial, consisting of an infinite array of
identical metasurfaces rotated sequentially along the array axis
[9]. After deriving the normal modes supported by the array,
which are orthogonal to each other, we express the fields inside
the stratified twisted metamaterial using a superposition of
left- and right-handed circularly polarized plane waves. This
analysis helps us highlight the wave propagation properties
in these structures and provide additional insight into their
eigenmodal propagation properties. Our results show that
twisted metamaterials can support eigenmodes with strong
circular polarization properties as well as complex eigenmodes
that, although not being excited by plane waves impinging
from free space, may affect the evanescent spectrum and local
density of states near a slab of twisted metamaterials. It is worth
mentioning that the theory developed for analyzing waveg-
uides with step and turn symmetry [30] can be considered as
a special case of the results presented in the following. In the
next section, we introduce our analysis to model a twisted
array of metasurfaces and discuss the general properties of
these solutions. Throughout this paper, we assume an e−iωt

time dependence.

II. EIGENSOLUTION FOR TWISTED METAMATERIALS

A unit cell in the transverse direction for a twisted
metamaterial, consistent with the geometry originally intro-
duced in Ref. [9], is shown schematically in Fig. 1. The
parallel metasurfaces consist of periodic repetitions in the
x-y directions of the inclusions shown in Fig. 1, and they
are assumed to reside in constant-z planes with a negligible
thickness. The distance d between neighboring metasurfaces
is assumed constant through the array. Each metasurface is
indexed using an integer number n with n = 0 placed at the
z = 0 plane. The twist is obtained by rotating each metasurface
by a constant angle θ with respect to its immediate neighbor.
Therefore, the nth metasurface is rotated by nθ radians and
is translated by nd along the z direction, compared to the 0th
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FIG. 1. (Color online) Schematic geometry of a twisted meta-
material. Each layer is rotated by a constant angle compared to its
immediate neighbor. The transfer matrix of each twisted unit cell can
be obtained by suitably rotating the transfer matrix of the first unit
cell. A twisted unit cell consists of a propagation length d in free
space and an ultrathin metasurface in the middle.

metasurface. In the following analysis, the twist angle θ can
be chosen arbitrarily as long as it is kept constant throughout
the structure.

We construct the “twisted unit cell” of the metamaterial
by sandwiching the transfer matrix of the generic metasurface
between the two transfer matrices of free-space segments with
equal lengths d/2 as shown in Fig. 1. If T is the transfer matrix
of a metasurface, the transfer matrix of a twisted unit cell can
be written as RTR−1, where R is the 4 × 4 rotation matrix
[53] (see the Appendix for the expression of these tensors).
Therefore, the fields that enter the (n + 1)-th twisted unit cell
can be written as a function of the fields at the nth twisted unit
cell as

fn+1 = RnTR−nfn, (1)

where f is a 4 × 1 vector containing the transverse components
of both electric and magnetic fields. The generalization of
Floquet’s theorem for this twisted structure requires defining
generalized eigenmodes that are self-sustained as they propa-
gate through the twisted unit cells. The eigenvectors need to
satisfy the symmetry condition [55],

fn+1 = Reiβd fn, (2)

where β is the complex wave number in the twisted array.
Equation (2) describes the fields at the input of any twisted
unit cell as a rotated and phase-shifted replica of the fields at

the input of the next unit cell, illustrated by the dotted red curve
in Fig. 1. From Eqs. (1) and (2), the following eigensystem can
then be derived:

(RnTR−n − Reiβd )fn = 0. (3)

It can be readily proved using mathematical induction that if a
wave number satisfies the above equation for a specific integer
n, it will also satisfy the equation for all other integer values of
n. This shows that the derived eigensystem is self-consistent,
and the generalized eigenmodes defined in (2) can be supported
by the twisted metamaterial. Since β is independent of n,
we can solve Eq. (3) for n = 0 and find all supported wave
numbers.

In general, the eigenvalue problem (3) results in a fourth-
order equation with four distinct eigenvalues, two of which
correspond to modes propagating in the positive direction and
the other two in the negative direction. It should be stressed that
one cannot determine the direction of propagation by simply
considering the sign of the propagation constant because of the
involved field rotation at each twisted unit cell. The appropriate
direction of propagation may be found by considering a small
amount of loss in each metasurface and examining the decay
direction of the eigenmodes or equivalently by computing the
power flow direction for each eigenmode as we do in the next
section.

We show in the Appendix that, for each forward mode solu-
tion (E, H, and β) of (3) in a time-reversal symmetric twisted
metamaterial, there will be also a mode propagating in the
opposite direction with a similar wave number (E∗,−H∗, and
−β∗). Thus, solutions to (3) can be limited to positive
propagation constants in a reciprocal metamaterial, and the
corresponding dispersion equation is an even function of the
propagation constant. By generalizing the results in Ref. [56],
we can also show that the eigenmodes supported by the
twisted metamaterial are orthogonal to each other. Therefore,
it is possible to induce each mode independently with proper
excitation, and they carry power without mutual coupling,
despite the rotation and polarization couplings in the system.

Another relevant property of twisted metamaterials that
arises from symmetry considerations, also formally derived
in the Appendix, is that two arrays with the same metasurfaces
and opposite rotation angle θ have the same propagation
properties. A forward propagating mode (E, H, and β) in
one metamaterial corresponds to a mode propagating in the
opposite direction (E, − H, and − β) in the other one, a
simple consequence of the fact that a right-handed structure is
transformed into a left-handed structure after mirror symmetry.
For reciprocal arrays this implies that, by changing the sense
of rotation of the array, the sense of rotation of the fields is
also flipped. In mathematical terms, if E and H are eigenmodal
solutions with wave number β for a twisted metamaterial with
positive rotation, then the solution for negative rotation can be
written as E∗, H∗ with wave number β∗.

In order to understand the modal properties of twisted
metamaterials, we analyze a simple geometry consisting of
arrays of perfectly electric conducting (PEC) rods. We choose
this geometry because each inclusion does not support any
intrinsic chiral response or polarization coupling, allowing
us to better highlight the effects of the lattice rotation on
the propagating modes. In our example, each metasurface is
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(a) (b)

FIG. 2. (Color online) (a) The real and (b) the imaginary parts of the wave number of a twisted array composed of PEC dipoles. The angle
of rotation between consecutive metasurfaces is π/3 rad, and the distance between consecutive metasurfaces is d = 85 nm. Solid and dashed
lines refer to real and imaginary parts of the wave number, respectively. Real and imaginary parts of each mode have the same color. Around
kd = 0.9 the metamaterial supports a pair of complex modes.

composed of PEC rods with dimensions 300 × 50 × 50 nm in
a square lattice with transverse periods equal to 350 nm in both
directions. The transfer matrix of this metasurface is obtained
using full-wave numerical simulations [57], and we initially
assume an angle of rotation θ = π/3 rad and d = 85 nm.

By using the numerically evaluated transfer matrix in
Eq. (3), the dispersion diagram for the twisted metamaterial
is easily calculated and is shown in Fig. 2. In general, four
modes are supported by this structure, although at certain
frequencies one or both pairs can have an imaginary part.
The real and imaginary parts of the wave numbers, as obtained
from (3), are shown with solid and dashed lines in panels
(a) and (b), respectively. These diagrams are a bit unusual to
read: For instance, the dispersion curves meet at βd = ±π/3
for kd = 0, where k is the wave number in the background
medium. The value of βd at zero frequency coincides with the
rotation angle between two consecutive metasurfaces. This is
a general property of the dispersion diagram for periodically
twisted structures, which can be justified by the fact that at zero
frequency the admittance of the metasurface is negligible, or
equivalently the transfer matrix T = I (with I being the identity
matrix), implying that the eigensolution to (3) reduces to the
eigenvalues of the rotation matrix, which are e±iθ . Thus the
propagation constant β at frequencies near zero approaches
the rotation angle divided by the length of the twisted unit cell
(i.e., β = ±θ/d).

At sufficiently low frequencies all modes have real wave
numbers, provided that the admittance [58] of the metasurface
is sufficiently small as in our scenario. As the frequency
increases, the propagation constants start to diverge from each
other: The second and fourth modes (blue and red lines) have
a positive slope, whereas the first and third modes (black
and green lines) have a negative slope in the βd − kd plane,
corresponding as shown in the following to forward and
backward modes, respectively. At sufficiently low frequencies
the modal dispersion varies linearly with frequency as expected
since the Taylor expansion of the transfer matrix can be written
as T ≈ I + k T′(0), where T′(0) is the derivative of the
transfer matrix with respect to the free-space wave number
at k = 0. Interestingly, the slope of this linear portion of

the dispersion diagram is independent of the rotation angle.
Around kd = 0.5, two of the modes reach the βd = 0 axis and
become evanescent, and the structure supports only a pair of
propagating modes in the frequency range of 0.5 < kd < 0.7. At
higher frequencies, this pair reaches the stop-band condition
βd = π and gains an imaginary part, and the structure exhibits
a full band gap for which no propagation exists. For kd
between 0.9 and 1.0, the twisted metamaterial supports four
complex modes. These modes are more sensitive to the array
parameters, compared to propagating or evanescent modes.
For example, they are not supported if the distance between
twisted unit cells increases from 85 to 95 nm. However, for
smaller values of d, complex modes still exist in the structure.
At kd � 1.0, these complex modes split into four propagating
modes, two of which rapidly become evanescent at higher
frequencies. Interestingly, band diagrams, such as the one
in Fig. 2, may be plotted for arbitrary rotation angles and
separation distance between neighboring metasurfaces, even
in the case of strictly nonperiodic arrays, i.e., when 2π is not
a multiple of the rotation angle.

In this context, it may be easily verified that (3) reduces
to the case of a conventional periodic metamaterial if the
rotation angle is zero or 2π since R = I. When RN = I, which
means the N th metasurface has the same orientation as the
metasurface at the origin, the twisted metamaterial becomes
periodic, and it has a superlattice with periodicity d ′ = Nd. For
this subclass of twisted metamaterials, our analytical results
can be compared to band diagrams obtained from full-wave
numerical simulations for conventional periodic structures.
Since the length of the unit cell is different in these two
approaches, the dispersion diagram of the twisted metamaterial
based on (3) should be folded in an appropriate way to
reproduce the conventional dispersion diagram of a periodic
structure. For example, the propagation constant in the twisted
metamaterial discussed in the example of Fig. 2 is related to
the propagation constant in a corresponding periodic structure
through the formula,

β ′d ′ = 3βd ± π, (4)
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(a) (b)

FIG. 3. (Color online) The dispersion diagram of a twisted metamaterial with supercell periodicity consisting of three twisted unit cells in
the direction of propagation. (a) Dispersion diagram obtained from numerical simulations, and (b) analytical results obtained from (4). The
real part of the complex modes is highlighted with purple.

where d ′ and β ′ are the lattice and the propagation constants
in the periodic structure, respectively. The addition of π is
due to the fact that three rotations in this twisted structure
result in a rotation equal to π , but because of the inclusion
symmetry (nanorods), this rotation is enough to produce a
periodic supercell.

Based on this property, a supercell of the considered twisted
metamaterial was simulated using full-wave simulations, and
in Fig. 3 the simulation results [panel (a)] are compared with
our analytical solution [panel (b)] after proper folding of the
dispersion diagram of Fig. 2. For simplicity, we only plot the
real part of β ′d ′ in Fig. 3(b) since our full-wave simulations
cannot compute evanescent modes. The colors in panel (b)
directly correspond to the different modes in Fig. 2. It is seen
that our analytical solutions agree very well with the numer-
ical simulations, especially at lower frequencies, validating
our analysis. In this supercell representation, the dispersion
relation starts at zero, as usual. At lower frequencies, two
forward modes exist [modes 2 (red) and mode 4 (blue)]. As
the propagation constant of these two modes crosses π/d ′
(i.e.,β ′d ′ → π ), they become evanescent and mode 3 (green)
enters the range between zero and π/d ′.

Our numerical simulations confirm that no propa-
gating mode is supported in the frequency range of
0.8< kd < 1.0. This frequency gap corresponds to
the stop band where only evanescent modes exist.
Based on our analytical results, this stop band starts at
kd � 0.7 instead of 0.8 as predicted by numerical simulations.
In addition, some band gaps in the numerical simulations are
not present in the analytical results when β ′d ′ approaches
π . These minor discrepancies between full-wave numerical
simulations and analytical results become more prominent
when the phase shift between consecutive layers in the twisted
structure becomes larger. For example, mode 4 (red line)
reaches β ′d ′ = π at kd � 0.5, which corresponds to the
phase shift βd = 0 in the dispersion diagram of Fig. 2. In this
case, the difference between analytical and numerical results
is relatively small. However, at a slightly higher frequency,
modes 2 and 3 (blue and green lines) approach β ′d ′ = π ,
which corresponds to βd = ±2π/3, and the discrepancy in
this case becomes larger. Mode 3 (green line) approaches

β ′d ′ = 0 at kd � 0.7, which corresponds to βd = −π , and the
discrepancy is the largest at this point. Similar observations can
be extended to even higher frequencies. Therefore, it can be
stated that larger discrepancies between numerical simulations
and our analytical results occur at large values of βd. These
observations are partially related to the fact that the thickness
of the metasurface composing the twisted metamaterial is
not zero as assumed in the analytical solution, in fact it is
comparable to the distance between metasurfaces. For larger
phase shifts, the phase error due to neglecting the finite size
of metasurfaces is larger; therefore it is responsible for the
larger discrepancies between full-wave simulations and the
analytical model.

It is worth noting that, in our analytical results, an additional
dispersion curve (the red curve with purple dashed highlights)
arises in this stop band. This additional curve is associated with
the complex mode evolved from mode 4, which is not captured
by our full-wave simulations limited to only purely real
propagation constants. At higher frequencies (kd > 1), some
discrepancy between the numerical and the analytical solution
arises, associated with the fact that the metasurface can no
longer be homogenized with the surface impedance model
used in our analytical calculations because the wavelength is
comparable to the transverse periodicity of the metasurface.
This may be easily corrected with an extended analytical
approach that takes into account more than one transverse
Floquet harmonics in (3). In addition, the small discrepancy
between a rotated metasurface as considered in our theory and
a metasurface with rotated inclusions but the same lattice as
the one considered in our numerical simulations becomes more
pronounced at higher frequencies [54].

III. POLARIZATION PROPERTIES OF THE EIGENMODES

Our theory can also easily highlight and provide insight
into the polarization properties of the eigenmodes derived in
the previous section. To this end, we decompose the electric
field propagating in the twisted structure into the superposition
of right-handed and left-handed circularly polarized waves
[E = (x̂ + iŷ)EL + (x̂ − iŷ)ER], where x̂ and ŷ are unit
vectors along the x and y directions, respectively. This analysis
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FIG. 4. (Color online) (a) Real part of the Poynting vector in the direction of propagation (Re[Sz]) as a function of wave number (k) for
the same metamaterial as in previous figures. (b) Group velocity normalized to the speed of light in vacuum of the modes as a function of the
wave number. Comparison between the figures reveals that both the group velocity and the Poynting vector show the same direction of energy
propagation for different modes.

has several advantages: First, when only one mode exists,
examining its polarization properties may result in optimal
designs for polarization control. In addition, group velocity
and Poynting vector distribution of the different modes can
naturally be evaluated in this representation.

Since En+1 = rEn eiβd , where r is the 2 × 2 rotation matrix
with angle of rotation θ , it is easy to prove that ER and EL for
each eigenmode satisfy the equations,

ERn+1 = ERne
i(βd−θ ),

(5)
ELn+1 = ELne

i(βd+θ ).

Therefore, right- and left-handed components are plane waves
traveling with wave vectors equal to β − θ/d and β +
θ/d, respectively. It is important to note that the amplitudes
of left- and right-handed terms are not independent, i.e., in
general it is not possible to excite just one of these circularly
polarized waves since the eigenmodes are not purely circularly
polarized, and for each eigenmode the two components in (5)
exchange power as they propagate along the array. However,
as we discuss in the following, twisted metamaterials tend
to naturally support eigenmodes with one of the circular
polarizations significantly stronger than the other one, which
justifies this representation. This is obviously of interest
to develop optical devices that manipulate and filter light
polarization [9]. Similar relations can be obtained for left-
and right-handed components of the magnetic field.

For a twisted metamaterial made of lossless metasurfaces as
the one considered here for simplicity, the wave number can be
real (for propagating modes), purely imaginary (for evanescent
modes), or complex with a pair of modes supporting complex
conjugate β as derived in Figs. 2 and 3. The Poynting vector
can be defined for all these modes, and its real part Re Sz in
the direction of propagation for the metamaterial of Figs. 2
and 3 is shown in Fig. 4(a). Here the Poynting vector is plotted
for normalized modes [the norm of the field vector f in (3)
being set to 1]. At lower frequencies, one of the modes has
a negative propagation constant and positive Re[Sz] (mode
1, black line in the figures), which shows that the energy
travels opposite to the generalized Floquet phase. This does not

imply that the mode is backward because the definition of the
wave number β is different from the conventional definition in
periodic structures as shown in (4). In fact, the fields defined
in a reference frame at rest, such as in (5), do not have a
unique phase velocity, but the left-handed and right-handed
components appear to travel at different velocities. However,
using (5) it is possible to uniquely define a group velocity for
the modes: By assuming that the fields are slowly modulated
in the direction of propagation, we can represent them as

E(z) = ELei(β+θ/d)z(x̂ + iŷ) + ERei(β−θ/d)z(x̂ − iŷ), (6)

and define the group velocity as vg = ∂ω/∂β for propagating
modes, which is the same for both left- and right-handed
components as shown in Fig. 4(b) [59]. The group velocity
confirms the direction of propagation of all modes, consistent
with the Poynting vector in Fig. 4(a). As mentioned earlier,
the slope of the dispersion diagram in Fig. 2 does not
depend on the rotation angle at low frequencies. This implies
that the group velocity also is independent of the rotation
angle at low frequencies. As the frequency increases, the
modes approach the first cutoff, and the group velocity
correspondingly approaches zero. An interesting feature of the
Poynting vector distribution is a maximum of power flow for
modes 2 and 3 right before the first stop band, associated with a
large increase in stored energy. The energy velocity, consistent
with the group velocity shown in Fig. 4(b), converges smoothly
to zero towards the stop band, but the increase in stored energy
in these modes implies a large power flow.

The representation of eigenmodes in terms of circularly
polarized waves allows us to analyze the polarization evolution
of each mode, shown in Fig. 5. The figure shows the logarithm
of the ratio |EL|/|ER| for all propagating modes in the same
format as Fig. 2. At very low frequencies, each mode is
strongly circularly polarized. Modes 1 (black) and 2 (blue)
are polarized as x̂ + iŷ, and modes 3 (green) and 4 (red) are
polarized as x̂ − iŷ, which, combined with the propagation
direction extracted in the previous analysis, indicates that
modes 1 and 4 are right-handed circularly polarized and modes
2 and 3 are left-handed circularly polarized. Notice that in the
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FIG. 5. (Color online) The evolution of polarization properties
for the eigenmodes of Figs. 2–4 [defined as the logarithm of the ratio
of left- to right-handed components (log10|EL|/|ER|)] as a function
of frequency. In some frequency bands, only one pair of propagating
modes with approximately circular polarization exists.

low-frequency limit the interaction with the metasurfaces is
very weak, and in practice we have only two linearly polarized
modes propagating in the background medium, the linear
combination of the degenerate circularly polarized modes
described in our theory. As the frequency increases, these
modes split, and their circular polarization properties become
less strong. Finally, they become linearly polarized modes at
the stop band. Modes 2 and 3 more strongly retain their circular
polarization properties at the special point kd � 0.6, before
converging to the band gap. It is possible to prove, inspecting
Eqs. (3)–(6), that this special frequency point with a large
circular polarization signature corresponds to the situation
when the phase shift between two neighboring metasurfaces
(βd) is exactly equal to π − θ or −π + θ . A similar response
is also observed at kd � 1.25 for modes 3 and 4 (green and red
lines) since the phase shift for these modes becomes π − θ or
−π + θ .

Since the horizontal axis of Fig. 5 is logarithmic, it is
clear that the modes supported by the twisted metamaterial

retain a high degree of circular polarization for a large
part of their bandwidth of propagation. In the single-mode
regime (0.43 < kd < 0.68 and 1.0 < kd < 1.4), in particular,
where there is only one forward propagating mode, this high
degree of circular polarization can be exploited to design
effective circular polarizers for electromagnetic waves. More
specifically, if a slab of twisted metamaterial is illuminated by
a plane wave in this single-mode frequency range, only one
circularly polarized mode is excited and transmitted through
the structure. Using our analytical approach, we can efficiently
optimize the rotation angle, the distance between metasurfaces,
and the resonant properties of the inclusions to tailor the
stop band and single-mode bandwidth and create optimal
broadband circular polarizers in this planarized geometry.

IV. EXCITATION OF TWISTED METAMATERIALS

The reflection and transmission coefficients of a plane wave
normally incident on the interface of a half-space or a slab
of twisted metamaterial can be found using the continuity
of tangential fields at the boundary and assuming that the
fields inside the twisted metamaterial can be represented
as in (6). A sketch of this scattering problem is shown in
Fig. 6(a). In the case of scattering from the half-space, we
need to consider only eigenmodes carrying power in the
positive direction, i.e., away from the interface, which are
easily determined in Fig. 4. Given the natural description of
eigenmodes in terms of circularly polarized modes, here we
calculate the reflection coefficients for right- and left-handed
plane waves impinging on a half-space filled with the twisted
metamaterial of Fig. 2 using this analytical approach as shown
in Fig. 6(b). Here, RRL represents the reflection coefficient
for the left-handed circularly polarized incidence and the
right-handed circularly polarized reflected wave and similarly
for the other coefficients. Different bands can be identified in
this figure, consistent with the eigenmodal results shown in
the previous figures: At lower frequencies, both polarizations
penetrate the structure and, therefore, the reflection coefficients
have small values. In this regime, the structure is impedance
matched to the free space because the metasurfaces have a

FIG. 6. (Color online) (a) The excitation setup and scattering coefficients for scattering from a slab. In the case of scattering from the
half-space the width of the twisted material slab approaches infinity. (b) Reflection coefficients from a half-space composed of the twisted array
of Fig. 2 calculated using the analytical formulation developed in this paper.
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(a) (b)

FIG. 7. (Color online) Transmission coefficients for a slab of twisted metamaterial with a total thickness of 1 μm. (a) Full-wave numerical
simulations and (b) analytical results.

weak interaction with the wave and we assumed a free-space
background between them. When the frequency increases, the
reflection coefficients grow, consistent with the different modal
dispersions for different polarizations. In the frequency band
with single eigenmode propagation (0. 43 < kd < 0.68 and
1.0 < kd < 1.4) for which the propagating mode has a strong
right-handed polarization, right-handed plane waves penetrate
the half-space, whereas left-handed waves are completely
reflected. In the stop band, both polarizations are reflected, and
no propagating wave can be transmitted in the metamaterial.
The imparted rotation in the structure controls the transmission
of the left- or right-handed waves. Notice in the figure how,
due to the symmetry of the inclusions RRL = RLR, these
polarization coupling coefficients are not negligible, especially
in the band-gap region.

This analysis can also be extended to evaluate the transmis-
sion and reflection from a slab of twisted metamaterial with
finite thickness. Due to the reflections at the second interface,
here all four modes in the metamaterial are excited, and it is
not necessary to distinguish between forward and backward
propagating modes. The transmission coefficients for left- and
right-handed waves are shown in Fig. 7, where TLL (TRR) is
the transmission coefficients of the left-handed (right-handed)
circularly polarized waves when the incident wave has the
same polarization. TLR is the transmission coefficient of the
left-handed circular waves when excited with right-handed
circular polarization. Again, TLR and TRL are equal to each
other in this case and, therefore, only one of them is shown.
In our analytical results [panel (a)], we consider the same
twisted metamaterial as in the previous analysis but with a
finite thickness of 1 μm. For comparison, we also show the
transmission coefficients calculated with full-wave simula-
tions [panel (b)]. Similar bands in the frequency response of
the slab can be identified as in Fig. 6, proving the effectiveness
of the approach presented here and of the use of this thin
planarized metamaterial as a broadband circular polarizer. In
the single-mode frequency ranges, the slab acts as a broadband
circular polarizer, filtering one circular polarization from the
incident fields, whereas in other frequency ranges either both
modes pass through the slab or none of the modes can
penetrate the twisted structure. It is remarkable how this thin

structure, formed by fully achiral inclusions, allows opening
significant bands with large polarization selection, based on
the combination of the resonant response of the nanorods and
their sequential rotation within the lattice.

V. CONCLUSIONS

In this paper, we have developed a generalized Bloch
analysis that efficiently characterizes the modal dispersion
in a twisted 3D array of periodic structures. This method is
based on the assumption that each metasurface forming the
array can be modeled using a transfer matrix with negligible
near-field coupling between layers, an assumption that has
been shown to hold well in the considered examples, validated
with full-wave simulations. Using this approach, it is possible
to obtain the eigenmodes supported by a twisted metamaterial,
including evanescent and complex modes. Our analysis also
allows studying and efficiently optimizing the polarization
evolution of these modes in the different propagation bands,
and it sheds insight into how the sequential rotation along
the lattice introduces a preferred circularly polarized nature
for the propagating modes in the structure. By controlling the
twist angle and metasurface design, we can develop optimized
passband and stop-band features with desired polarization
selectivity for planarized ultrathin nanophotonic devices based
on stacked metasurfaces.
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APPENDIX: TRANSFER MATRIX DERIVATION
AND ITS PROPERTIES

We define the transfer matrix of a metasurface in the
presence of transverse electromagnetic waves as[

F2

L2

]
= T

[
F1

L1

]
, (A1)

054305-7



AMIR NADER ASKARPOUR, YANG ZHAO, AND ANDREA ALÙ PHYSICAL REVIEW B 90, 054305 (2014)

where F and L are defined as

F =
[
Ey

Hx

]
, (A2)

L =
[
Ex

Hy

]
, (A3)

and the subscripts 1 and 2 refer to the input and output sides
of the unit cell.

T is a 4 × 4 transfer matrix which can be partitioned into
four 2 × 2 blocks A, B, C, and D. For a purely imaginary
impedance matrix, corresponding to a lossless metasurface, it
is easy to prove that the diagonal terms of A, B, C, and D are
real valued and the off-diagonal terms are purely imaginary.
This condition is necessary but not sufficient for a transfer
matrix T to represent a lossless unit cell of our twisted
metamaterial geometry. In order to have a lossless transfer
matrix the following conditions should also be satisfied:

det A − det C = 1, (A4)

det B − det D = −1, (A5)

adj(B) · A = adj(D) · C, (A6)

where adj(�) stands for the adjoint operation on a matrix.
Equation (A6) can also be written in the following equivalent
form:

adj(A) · B = adj(C) · D. (A7)

The above equations are obtained by equating input and output
powers of the transfer matrix.

For a reciprocal transfer matrix we also have

det T = 1. (A8)

Since the determinant equals the product of all eigenvalues,
Eq. (A8) ensures that for a reciprocal unit cell the sum of all
wave numbers is necessarily zero.

In order to derive the properties of the eigensolutions of
Eq. (3) for n = 0, we alter the definition of the transfer matrix
using the auxiliary vectors,

F′ = E =
[
Ex

Ey

]
, L′ = H =

[
Hx

Hy

]
. (A9)

With these new definitions, the condition on the A, B, C,
and D elements being purely real or purely imaginary for a
lossless metasurface translates into the following condition on
A′, B′, C′, and D′:

A′ = A′∗, B′ = −B′∗, C′ = −C′∗, D′ = D′∗.

(A10)

It is easy to show that Eq. (A10) is equivalent to requiring
that the metasurface satisfies time-reversal symmetry. With

these definitions, Eqs. (A4)–(A7) become more complex, thus
it is reasonable to use the two different definitions to study
different aspects of the transfer matrix.

The eigensystem (3) for n = 0 is

(T′ − eiβdR)

[
E
H

]
= 0. (A11)

In the above equation R is the 4 × 4 rotation matrix defined as

R =
[

r 0
0 r

]
, (A12)

where r is the 2 × 2 rotation matrix in the Cartesian coordinate
system [61]. By replacing the transfer matrix with its block
constituents and using Eq. (A12) in Eq. (A11), we obtain

A′E + B′H = eiβdrE,
(A13)

C′E + D′H = eiβdrH.

Assuming that there is a set of fields (E and H) and a wave
number β satisfying the above equations for a transfer matrix
satisfying condition (A10), the following equations also hold
true:

A′E∗ − B′H∗ = e−iβ∗drE∗,
(A14)

C′E∗ − D′H∗ = −e−iβ∗drH∗.

Equation (A14) shows that the field vectors E∗ and −H∗ are
also eigensolutions of the structure with a wave number −β∗.
Note that this result does not need the transfer matrix to be
lossless but simply that it satisfies time-reversal symmetry.

An important set of relations between the block matrices
can also be found if we assume reflection symmetry for each
metasurface, an assumption that always holds for ultrathin
metasurfaces. By applying this symmetry operation, we are
able to show the relations,

A′A′ − B′C′ = I,

C′A′ − D′C′ = 0,

(A15)
A′B′ − B′D′ = 0,

D′D′ − C′B′ = I,

which in turn confirm that two twisted arrays with an opposite
sense of rotations have the same modal solutions. A forward
propagating mode in one structure resembles the backward
propagating mode in the other array. Explicitly, we can write

β+ = −β−,

E+
n+1 = E−

−n, (A16)

H+
n+1 = −H−

−n,

where the superscripts point to a positive or negative sense of
rotation between two consecutive metasurfaces in the twisted
array.
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