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Dynamical Anderson transition in one-dimensional periodically kicked incommensurate lattices
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We study the dynamical localization transition in a one-dimensional periodically kicked incommensurate
lattice, which is created by perturbing a primary optical lattice periodically with a pulsed weaker incommensurate
lattice. The diffusion of wave packets in the pulsed optical lattice exhibits either extended or localized behaviors,
which can be well characterized by the mean-square displacement and the spatial correlation function. We show
that the dynamical localization transition is relevant to both the strength of incommensurate potential and the
kicked period, and the transition point can be revealed by the information entropy of eigenfunctions of the Floquet
propagator.

DOI: 10.1103/PhysRevB.90.054303 PACS number(s): 05.60.Gg, 03.75.Lm, 05.30.Rt, 72.15.Rn

I. INTRODUCTION

As a fundamental phenomenon of quantum systems in the
presence of disorder, Anderson localization has been found
in a broad range of physical systems beyond the scope of
traditional condensed matter physics [1–3], including light
waves in photonic lattices and atomic matter waves in a one-
dimensional (1D) disordered or quasiperiodic potential [4–7].
Particularly, for a Bose-Einstein condensate (BEC) trapped in
a 1D quasiperiodic potential, it has been demonstrated that a
transition from an extended state to an exponentially localized
state exists with the change of the disorder strength [5,8].
Although most of the studies on the Anderson localization
focused on static disordered systems, the dynamic localization
problem, which was originally put forward in the study of
periodically kicked quantum rotors [9–11], has also attracted
much attention recently due to experimental realizations of the
quantum kicked rotor in trapped cold atom systems interacting
with pulsed standing wave of light [12] and the observation of
Anderson localization in the kicked system [13,14].

As no external random element is introduced, the dynamic
localization in the kicked rotor can be viewed as an analog of
1D Anderson localization in momentum space by mapping
the system onto a quasirandom 1D Anderson model [10].
The effective randomness in the kicked rotor is rooted in
mechanisms of incommensurability induced by the periodic
driving, and consequently the localization for the kicked rotor
occurs in momentum space, instead of real space as in the usual
Anderson model. An interesting issue that arose here is to study
the interplay of periodic driving and disorder, which is not
yet addressed in the previous study of static disorder systems
and kicked rotor systems. To this end, we study the dynamic
localization in a 1D optical lattice perturbed by an additional
pulsed incommensurate lattice. Different from previous works
[5], the disorder induced by the applied incommensurate
potential is periodically added, and the system can be described
by a periodically kicked Aubry-André (AA) model. For the
static AA model [15,16], its eigenstates are either extended
or localized and a localization transition occurs by increasing
the strength of incommensurate potential [16–18], which has
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been experimentally verified in a bichromatic optical lattice by
observing the expansion dynamics of a trapped noninteracting
BEC [5]. While 1D static incommensurate optical lattices have
been well studied [19–22], less attention has been paid to the
pulsed incommensurate optical lattices. In this work, we study
the dynamical localization transition in the periodically kicked
incommensurate lattice and find the dynamics is not solely
determined by the strength of incommensurate potential, but
also relevant to the driven frequency of the kicked potential.
The tunability of the incommensurate optical lattices [5,23]
makes it feasible to experimentally study the dynamical
localization transition through the diffusion of wave packets
in the pulsed 1D incommensurate optical lattice.

II. MODEL WITH PERIODICALLY DRIVEN
INCOMMENSURATE POTENTIAL

We consider the model with periodically driven incommen-
surate potentials described by the following Hamiltonian:

H =
∑

i

[(−J ĉ
†
i ĉi+1 + H.c.) +

∑

n

δ(t − nT )Vin̂i], (1)

where n̂i = ĉ
†
i ĉi is the particle number operator and ĉ

†
i (ĉi) the

creation (annihilation) operator. Here J is the nearest-neighbor
hopping amplitude and the incommensurate potential

Vi = λ cos(2πiα)

varies at each lattice site with α being an irrational number and
λ the strength of the incommensurate potential. In contrast
to the AA model [16] described by H = ∑

i[(−J ĉ
†
i ĉi+1 +

H.c.) + λAA cos(2πiα)n̂i], the on-site incommensurate poten-
tial in Eq. (1) is periodically added with a pulsed period T .
Because of this resemblance, we will refer to systems described
by Eq. (1) as the periodically kicked AA model.

Experimentally, the AA model can be realized by superpos-
ing two optical lattices with incommensurate frequency [24].
Similarly, the periodically kicked AA model may be realized
by superimposing two optical lattices of the form

V (x) = V1(x) + V2(x)
∑

n

δ(t − nT ) (2)
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with V1(x) = s1ER1 sin2(k1x) and V2(x) = s2ER2T sin2(k2x),
where ki = 2π/λi are the lattice wave numbers and si are the
heights of the two lattices in units of their recoil energies ERi

=
h2/(2mλi)2. The potential V1(x) is used to create a primary
lattice, which is weakly perturbed by adding V2(x) periodically
when time equals multiples of the kicked period. We note that
the periodically kicked AA model is also related to the kicked
Harper model [25] and thus our scheme in terms of periodically
added incommensurate optical lattices also provides a possible
physical realization of kicked Harper model.

III. DYNAMIC EVOLUTION AND DYNAMIC
ANDERSON TRANSITION

The dynamical evolution of the periodically kicked
system is determined by the Floquet unitary propa-
gator [26] over one period, which can be written
as U (T ,0) = exp(−iH0T ) exp(−i

∑L
j Vj ĉ

†
j ĉj ), where H0 =

−∑
j (ĉ†j ĉj+1 + H.c.) and L is the lattice size. For conve-

nience, we have set � = 1 and J = 1 as the unit of the
energy. Given an initial state |ψ(0)〉 = ∑L

i=1 Ci |i〉 at t = 0, the
evolution state after one kicked period is given by |ψ(T )〉 =
U (T ,0)|ψ(0)〉, where |i〉 = ĉ

†
i |0〉 represents the state with a

particle located in the ith site. To get the distribution function
of the evolution state, we need calculate the matrix element
of the Floquet propagator 〈i|U (T ,0)|j 〉. Representing |φμ〉 =∑

i C
μ

i |i〉 as the μth eigenvector of H0 with the single-particle
eigenenergy E0

μ, i.e., H0|φμ〉 = E0
μ|φμ〉, we can calculate the

matrix element of the Floquet propagator via the expression
of 〈i|U (T ,0)|j 〉 = ∑

μ C
μ

i C
μ∗
j e−i(E0

μT +Vj ). By applying the
Floquet propagator repeatedly, the state after N periods can
be written as |ψ(NT )〉 = [U (T )]N |ψ(0)〉 = ∑L

i=1 Ci(NT )|i〉.
Here U (T ) = U (T ,0) and we have used the relation U (T ,0) =
U (2T ,T ) = · · · = U (nT ,(n − 1)T ).

For convenience, we take the initial state as |ψ(0)〉 = |L/2〉,
i.e., with the initial state located in the center of the lattice,
and then study the expansion dynamics of the initial state
in the pulsed incommensurate potential. To give a concrete
example, in the following calculation we take α = (

√
5 − 1)/2

and focus our study on the high-frequency regime with
1/T > 1. It is known that the expansion dynamics on a static
incommensurate lattice is only determined by the strength of
incommensurate potentials, i.e., the evolution of the initial
state exhibits quite different behaviors in the delocalization or
localization regime [5]. However, for the periodically kicked
system, the expansion dynamics is determined by both the
strength of incommensurate potentials and the driven fre-
quency. To see it clearly, we first consider periodically kicked
systems with the strength of the incommensurate potential
fixed and variable driven frequencies. Fixing the strength of
the incommensurate potential at λ = 1, we show distributions
of expansion states after N = 104 pulsed periods for systems
with different driven periods T = 0.3,0.49,0.5,0.51, and 0.7,
respectively, in Fig. 1. We can find that the final evolution
state is still localized around the initial position when the
driven period of the periodically kicked potential is smaller
than a threshold, i.e., T < 0.5. On the other hand, the final
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FIG. 1. The probability distribution of the state after N = 104

periods in the periodically kicked AA model with λ = 1.

state expands to the whole lattice when the driven period is
larger than a threshold.

Next we consider systems with the driven period of the
periodically kicked potential fixed and study the evolution
dynamics for systems with different potential strengths. In
Fig. 2, we show distributions of expansion states after N = 104

pulsed periods with the driven period fixed at T = 0.1 for
systems with different potential strengths. Our results clearly
indicate that the evolution state is localized for λ > 0.2,
whereas it is extended when λ < 0.2. Results shown in
Fig. 1 and Fig. 2 indicate that the dynamic evolution of the
periodically kicked systems is relevant to both the strength
of incommensurate potentials and the driven frequency. The
dynamic localization transition is determined by the ratio of λ
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FIG. 2. The probability distribution of the state after N = 104

periods in the periodically kicked AA model with T = 0.1.

054303-2



DYNAMICAL ANDERSON TRANSITION IN ONE- . . . PHYSICAL REVIEW B 90, 054303 (2014)

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

 τ1.98

 τ1.73

 τ

 σ
2 (

τ)

 

 
T=0.8
T=0.65
T=0.55
T=0.4

FIG. 3. (Color online) Time dependence of σ 2(τ ) in the period-
ically kicked AA model with λ = 1.2 and L = 900. The dasedh
line represents a power-law fitting, which given σ 2(τ ) ∼ τ 1.98 with
T = 0.8, σ 2(τ ) ∼ τ 1.73 with T = 0.65.

and T , i.e., the evolution state is either localized or extended
for λ/T > 2 or λ/T < 2.

To see how the wave packet spreads as a function of time,
we calculate the mean-square displacement, which is defined
as [27]

σ 2(t) ≡
L∑

i=1

(i − L/2)2|Ci(t)|2.

In general, during the expansion process, the mean-square
displacement increases as the power law of the time given
by σ 2(t) ∼ tγ . The parameter γ takes different values for the
expansion in different lattices, for example, γ = 2 in uniform
lattices; γ = 0 in disordered lattices. While γ = 2 and γ = 0
correspond to ballistic diffusion and localization, respectively,
the superdiffusion (1 < γ < 2) and subdiffusion (0 < γ < 1)
can occur in quasiperiodic lattices. In Refs. [27,28], the
quantum hyperdiffusion (γ > 2) was also discovered. For the
kicked driven AA model, one can expect that the diffusion
process is quite different for λ/T > 2 or λ/T < 2. To see
it clearly, we calculate the mean-square displacement as a
function of time in units of the driven period with λ fixed
for different periods T . In Fig. 3, we show distributions of
the mean-square displacement σ 2(τ ) with the strength of the
periodically kicked potential fixed at λ = 1.2 for systems with
L = 900 and different driven periods T = 0.4,0.55,0.65, and
0.8, respectively. For convenience, we have defined τ = t/T .
It is clear that the time-dependent mean-square displacement
displays different behaviors for T > 0.6 or T < 0.6. While
the mean-square displacement shows a power-law increase
for T = 0.8 and T = 0.65, it oscillates around a given value
after some expansion time and has zero power-law index for
T = 0.55 and T = 0.4. As shown in Fig. 3, the long-time
power-law increase of σ 2(τ ) can be approximately described
by σ 2(τ ) ∝ τ 1.73 for T = 0.65 and σ 2(τ ) ∝ τ 1.98 for T =

FIG. 4. (Color online) The correlation function as a function of x

with λ = 0.8, L = 2000, N = 1.5 × 104 and various T . The dashed
line indicates a power-law fit. In the inset, the dashed line indicates
an exponential-law fit.

0.8, respectively. These power-law indexes indicate that the
dynamical expansion is a superdiffusion process, which is in
contrast to the localization process with zero power-law index
for the expansion with T = 0.55 and 0.44. The property of
the mean-square displacement also indicates the occurrence
of dynamical localization transition when λ/T exceeds a
threshold.

The dynamical localization can be also revealed
by the correlation function defined as, G(x,t) ≡
L−1 ∑L

i |〈ψ(t)|c†i ci+x |ψ(t)〉|=L−1 ∑L
i |C∗

i (t)Ci+x(t)|, where
t = NT . Fixing the strength of the incommensurate potential
at λ = 0.8, we show distributions of the correlation functions
after N = 1.5 × 104 pulsed periods for systems with different
driven periods T = 0.3,0.39,0.41,0.8, respectively, in
Fig. 4. Our results indicate that the correlation function
exhibits a power-law decay when the driven period of the
periodically kicked potential is larger than a threshold, for
examples, G(x) ∝ x−0.368 for T = 0.41 and G(x) ∝ x−0.243

for T = 0.8. On the other hand, the correlation function has an
exponential-law decay when the driven period is smaller than
the threshold, for examples, G(x) ∝ e−0.0289x for T = 0.39
and G(x) ∝ e−0.292x for T = 0.3 as shown in the inset of
Fig. 4. The exponential-law decay of the spatial correlation
function is the characteristic of the system in a dynamical
localized state.

We have demonstrated that the extended or localized prop-
erty of the dynamic evolution state can be well characterized
by the mean-square displacement and the spatial correlation
function of the evolution state. Moreover, we find that the
eigenfunction of the Floquet unitary propagator can be also
used to determine the transition point from the dynamical
extended state to localized state, which is irrelevant to the
choice of the initial state. Given that |ψη〉 is the eigenstate
of the Floquet propagator U (T ) with the Floquet energy
Eη, i.e., U (T )|ψη〉 = e−iEηT |ψη〉, in the basis of |i〉, we can
represent |ψη〉 = ∑L

i=1 Ci(Eη)|i〉. Then one can introduce the
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FIG. 5. (Color online) The mean information entropy versus T

for the system with λ = 1 and L = 1500. The top left inset shows the
derivative of the mean information entropy versus T with λ = 0.8 (left
plot); λ = 1.2 (middle plot); λ = 1.6 (right plot). The bottom right
inset shows the derivative of the mean information entropy versus
λ with T = 0.05 (left plot); T = 0.3 (middle plot); T = 0.5 (right
plot).

information entropy [29,30] defined as

Sinf
η ≡ −

L∑

i=1

|Ci(Eη)|2 ln |Ci(Eη)|2.

The information entropy takes its minimum S
inf
η = 0, when-

ever the state is localized in a single site, while it takes
its maximum S

inf
η = ln(L), when the state is completely

extended with the wave function probability amplitudes given
by |Ci(Eη)| = 1/

√
L.

Fixing the strength of the incommensurate potential at
λ = 1, we show the mean information entropy of the Floquet
unitary propagator versus the driven period T in Fig. 5,
where the mean information entropy is defined as Sinf ≡
L−1 ∑L

η=1 S
inf
η . This shows that the mean information entropy

increases from a tiny value to a finite large value with the
increase of the pulsed period T , which indicates the wave
function of the periodically kicked AA model undergoing a
translation from localized state to extended state. In the top
inset of Fig. 5, we show the derivative of the mean information
entropy as a function of T for systems with different potential
strengths. It turns out that the extremum of the derivative
appears at T = 0.4 for λ = 0.8, T = 0.6 for λ = 1.2, and
T = 0.8 for λ = 1.6. Similarly, in bottom inset of Fig. 5, the
derivative of the mean information entropy as a function of
λ for systems with different pulsed periods is displayed, with
extremum of the derivative located at λ = 0.1 for T = 0.05,
λ = 0.6 for T = 0.3, and λ = 1.0 for T = 0.5. It is clear that
the extremum of the derivative of mean information entropy
appears at λ/T = 2 for different systems, corresponding
to the transition point from the dynamical localization to
delocalization state.

Our numerical results indicate that, in the high-frequency
regime, the dynamical localization transition point of

FIG. 6. (Color online) The mean information entropy versus both
λ and T for the system with L = 900.

the periodically kicked Aubry-André model is located at
λ/T = 2. To understand this explicitly, we explore the
effective Hamiltonian of the periodically kicked Aubry-André
model in the high-frequency regime. The effective Hamilto-
nian Heff can be obtained from the Floquet unitary propagator
by the relation

U (T ) = exp(−iHeffT ).

As displayed in the Appendix, the effective Hamiltonian is
derived by using the Baker-Campbell-Hausdorff formula. In
the high-frequency and weak disorder limit with 1/T 	 1 and
λ 
 1, the effective Hamiltonian takes the form of

Heff = −
∑

i

(ĉ†i ĉi+1 + H.c.) + λ/T
∑

i

cos(2πiα)n̂i

by omitting high-order terms, which contain commutators.
This effective Hamiltonian is just the static AA model with
scaled potential strength λ/T , which indicates the localization
transition point given by λ/T = 2. However, in the low-
frequency regime, the high-order terms can’t be omitted, and
one can not expect that the dynamical localization transition
can be described in the scheme of effective AA model. To see
it clearly, we also calculate the mean information entropy in
a larger parameter region, which is displayed in Fig. 6 with
the mean information entropy as a function of the strength of
incommensurate potential and the kicked period. It is shown
that there is a sharp change across the line of λ/T = 2 in the
high-frequency region, similar to the specific case displayed
in Fig. 5. However, as shown in Fig. 6, the mean information
entropy displays a more complicated distribution pattern when
the system deviates the high-frequency region. Consequently,
the dynamic localization transition occurring at λ/T = 2
breaks down when 1/T < 1.

In order to connect to the potential experimental realization,
we refer our system to the parameter in Ref. [5] in which 39K
in a incommensurate lattices with height of the primary lattice
s1 = 5 in units of the recoil energy ER1 = 4785hHz. Thus
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the hopping magnitude J = 323.6hHz. Correspondingly, the
period T in unit of �/J is of the order of 10−4s. Therefore
the pulsed period T ∼ 1μs − 10μs in typical kicked atom
experiments [12–14,23] is in the high-frequency regime
discussed in the current work, which makes it possible to study
the phenomena of the dynamical localization transition.

IV. SUMMARY

In summary, we have revealed the dynamical Anderson
localization transition in a 1D periodically kicked incommen-
surate optical lattice by studying the diffusion of wave packets.
The dynamical evolution of wave packets indicates that the
dynamical state is either extended or localized, depending
on both the strength of incommensurate potential and the
kicked period. We characterize the dynamical transition from
various aspects by calculating the mean square displacement,
the spatial correlation function and the information entropy
of eigenfunctions of the Floquet propagator. These quantities
all indicate the dynamical localization transition occurring at
λ/T = 2 in the high-frequency regime, which can be also
interpreted from the effective Hamiltonian of the system. Our
observations and theoretical analysis should stimulate exper-
imental studies of the phenomena of dynamical localization
transition in the pulsed incommensurate optical lattices.
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APPENDIX: DERIVATION OF EFFECTIVE
HAMILTONIAN OF PERIODICALLY KICKED

AUBRY-ANDRÉ MODEL

In Sec. III, the Floquet unitary propagator of the periodically
kicked Aubry-André model is written as a product of two
exponential operators. From this propagator, we can derive
the effective Hamiltonian of the kicked system, namely

U (T ) = exp(−iH0T ) exp(−iλV̂ )

= exp(−iHeffT ) (A1)

where V̂ = ∑L
j cos(2πiα)ĉ†j ĉj . In the following analysis,

we shall use the Baker-Campbell-Hausdorff (BCH) formula,
which determines Ẑ such that eÂeB̂ = eẐ in the following
way [31]:

eÂeB̂ = exp
(
Â + B̂ + 1

2 [Â,B̂] + 1
12 [Â,[Â,B̂]]

+ 1
12 [[Â,B̂],B̂] + · · · ). (A2)

Using this formula to Eq. (A1), we derive the effective
Hamiltonian as

Heff = H0 + λ

T
V̂ − i

λ

2
[H0,V̂ ] − T λ

12
[H0,[H0,V̂ ]]

− λ2

12
[[H0,V̂ ],V̂ ] + · · · . (A3)

From the above expression, it is obvious that the effective
Hamiltonian can be simplified as Heff = H0 + λ

T
V̂ in the limit

of 1/T 	 1 and λ 
 1, which is just the AA model with J = 1
and λAA = λ/T . However, one must consider the high-order
terms when the system is not in the high-frequency regime.
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