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We report a density functional theory (DFT) study of Ag3Co(CN)6, a material noted for its colossal positive
and negative thermal expansion, and its giant negative linear compressibility. Here, we explicitly include the
dispersive interaction within the DFT calculation, and find that it is essential to reproduce the ground state,
the high-pressure phase, and the phonons of this material, and hence essential to understand this material’s
remarkable physical properties. New exotic properties are predicted. These include heat enhancement of the
negative linear compressibility, a large reduction in the coefficient of thermal expansion on compression with
change of sign of the mode Grüneisen parameters under pressure, and large softening of the material on heating.
Our results suggest that these are associated with the weak Ag–Ag dispersive interactions acting with an efficient
hinging mechanism in the framework structure.
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I. INTRODUCTION

Ag3Co(CN)6 has attracted a lot of attention due to its
colossal positive and negative thermal expansion [1,2], and
also because of its giant negative linear compressibility [3].
The negative thermal expansion (NTE) along the c axis and
the positive thermal expansion (PTE) along the a(b) axes are
an order of magnitude larger than that observed in many other
crystalline solids. The material also shows negative linear
compressibility (NLC), namely, along the c axis, that is several
times greater than the typical value found in crystals. As shown
in Fig. 1, the ambient-pressure phase of Ag3Co(CN)6 has
a trigonal structure with space group P 3̄1m. The structure
consists of layers of kagome sheets of Ag atoms in the
(001) crystal plane at height z = 1

2 , with Co–CN–Ag–NC–Co
chains along the 〈011〉 lattice directions linking [Co(CN)6]3−
octahedra. These chains are hinged together in a way that
gives the structure a high degree of flexibility; expansion in
the trigonal (001) plane is accompanied by a shrinkage in the
orthogonal direction in a way that does not change the relevant
bond lengths.

Previous ab initio density functional theory (DFT) cal-
culations were unable to reproduce the correct ground-state
structure and the high-pressure phase of the material [4–6].
While these studies were able to reproduce the lengths of the
Co–C, C–N, and N–Ag bonds which characterize the structure,
the predicted lattice parameters differ considerably from the
experimental values. The key interatomic distance that changes
as the structure flexes is the Ag–Ag distance, which is equal to
half the value of the a lattice parameter. The first of the DFT
studies [4] showed that a post hoc correction for dispersive
interactions between the Ag cations was sufficient to shift
the equilibrium DFT structure into good agreement with the
experimental crystal structure. The same study also showed
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that there is no significant covalent bonding between neighbor
Ag atoms; it was this factor, combined with the fact that
DFT calculations on the structural analog in which hydrogen
or deuterium atoms replace the Ag atoms are in excellent
agreement with experiment, that suggested an important role
for dispersive Ag–Ag interactions.

On this basis, it would be useful to see if a DFT calcula-
tion that explicitly includes a correction for the long-range
dispersive forces will reproduce the ground state and the
high-pressure phase of Ag3Co(CN)6 correctly. If so, it should
then be possible to obtain reliable phonons via such calculation
in order to better understand the exotic behavior of this
material.

Modern implementations of DFT now include a correction
for the long-range dispersive interactions [7–13]. One widely
used method is called “DFT+D2” [7] where a dispersive
interaction that is dampened at short range to avoid dou-
ble counting of energy is added to the DFT energy from
the generalized-gradient approximation (GGA) calculation.
Semiempirical parameters in such a dispersive interaction
are provided in Ref. [7] for most elements in the periodic
table. The method has been successfully applied to various
materials in which the dispersive interactions are important.
One good example is the recent work on cesium halides by
Zhang et al. [14], where the DFT+D2 formalism gives both an
improved agreement between the optimized and experimental
crystal structures and a correct prediction of the ground-state
phases.

In this work, we have carried out DFT+D2 calculations
for Ag3Co(CN)6. This has confirmed that the inclusion of
dispersive forces gives the correct ground-state structure, as
anticipated in the first DFT study of this material [4]. It
is also shown that the DFT+D2 model correctly gives the
structure of the high-pressure phase; without the dispersive
interaction DFT gives a structure without the interdigitation
found experimentally [3]. On the basis of these successes,
it is now reasonable to investigate the lattice dynamics of
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FIG. 1. (Color online) Ambient phase P 3̄1m of Ag3Co(CN)6: (a)
unit cell with silver in red, cobalt in blue, carbon in black, and nitrogen
in white gray; (b) looking down the [0, 0, 1] direction with Ag atoms
(red) in a kagome sheet connected to the octahedra [Co(CN)6]3−

anions (blue) above and below.

Ag3Co(CN)6, from which we have been able to study a number
of physical and thermodynamic properties. These form the
focus of this paper.

II. METHODS

A. DFT calculations

The DFT calculations were performed using the CASTEP

code [15]. For comparison, we used both local-density ap-
proximation (LDA) and GGA of Perdew-Burke-Ernzerhof
(PBE) [16] for the exchange-correlation functional. Opti-
mized norm-conserving pseudopotentials generated using the
Rappe-Rabe-Kaxiras-Joannopoulos (RRKJ) method [17] as
implemented in the OPIUM package and with parameters from
the Rappe and Bennett library [18] were used in various
calculations. A plane-wave basis set was used with the cutoff
energy of 1800 eV. Sampling of the Brillouin zone was
performed on a 6 × 6 × 6 Monkhorst-Pack (MP) [19] grid.

The geometries of all structures were optimized using
the Broyden-Fletcher-Goldfarb-Shanno method to achieve
a convergence of less than 10−6 eV per atom change in
energy per cycle and a force residual of 5 × 10−4 eV/Å. At
different pressures, tolerance for accepting convergence of the
maximum stress component during unit-cell optimization is
5 × 10−3 GPa.

B. DFT+D2 calculations

The dispersive contribution was directly added to the
DFT GGA energy using a semiempirical form introduced by
Grimme [7]:

Edisp = −s6

N−1∑
i=1

N∑
j=i+1

C
ij

6

R6
ij

fdamp(Rij ), (1)

where N is the number of atoms in the system. C
ij

6 is the
dispersion coefficient of atomic pair (i,j ) that can be computed
from the dispersion coefficient of the individual atoms as

C
ij

6 =
√

Ci
6C

j

6 , (2)

where Rij is the distance between the two atoms, and Rr is
the sum of the atomic van der Waals radii of the pair. The

dampening factor fdamp is defined as

fdamp(Rij ) = 1

1 + exp[−d(Rij/Rr − 1)]
(3)

with d = 20. s6 is a scaling factor dependent on the functional
used in the calculation; for PBE, s6 = 0.75. This method has
been implemented in CASTEP for geometry optimization. In
what follows, we will refer to this method as “GGA+D”;
calculations without the dispersion correction will simply be
labeled as LDA or GGA as appropriate.

C. Lattice dynamics with DFPT+D2

Density functional perturbation theory (DFPT) [20,21] was
used to calculate phonons on a 5 × 5 × 5 grid of wave vectors,
and frequencies for phonons of other wave vectors were then
obtained using interpolation [20]. Phonon density of states
(DoS) was calculated using a 25 × 25 × 25 MP grid [19]
corresponding to a total of 1470 independent wave vectors.

At the present time, CASTEP can only support a DFT+D2
calculation for phonons using the supercell method of finite
displacement [22], which turns out to be too expensive to
be feasible for Ag3Co(CN)6. Therefore, we first carried out
a regular DFPT phonon calculation using CASTEP to get the
corresponding dynamical matrices of different wave vectors.
We then used the dispersive interaction of Eq. (1) implemented
in the lattice simulation program GULP [23] to calculate its
contribution to the dynamical matrices separately, all based on
the same optimized structure from GGA+D. The dynamical
matrices from the two codes are added together using a
combination of Python scripts and the use of MATLAB, and
the combined dynamical matrix was diagonalized to give the
phonon frequencies with effects of the dispersive interaction
included. For future convenience, we call this the “DFPT+D”
method.

To check the accuracy of our scripts for the DFPT+D
method, we performed a benchmark phonon calculation for
NaI, chosen because it has a large refractive index (the
largest among alkali halides [24]) and hence likely to have
a significant dispersive energy term. This material has a
simple structure with only two atoms in the primitive cell,
so that it was feasible to carry out a DFT+D2 phonon
calculation using the supercell method in CASTEP (here called
the “supercell+D” method). By comparing the calculated
phonon frequencies from DFPT+D and supercell+D, we
found the two agree with each other extremely well, with a
mean relative discrepancy less than 2% (see phonon dispersion
curves in the Supplemental Material [25]).

With the calculated phonon frequencies, the linear
Grüneisen parameter γab is calculated by varying the a and b

dimensions of the unit cell by 0.005% with fixed c dimension,

γab = (−∂ ln ω/∂ ln a)c (4)

and the linear Grüneisen parameter γc is calculated by varying
the c dimension of the unit cell by 0.005% with fixed a and b

dimensions,

γc = (−∂ ln ω/∂ ln c)ab. (5)
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TABLE I. Calculated ground-state structures (from GGA+D, GGA, and LDA), including the unit-cell edges (a = b and c), fractional
coordinates of C and N, and the nearest-neighboring ion distances. V is the volume of one formula unit (note that there is one formula unit per
unit cell). The Ag–Ag distance is equal to a/2. �GGA+D, �GGA, and �LDA represent the deviations of the different calculations compared to
experiment at a temperature of 10 K from Ref. [2].

LDA GGA GGA+D Experiment �GGA+D �GGA �LDA

a(=b) (Å) 6.118 7.629 6.664 6.754 −1.3% +13% −9%
c (Å) 7.626 6.621 7.416 7.381 +0.5% −10% +3%
V (Å3) 247.2 333.7 285.2 291.6 −2% +14% −15%
Cx 0.238 0.202 0.225 0.220 +0.003 −0.020 +0.016
Cz 0.154 0.171 0.158 0.153 +0.002 +0.015 −0.002
Nx 0.364 0.321 0.347 0.342 +0.008 −0.018 +0.025
Nz 0.269 0.282 0.270 0.266 +0.006 +0.018 +0.005
C–N (Å) 1.170 1.164 1.164 1.170 −0.5% −0.5% 0%
Ag–N (Å) 1.948 1.988 1.983 2.034 −2.5% −2.3% −4%
Co–C (Å) 1.868 1.914 1.906 1.865 +2.2% +2.6% +0.2%

We will show later how these two quantities determine the
coefficients of linear thermal expansion αa = ∂ ln a/∂T and
αc = ∂ ln c/∂T .

III. GROUND-STATE PROPERTIES OF AG3CO(CN)6

A. Crystal structure

The detail ground-state structures of Ag3Co(CN)6 opti-
mized using GGA, with and without the dispersive interaction,
and using LDA are reported in Table I, where they are
compared to the experimental values [2]. It is clear that,
without the dispersive interaction, the calculated ground-state
structure is wrong. Inclusion of the dispersive interaction
results in the correct structure with small deviations from
experiment.

It is worth remarking on the role the Ag–Ag dispersive inter-
action has on the structure. The dispersive interaction is a weak
attractive interaction, which opposing the repulsive Coulomb
interaction, thus the effect of the dispersive interaction is to
reduce the overall Ag–Ag interaction. On this basis, addition
of the dispersive interaction to the GGA model enables the
structure to relax with a shorter Ag–Ag distance and hence a
smaller value of the a lattice parameter, as seen in the results in
Table I. On the other hand, the well-known tendency of LDA
to overbind already results in a shorter Ag–Ag distance.

We can quantify this point. The DFT calculations give
an approximate value for the charge of the Ag cation of
+0.65|e| [26], where e is the electronic charge. Calculation
of the Ag–Ag forces due to the Coulomb and dispersive
interactions [taking fdamp = 1 in Eq. (1)] over the range
of distances 3.3–3.5 Å shows that the dispersive interaction
reduces the net force between neighboring Ag ions by nearly
a factor of 2.

B. Elasticity

The GGA+D computed elastic compliances are given in
Table II. The linear compressibilities along the a(b) and c

crystal axes were calculated using the elastic compliances as

βab = −∂ ln a/∂p = s11 + s12 + s13 (6)

and

βc = −∂ ln c/∂p = 2s13 + s33, (7)

respectively. The volume compressibility was calculated as the
sum

β = −∂ ln V/∂p = 2βab + βc. (8)

The linear elastic moduli Bab along a and b axes as well
as Bc along the c axis are the inverse of the βab and βc,
respectively. Their relations with the elastic constants are given
in the Supplemental Material [25].

As shown in Table II, the GGA+D calculated s33 and
s13 have almost the same magnitude but with opposite sign,
showing that the c dimension would respond equivalently to
a stress acting on the a or b dimension and a tension directly
acting on the c dimension. This shows the effectiveness of the
hinging mechanism in the material. In comparison, the small

TABLE II. Calculated compliances at different pressures for the
ambient phase of Ag3Co(CN)6 obtained from calculating the change
of energy corresponding to a set of given strains εij generated
according to the trigonal symmetry. Results were obtained using
GGA+D, and the LDA results are from Ref. [5]. The compliances
of a trigonal phase have the symmetry [27] sij = sji ,s22 = s11,s55 =
s44,s23 = s13,s24 = −s14,s66 = 2(s11 − s12). The corresponding elas-
tic constants and elastic moduli are given in the Supplemental
Material [25]. The linear compressibility βab and βc as well as the
volume compressibility β are calculated from the compliances using
Eqs. (6) to (8).

Compliance
(TPa−1) 0.0 GPa 0.04 GPa 0.1 GPa LDA

s11 61(3) 62(3) 64(4) 85
s33 22(1) 21.4(9) 23(2) 16
s44 38.5(9) 37.7(7) 44(3) 73
s12 2(1) 1(1) 3(2) −22
s13 −21(1) −21(1) −23(2) −17
s14 15(1) 15(1) 17(2) −41
βc −21(2) −21(2) −23(4) −19
βab 42(4) 42(4) 44(5) 45
β 63(6) 63(6) 65(8) 72

054302-3



HONG FANG, MARTIN T. DOVE, AND KEITH REFSON PHYSICAL REVIEW B 90, 054302 (2014)

(b)(a)

FIG. 2. (Color online) Structures of the high-pressure phase of
Ag3Co(CN)6 (space group C2/m) optimized using (a) GGA+D, and
(b) either GGA or LDA without a correction for the dispersion energy.
The experimentally observed interdigitated structure, characterized
by the indented Ag atoms, can be seen only when dispersion
corrections are used.

value of s12 shows that the change in dimension a (or b) is
barely correlated to the change in b (or a) dimension.

Negative values of βc and Bc correspond to the NLC
of the material, namely, the material will elongate in the c

dimension under hydrostatic compression. The bulk modulus
and its first derivative were calculated as B = 15.8(8) GPa and
B ′ = −4.9(8), respectively [25]. Using the third-order Birch-
Murnaghan (BM) equation of state (EoS) [28] to fit to the cal-
culated isotherm data from 0 to 0.6 GPa also results in a nega-
tive value of B ′ of −3(2). These results predict that the material
will have pressure-induced softening [29–31] at low pressures.

The calculated bulk modulus at 0 K, as the inverse of β

in Eq. (8), is 15.8(8) GPa which is significantly larger than
the experimental value of B = 6.5(3) GPa at 300 K [3]. This
apparent overestimation of the calculation may actually be due
to a considerable softening of the material on heating, as will
be discussed later in Sec. VI B. The same idea can be used to
explain the apparent large underestimation of the compress-
ibilities: the calculated values βab = 42(4) TPa−1 and βc =
−21(2) TPa−1 are much lower than the experimental values of
βab = 115(8) TPa−1 and βc = −79(9) TPa−1 at 300 K [3].

IV. HIGH-PRESSURE PHASE OF AG3CO(CN)6

A. Crystal structure of the high-pressure phase

Ag3Co(CN)6 undergoes a structural phase transition at 0.19
GPa to a monoclinic phase [3] and denoted as phase II.
The phase transition involves displacements of Ag atoms
in alternative rows, which cause the high-pressure phase to
possess an interdigitated structure as seen by viewing down
the [0, 0, 1] direction. This is indicated in Fig. 2(a) by the
indented Ag atoms.

0 1 2 3 4 5 6 7
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V
)

Pressure (GPa)

FIG. 3. The calculated enthalpy of the high-pressure phase
relative to that of the ambient phase using GGA+D. An overestimated
phase-transition pressure of 2.5 GPa is predicted.

Our calculations show that neither LDA nor GGA without
the dispersive interaction can give the correct optimized high-
pressure phase with the interdigitated structure [3], as shown
by Fig. 2(b). It is only by including the dispersive interaction in
the GGA+D calculation that the interdigitated structure of the
high-pressure phase can be reproduced, as shown in Fig. 2(a).

TABLE III. Comparison of optimized (GGA+D2) and experi-
mental [3] crystal structures of the high-pressure phase (space group
C2/m) at a pressure of 0.23 GPa. �GGA+D represents the differences
between the two. V is the volume of one formula unit (note that there
are two formula units in the unit cell). The fractional coordinates of
Ag1 are ( 1

2 ,0, 1
2 ).

GGA+D Experiment �GGA+D

a (Å) 6.485 6.693 −3.1%
b (Å) 11.144 11.539 −3.4%
c (Å) 6.658 6.566 +1.4%
β (◦) 101.84 101.48 +0.36
V (Å3) 235.6 248.5 +5.2%
C1x 0.790 0.825 −0.035
C1z 0.163 0.182 −0.019
N1x 0.664 0.715 −0.051
N1z 0.264 0.302 −0.038
C2x 0.145 0.163 −0.019
C2y 0.123 0.119 +0.004
C2z 0.177 0.157 +0.0209
N2x 0.241 0.258 −0.017
N2y 0.197 0.185 +0.012
N2z 0.280 0.259 +0.021
Ag2y 0.243 0.240 +0.002
C1–N1 (Å) 1.161 1.183 −1.8%
C2–N2 (Å) 1.170 1.126 +3.9%
Ag1–N1 (Å) 2.069 2.123 −2.5%
Ag2–N2 (Å) 2.097 2.199 −4.6%
Co–C1 (Å) 1.907 1.830 +4.2%
Co–C2 (Å) 1.922 1.924 −0.1%
Ag–Ag(1) (Å) 2.868 2.996 −4.3%
Ag–Ag(2) (Å) 5.407 5.548 −2.5%
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Figure 3 shows the difference in enthalpy between the two
phases as calculated using the GGA+D method. The predicted
phase-transition pressure of about 2.5 GPa overestimates the
experimental value of 0.19 GPa [3]. Although this appears
to be a large discrepancy, it is magnified by the fact that the
experimental transition pressure is so low. Phase-transition
pressures are hard to calculate; we attribute the discrepancy to
an accumulation of small errors associated with a number
of approximations in the DFT method and the dispersion
correction. The calculated relative change of the cell volume
at the phase transition is 11%, smaller than the experimental
value of 16% [3]. Table III compares the optimized structure
with the C2/m space group in GGA+D with the experimental
values at 0.23 GPa.

Originally, it was found [3] that the high-pressure phase of
the material has a space group of C2/m. However, recently, it
was proposed [5] that the high-pressure phase should have the
lower symmetry of space group Cm because a structure with
this symmetry can be obtained as a subgroup of the space group
of the ambient-pressure phase P 3̄1m, whereas a structure with
space group C2/m cannot. Our calculations indicate that the
optimized structures starting from both space groups C2/m

and Cm have exactly the same enthalpy up to a pressure of
7 GPa (the highest we examined), with relaxed structures that
differ only by a small origin offset. We conclude that the
structure of the high-pressure phase has the originally proposed
C2/m structure.

B. Elasticity

A fit of the third-order BM EoS to the calculated isotherm of
the high-pressure phase yields B = 17(6) GPa and B ′ = 17(7);
experimental values are B = 11.8(7) GPa and B ′ = 13(1),
respectively [3]. Thus, unlike the ambient-pressure phase,
which has pressure-induced softening at low pressures, the
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FIG. 4. (Color online) Upper panel: various lattice parameters of
the monoclinic phase of Ag3Co(CN)6 at different pressures using
GGA+D. The calculated (solid lines) and the experimental (symbol)
values of each parameter are in the same color. Lower panel: the
calculated nearest Ag–Ag distance in two phases. In the high-pressure
phase, the GGA+D result (symbol line) shows the correct trend of
two types of Ag–Ag distances changing with compression, while the
GGA/LDA (dashed line) result does not.

high-pressure phase of the material quickly becomes harder
under compression.

The calculated change of lattice parameters of the high-
pressure monoclinic phase II are presented in Fig. 4, and
compared to the experimental values. The agreement between
the two are good with the largest relative deviation below 10%.
By fitting to a third-order polynomial of pressure (p − pc)
with the phase-transition pressure pc = 2.5 GPa, the linear
compressibilities of aII, bII, and cII were obtained at different
pressures. Their averaged values over 2.5–8.0 GPa are 19(1),
6.9(4), and −4.1(3) TPa−1, respectively. These values are
in good agreement with experimental values [3] of 15.9(9),
9.6(5), and −5.3(3) TPa−1.

As pointed out in Ref. [3], the relatively small compress-
ibility along bII is due to the interdigitation in the high-
pressure phase. Upon compression, the structure becomes
more indented [Fig. 2(b)], resulting in the Ag–Ag(1) distance
between the indented Ag atom and its nearest neighbor
increases with pressure, while the Ag–Ag(2) distance between
the two indented Ag atoms at the opposite sites decreases. This
behavior of the Ag–Ag distances under pressure is seen in the
GGA+D calculated results shown in the lower panel of Fig. 4.

TABLE IV. The calculated Raman and infrared spectrums (in
THz) of Ag3Co(CN)6 using DFPT+D compared to the experimental
values at 80 K (Raman) [32] and 295 K (infrared) [5]. �DFPT+D is
the deviation of the DFPT+D calculated frequencies compared to
the experiment (in THz). The first derivative of the frequency with
respect to pressure is in units of THz/GPa.

Raman ωDFPT+D �DFPT+D (∂ω/∂p)Exp. [32] (∂ω/∂p)DFPT+D

2.6 2.9 0.3 0.3 0.4
4.2 4.3 0.1 0.6 0.4
4.9 5.0 0.1 0.3 0.6
9.7 9.8 0.1 −0.3a −0.04
14.2 13.8 −0.4 0.1 −0.006
14.2 13.9 −0.3 0.1 −0.04
15.6 16.1 0.5 0.7 0.06
15.6 16.1 0.5 0.7 0.2
65.5 65.2 −0.3 0.2 0.1
66.1 66.0 −0.1 0.3 0.1

Infrared ωDFPT+D �DFPT+D (∂ω/∂p)Exp. [5] (∂ω/∂p)DFPT+D

1.2 1.4 0.2 0.2
1.4 1.5 0.1 0.1
1.6 2.2 0.6 −0.3
4.0 4.2 0.2 −0.2 0.01
5.3 5.6 0.3 −0.4
5.5 5.7 0.2 −0.2
8.0 8.6 0.6 0.3
8.0 8.8 0.8 0.2
13.0 12.8 −0.2 −0.03
14.5 14.8 0.3 −0.02 0.01
14.8 14.9 0.1 0.03 0.01
17.6 17.8 0.2 0.3

18.0 0.2
65.1 0.1
65.2 0.1

aFrom nonhydrostatic experiment [32].
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FIG. 5. (Color online) (a) DFPT+D calculated phonon dispersion curves along the high-symmetry directions in the Brillouin zone. (b) and
(c) are dispersion curves colored according to the values of linear Grüneisen parameters along the a(b) axes (γab) and c axis (γc), respectively,
with values � −20 in red gradually passing to values � +20 in blue.

V. LATTICE DYNAMICS CALCULATIONS

The phonon calculations were performed using the
DFPT+D method as discussed in Sec. II C. Table IV shows
that the calculated Raman and infrared spectra are in good
agreement with the experiment [5,32]. The phonon dispersion
curves along the high-symmetry directions in the Brillouin
zone for frequencies up to 18 THz are presented in Fig. 5(a).

We have studied the eigenvectors of different vibrational
modes as shown by the animations in the Supplemental
Material [25]. We found that the infrared-active modes at
1.4–1.5 THz showing negative linear Grüneisen parameters
γab and positive linear Grüneisen parameters γc correspond
to the rotation of Ag-triangle pairs against each other in the
kagome sheet about their shared apex. The Raman-active mode
at 2.9 THz, having positive γab and negative γc, corresponds to
the rotations of CoC6 octahedra that pulls the connected layers
of Ag atoms along the c axis closer together. The Raman-active
modes at 4.3 and 5.0 THz correspond to a similar type of
vibrations but with CoC6 octahedra deforming, and these also
show positive γab and negative γc.

The dispersion curves are also shown in Figs. 5(b) and 5(c)
with colors that reflect the calculated values of γab and γc as
given by Eqs. (4) and (5), respectively. One can see that it is
almost the same set of low-frequency modes that contribute
to the PTE along the a(b) axes and NTE along the c axis,
i.e., their values of γab and γc show similar magnitudes but
are opposite in sign. This is directly related to the hinging
structure in the material where any level of expansion in the
a(b) axes would transfer into a similar level of contraction in
the c axis via the Co–CN–Ag–NC–Co linkage. Modes around
the wave vector A (0, 0, 1

2 ) and around the middle point along
the H (− 1

3 , 2
3 , 1

2 )→K (− 1
3 , 2

3 , 0) direction have the lowest
frequencies (< 1.0 THz) and hence have the most extreme
values of Grüneisen parameters. The first two degenerate
modes at A correspond to concerted rotations of rigid Co(CN)6

octahedra together with the nearly rigid CN–Ag–NC linkages
moving sideways [25], as shown by its eigenvector in Fig. 6.
The first mode at the middle point (− 1

3 , 2
3 , 1

4 ) along the H→K
direction corresponds to the Ag atoms vibrating along the

c axis, producing a transverse wave passing through each
kagome sheet [25].

The picture shown in Fig. 5 is reflected in plots of the
vibrational densities of states (DoS), which are shown in Fig. 7.
These were calculated from the full set of DFPT+D vibrations
computed on a 25 × 25 × 25 grid (corresponding to a total of
1470 wave vectors in the Brillouin zone). Plots of the DoS
are plotted for three pressures and colored according to the
averaged value of γab and γc of the modes around each energy.
The plots for vibrations at ambient pressure [Fig. 7(a)] show
that the same low-frequency modes contribute positively to γab

and negatively to γc. This situation changes under pressure, as
we will now discuss.

FIG. 6. (Color online) Vibration corresponds to the first mode
at point A (0, 0, 1

2 ) from its eigenvector looking down the [1, 0, 0]
direction. Each Ag atom (red) is connected to two [Co(CN)6]
octahedra (blue) in the upper and lower layers via the Co–CN–Ag–
NC–Co linkages. Arrows show the transverse motion of the nearly
rigid bridging group CN–Ag–NC resulted from the concerted rotation
of the octahedra. The dashed square shows the unit cell.
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FIG. 7. (Color online) Calculated DoS of modes with frequencies �9 THz. At pressures (a) 0.0 GPa, (b) 0.04 GPa, and (c) 0.1 GPa, the
DoS in the upper panel is colored according to the averaged value of γab and the DoS in the lower panel is colored according to the averaged
value of γc around each energy. Values �−10 are in red and �10 are in blue. γab of the low-frequency modes, especially the modes below
1.0 THz, decrease largely upon compression and even change their signs at 0.1 GPa as indicated by the change of color from blue to red.
(d) Colored DoS according to the average value of relative frequency change with pressure (in GPa−1) around each energy bin. The upper panel
shows the frequency change from 0.0 to 0.04 GPa and the lower panel shows that from 0.04 to 0.1 GPa. Stiffened phonons (∂ ln ω/∂p � +0.1)
are in blue and softened phonons (∂ ln ω/∂p � −0.1) are in red.

VI. EFFECT OF COMPRESSION ON THERMAL
EXPANSION

A. Increase of linear thermal expansion on compression

From the calculated Grüneisen parameters and the com-
pliances given in Table II, the linear coefficients of thermal
expansion of Ag3Co(CN)6 along the a(b) and the c axes were
calculated within the quasiharmonic approximation as [33]

αab = 1

	

∑
s,k

{
cs,k

[
(s11 + s12) γab(s,k)

2
+ s13γc(s,k)

]}

= 1

	

[
(s11 + s12) γ ab

2
+ s13γ c

]
(9)

and

αc = 1

	

∑
s,k

{cs,k[s13γab(s,k) + s33γc(s,k)]}

= 1

	
[s13γ ab + s33γ c], (10)

respectively, where

cs,k = �ωs,k
∂ns,k

∂T
(11)

is the contribution of the normal mode {s,k} to the specific heat
with ns,k = [exp(�ωs,k/kBT ) − 1]−1, and 	 is the volume of
the unit cell. The overall Grüneisen parameters are defined as

γ ab =
∑
s,k

cs,kγab(s,k),

γ c =
∑
s,k

cs,kγc(s,k). (12)

The volume coefficient of thermal expansion (CTE) is calcu-
lated as

αV = 2αab + αc. (13)

The calculated values of αab and αc at different temperatures
and pressures are shown in Fig. 8. The averaged values
of αab and αc over 50–500 K are +127 MK−1 and −101
MK−1, respectively. These exceptionally large values are in
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FIG. 8. (Color online) DFPT+D calculated coefficients of ther-
mal expansion at different temperatures for pressures of 0.0 (solid
line), 0.04 (dashed line), and 0.1 GPa (dotted line) using quasi-
harmonic approximation, compared to the experiment at ambient
pressure (in open circle) [1]. A plot from GGA calculated phonons
based on the correct structure optimized using the GGA+D method
is given in the Supplemental Material [25] for comparison.

reasonable agreement with the experimental values [1] of
αab = +135 MK−1 and αc = −131 MK−1. The hinging
mechanism of the material as discussed previously results in
similar magnitude of the PTE along the a(b) axes and the NTE
in the c axis.

In addition to reproducing the experimentally observed [1]
colossal PTE and NTE of Ag3Co(CN)6, an interesting finding
from Fig. 8 is that ∂αc/∂p > 0, that is αc, which has a negative
value, becomes less negative on compression. This is opposite
to the usual behavior that ∂α/∂p < 0 as found in most PTE ma-
terials such as metals, metal oxides, and alkali halides [34–37]
and also in many isotropic NTE materials [29,38–40].

According to the standard thermodynamic relation [30](
∂Bc

∂T

)
p

= B2
c

(
∂αc

∂p

)
T

, (14)

a positive value of ∂αc/∂p means a corresponding positive
value of ∂Bc/∂T . If Bc were positive as would usually be
the case, this would give the unusual property of the material
becoming harder at higher temperature [40], but in this case
Bc, as the inverse of βc is negative (see Table II), and thus
Bc becomes less negative on heating with βc becoming more
negative. Hence, higher temperatures enhance NLC.

To understand this, we note that the values of αab and
αc depend on γ ab and γ c weighted by the compliances, as
given in Eqs. (9) and (10). Since the compliances listed in
Table II change little with pressure, any significant change of
the CTE with pressure must be due to the change of the overall
Grüneisen parameters.

In the temperature range of 0–500 K, only contributions
from the low-frequency modes (�9 THz) [Fig. 7(a)] are
important. At zero pressure, contributions from the low-
frequency modes result in positive γ ab and negative γ c as
shown in Fig. 9. Since s11 and s12 are positive and s13 is

0 100 200 300 400 500
−10

−8
−6
−4
−2

0
2
4
6
8

 Temperature (K)

γ |

FIG. 9. (Color online) Calculated overall Grüneisen parameters
γ ab (in blue) and γ c (in red) by Eq. (12). γ ab at 0.0, 0.04, and 0.1
GPa correspond to solid, dashed, and dotted lines, respectively. γ c

at the same pressures corresponds to solid, dashed, and dotted lines,
respectively. From 0.0 to 0.1 GPa, γ ab decreases significantly and
even becomes negative at 0.1 GPa, while γ c decreases much less.

negative, both γ ab and γ c would contribute constructively to
the positive value of αab according to Eq. (9). Similarly, since
s13 is negative and s33 is positive, γ ab and γ c would also
contribute constructively to the negative value of αc. Thus,
the increase of γ ab (becoming more positive) and decrease of
γ c (becoming more negative) would enhance the linear PTE
and NTE, while the decrease of γ ab and increase of γ c would
reduce the linear PTE and NTE of the material.

Figure 9 shows that there is a significant decrease of γ ab

and a smaller decrease of γ c on compression. According to
Eqs. (9) and (10), the first effect is more dominant and results
in the large decrease in the magnitude of both αab and αc with
pressure, corresponding to the conventional decrease of elastic
moduli on heating (∂Bab/∂T ∝ ∂αab/∂p < 0) and the heat
enhancement of NLC (∂Bc/∂T ∝ ∂αc/∂p > 0), respectively.

It is interesting to note this enhancement of NLC on heating
could not happen without the hinging mechanism in the
structure working efficiently because it is this mechanism that
gives almost the same magnitudes to s13 and s33 (as discussed
in Sec. III), which in turn provide the same weighting of
γ ab and γ c in their contributions to αc. If we had the case
where the hinging is not effective, a much smaller value of
s13 compared to s33 would make the decrease of γ c dominate,
resulting in a decrease of αc on compression (corresponding
to ∂Bc/∂T ∝ ∂αc/∂p < 0); in this case, the enhancement of
NLC on heating would not be observed.

B. Exceptionally large ∂αV /∂ p

Another interesting finding in Fig. 8 is the exceptionally
large reduction in αV on compression. The magnitude of
∂αV /∂p is found to be about 1125 MK−1/GPa from 0.0 to
0.04 GPa and 2083 MK−1/GPa from 0.04 to 0.1 GPa, values
that are more than 10 times larger than what is normally
considered as a large value [41] (ca. 100 MK−1/GPa) and
more than 104 times larger than that of a hard metal [34].

054302-8



Ag–Ag DISPERSIVE INTERACTION AND PHYSICAL . . . PHYSICAL REVIEW B 90, 054302 (2014)

From 0.0 to 0.1 GPa, the linear CTE of the material is
reduced from its colossal value to a more moderate value of
about ±25 MK−1 which is similar to the values found in the
NTE metal cyanides [38,42]. As discussed in the previous
section, such significant reduction in the magnitudes of αab

and αc is due to the large decrease of γ ab. In particular, when
γ ab becomes negative at 0.1 GPa, it begins to contribute to αab

and αc [Eqs. (9) and (10)] with opposite sign to that of γ c.
The significant decrease on compression of γ ab is attributed

to the large decrease in γab of most low-frequency modes
(�9 THz), especially the modes with frequencies <1.0 THz
(as those at wave vector A in Fig. 5). On one hand, such a
decrease is related to the increase of mode frequencies [see
Eq. (4)] upon hydrostatic compression as shown in Fig. 7(d).
On the other hand, the sign change of γab at 0.1 GPa is
indicated in Figs. 7(a) to 7(c) by the colored DoS according
to the values of γab at different pressures.

The sign change of γab of the low-frequency modes under
pressure can be explained with the help of Fig. 6. As discussed
previously, the transverse vibration of the CN–Ag–NC bridge
of such modes can pull the connected Co closer hence contract
the c dimension of the crystal. With relaxed Co–CN–Ag–NC–
Co linkage at zero pressure, reducing the a and b dimensions of
the unit cell tends to extend the c dimension due to the hinging
mechanism. This would make the transverse vibration that
contracts the dimension more difficult and result in positive
γab in Eq. (4). However, at high hydrostatic pressures, large
elongation in the c dimension (due to the giant NLC of
the material) would largely extend the Co–CN–Ag–NC–Co
linkage. This time, reducing the a and b dimensions with fixed
c of the unit cell can accommodate part of the extension in the
linkage and make the linkage less taut. This would in turn make
it easier for the CN–Ag–NC linkage to vibrate transversely,
which would result in negative γab in Eq. (4).

The scissorlike behavior of the change of linear CTE seen
in the upper panel of Fig. 8, namely, the decrease of αab

accompanied by the increase of αc upon compression, makes
the combined αV in Eq. (13) close to zero at high pressure.
The large value of s11 due to the weak interaction between Ag
atoms in the a-b plane makes sure that the contribution from
γ ab to αab in Eq. (9) dominates, so that αab would decrease
largely according to the decrease of γ ab. On the other hand,
as discussed in the previous section, the effective hinging
mechanism guarantees the similarly large increase of αc.
Thus, it is the dispersive interaction together with the hinging
mechanism that make αab and αc change with pressure like a
scissor.

According to the relation [30](
∂BV

∂T

)
p

= B2
V

(
∂αV

∂p

)
T

, (15)

the giant reduction of αV with pressure implies a giant decrease
of B on heating. From Eq. (15), B(T ) can be calculated as

B(T ) =
(

1

BT =0
−

∫ T

0

∂α

∂p
dT

)−1

, (16)

and is shown in Fig. 10. From 0.0 to 300 K, B is reduced by
75% which is much larger than the observed giant softening
(∼45%) of the isotropic NTE material ZrW2O8 [43] on
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FIG. 10. Calculated temperature dependence of the bulk modulus
B of Ag3Co(CN)6 at zero pressures using Eq. (16). The great
softening of B on heating brings the calculated value in better
agreement to the experimental one at room temperature.

heating. Such softening results in a value of B in much better
agreement with the experimental value of 6.5(3) GPa at room
temperature [1], as shown in Fig. 10.

VII. CONCLUSIONS

By including the dispersive correction in the DFT GGA
calculation, we are now able to correctly reproduce the ground
state of Ag3Co(CN)6 as well as the the high-pressure phase of
the material having the interdigitated structure.

We found that, by using the DFPT+D calculated phonons, it
is almost the same set of low-frequency modes that contribute
to both linear PTE and NTE of the material with their linear
Grüneisen parameters showing similar magnitudes but with
opposite sign. Such modes, as those around the wave vector
A and the middle point along the H→K, correspond to the
transverse vibrations of the CN–Ag–NC bridge within the Co–
CN–Ag–NC–Co linkage that can transfer the expansion in the
a(b) dimension to the contraction in the c dimension.

From the DFPT+D results, we have predicted that the value
of αc of Ag3Co(CN)6 increases on compression, contrary to
what is normally seen in PTE and NTE materials. In turn, this
suggests that the NLC of Ag3Co(CN)6 will be enhanced on
heating. We also predicted an exceptionally large reduction in
volume CTE on compression, which corresponds to the change
of sign of the linear Grüneisen parameters under pressure
together with the right elasticity of the material. The latter
is based on the weak interactions between Ag atoms in the a-b
plane and the effective hinging mechanism in the structure.
This property also suggests a giant softening of the material
on heating with a reduction in the bulk modulus of about 75%
from 0–300 K.

The method and results presented in this work would
be able to apply to other framework materials, such as
KMn[Ag(CN)2]3 and Zn[Au(CN)2]2, that have atoms (e.g.,
Ag and Au) with large dispersive interactions and show large
anisotropic properties of PTE/NTE as well as NLC [44–47]. It
would be interesting in a future study to see if the phenomena
of heat enhancement of NLC and giant reduction of volume
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CTE on compression predicted for Ag3Co(CN)6 can also be
found in these other materials. It would be also interesting
to use other schemes to include the van der Waals dispersion
correction (such as the use of nonlocal Langreth-Lundqvist
functional [10] in the DFT) in calculating properties of these
materials and compare the results.
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