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We investigate the scattering and localization properties of edge and bulk states in a disordered two-dimensional
topological insulator when they coexist at the same Fermi energy. Due to edge-bulk backscattering (which is
not prohibited a priori by topology or symmetry), Anderson disorder makes the edge and bulk states localized
indistinguishably. Two methods are proposed to effectively decouple them and to restore robust transport. The
first kind of decouple is from long-range disorder since edge and bulk states are well separated in k space. The
second one is from an edge gating, owing to the edge nature of edge states in real space. The latter can be used to
electrically tune a system between an Anderson insulator and a topologically robust conductor, i.e., a realization
of a topological transistor.
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I. INTRODUCTION

What makes topological insulators (TIs) unusual are the
boundary states carrying dissipationless currents. This novel
property is characterized by a topological invariant (e.g., Chern
number or Z2 invariant) associated with the occupied bulk
bands. In the presence of boundaries (surfaces or edges), a
nontrivial topological invariant guarantees the existence of
gapless boundary states connecting the conduction and valance
bands [1–3]. In the bulk gap, the absence of backscattering
between boundary states is protected by the topological order
and some symmetry. Topological states in two-dimensional
(2D) [4–7] and three-dimensional (3D) [8,9] systems have
been experimentally observed recently.

However, the robust transport properties of boundary states
are only valid without the interference of bulk states. Unfortu-
nately, most of the 3D TIs found so far are actually metals, i.e.,
with Fermi energy in the bulk band coexisting with boundary
states [1,2]. This is one of the biggest experimental obstacles
to realizing boundary transport in TIs. It has been observed
that the mix between boundary and bulk states will lead to
remarkable backscattering [1,9–11]. This backscattering can
destroy the perfect conducting of boundary states. Therefore,
further understanding of boundary-bulk interplay is necessary.
In Refs. [12,13], Fano-type rearrangements of bulk and
boundary spectra arising from the mixing was discussed.
Nevertheless, the scattering and transport properties due to
disorder is not clear: How does such scattering happen? To
what extent does it affect the robustness of boundary states?
Most importantly, how can we avoid it?

In this paper, we systematically investigate the scattering
between edge and bulk states in 2D TIs, in the presence of
nonmagnetic impurities. We found that with the coexistence
of edge and bulk states at the same Fermi energy, (1) Anderson
disorder tends to localize them indistinguishably; (2) long-
range impurities can effectively decouple them and restore
perfectly conducting channels (PCCs); (3) a local voltage

gating at the edge is also enough to effectively decouple them
and leads to PCCs, therefore giving rise to a convenient way
to switch the system between a localized Anderson insulator
and a perfect conducting TI. This is a concrete proposal of a
topological field effect transistor (FET) [14,15].

II. MODEL AND METHODS

We adopt the Kane-Mele–type [16] Hamiltonian defined on
a honeycomb lattice

H = t
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which has been used to describe the electronic states in
silicene [17–19]. The first term describes the nearest-neighbor
(NN) hopping, where c

†
iσ creates an electron at site i with

spin σ . The second term represents the staggered potential
with ξi = ±1 for sublattice A (B). The third term is the in-
trinsic spin-orbital coupling (SOC) between the near-nearest-
neighbor (NNN) sites, where s = (sx,sy,sz) are the Pauli
matrices for physical spins, and νij = (di × dj )z/|di × dj | =
±1 with di and dj the two NN bonds connecting NNN sites i

and j . The fourth term is the NNN Rashba SOC, where μij =
±1 for the A and B sites, respectively, and d̂ij = dij /|dij |
representing the unit vector of dij which connects NNN sites
i and j . Finite Rashba SOC breaks the conservation of spin
σz, but does not change the bulk gap, and therefore does not
change the Z2 invariant. We will take λR = 0 in most of this
paper. In Sec. VI, it will be shown that finite λR does not
affect the results we have concluded. Hereafter, we adopt t
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FIG. 1. (Color online) (a) Band structure of model I (λSO = 0.8t ,
λv = 0.3t , and λR = 0). (b) Band structure of model II (λSO = 1.6t ,
λv = 0.1t , and λR = 0). Both models are particle-hole symmetric so
only conduction bands are plotted. Both (a) and (b) are from a zigzag
nanoribbon with width Ny = 80. States with spin ↑ (↓) are plotted
in green (purple). Edge states associated with lower (L) or upper (U)
edge are also marked. (c) Schematic of the zigzag edge nanoribbon
with length Nx and width Ny . The unit cell is marked by the black
dashed line.

as the energy unit and lattice constant a [NNN distance, see
Fig. 1(c)] as the length unit.

The Hamiltonian (1) respects time-reversal symmetry as
well as particle-hole symmetry. Its electronic structure when
|λSO| < t has been well studied [18,19]. The bulk bands are
gapped at Dirac points K(K ′) = (±4π/3,0) with magnitude
�G = 2|λSO − λv|. In the finite gap, the system is a topolog-
ically trivial (nontrivial) insulator if λSO < λv (λSO > λv). In
Fig. 1(a), we plot the typical band structure of a quasi-one-
dimensional (1D) ribbon in the topological nontrivial phase.
The model parameters are λSO = 0.8t , λv = 0.5t , and λR = 0,
which will be referred as model I in the following. Within
the bulk gap, |E| < |λSO − λv|, there are four gapless edge
states, corresponding to lower (L) and upper (U) edges, with
spin up (↑) and down (↓), respectively. In the presence of
time-reversal symmetry (TRS) and sufficiently ribbon width,
the backscattering between them is prohibited [20]. This is a
typical model of the quantum spin Hall effect.

The interests in this work will be in the energy region of
bulk bands. As shown in the band structure in Fig. 1(a), when
E > λSO − λv = 0.5t , one pair of edge states (U↑ and U↓) at
the upper edge merge into the continuum of bulk states, while
another pair of edge states (L↑ and L↓) at the lower edge
are still well separated from bulk states. In Figs. 2(a)–2(d),
we plot their wave-function distributions in the real space,
corresponding to states A, B, C, and D at EF = 0.55t in
Fig. 1(a). Indeed, for states B (L↑) and C (L↓), their wave
functions are extremely localized at the lower edge y = 0. On
the other hand, states A (extension of U↓) and D (extension of
U↑) spread over most of the bulk with strong oscillations [21],
and lose their edge nature. Hereafter, states like A and D

FIG. 2. (Color online) The square magnitudes of the wave func-
tions |ψ(y)|2 along the cross section of the Ny = 80 ribbon, for model
I at EF = 0.55t (left column), and for model II at EF = 1.05t (right
column), with (a) to (h) corresponding to states A to H in Figs. 1(a)
and 1(b), respectively.

will be called “pseudo-edge states” and will be classified
as bulk states. As will be seen in Table II in the following,
their responses to disorder are similar with other ordinary bulk
states. In other words, what we mean by “edge states” in the
rest of this paper are those states like B and C, which are well
defined and distinguishable from the bulk, both in real space
and in k space. Our focus will be their scattering properties
when such edge states are coexisting with bulk states at the
same Fermi energy. Other 2D TI systems (e.g., see Fig. 11)
with only bulk states (including pseudo-edge states) in the
energy region of bulk bands are out of this context, which will
be discussed in Sec. VII.

Model I has only edge states at the lower edge coexist-
ing with the bulk. Other more “natural” configurations of
edge states with Hamiltonian (1) can arise when λSO > t .
Figure 1(b) is the nanoribbon band structure of a Ny = 80
ribbon for model II, with parameters λSO = 1.6t , λSO = 0.1t ,
and λR = 0. In this case, the bulk bands are gapped with the
magnitude 2t at two valleys at kx = 0 and π/a. Notice that
now all the four edge states (L and U, ↑ and ↓, respectively)
survive after the appearance of bulk states when |EF | > t ,
as can be confirmed by their real-space distributions in
Figs. 2(e)–2(h). Another distinct feature of model II is that
both spin components coexist in the same valley, while for
model I, the spins are opposite for two valleys [18,19].

Equipped with the basic background of models, we will in-
vestigate scattering from impurities. Nonmagnetic impurities
are expressed by adding a term to the Hamiltonian as

HI =
∑

i,σ

Vic
†
iσ ciσ , (2)
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where Vi is the random onsite potential, and is independent of
spin to preserve TRS. Impurities induce scatterings between
states at the Fermi energy. We investigate this in a standard
geometry of quasi-1D ribbon infinitely extending in the x di-
rection, which is divided into three parts: the left lead (source),
the central region (sample), and the right lead (drain). The leads
are clean and semi-infinite, with well-defined channels indexed
by n at Fermi energy EF . The width Ny of the ribbon is chosen
to be sufficiently large to avoid finite-size effects [20]. With
impurities in the sample, the channel-resolved transmission
amplitudes Tmn ≡ Tm←n between right-going channels, i.e.,
from channel n in the left lead to channel m in the right lead, can
be calculated by using the numerical Green’s function methods
introduced in Refs. [22,23]. Thus, the transport capability of
channel n from the left lead can be defined as its transmission
through the sample over all possible channels m in the right
lead Tn = ∑

m Tmn. The total transmission
∑

mn Tmn over
all active channels is the conductance in units of e2/h at
zero temperature, with m and n running over all right-going
channels [24]. The model parameters (except for disorder)
are chosen to be identical for the sample and lead to reveal
the intrinsic scattering behavior from disorder at this set of
parameters.

In order to investigate the localization of edge (bulk) states,
respectively, we define the edge (bulk) transmission as

Tbulk =
∑

m

∑

n∈bulk

Tmn, (3)

Tedge =
∑

m

∑

n∈edge

Tmn, (4)

where n only runs over edge (bulk) right-going channels in the
left lead, and m runs over all right-going channels in the right
lead. This Tedge (Tbulk) reflects the final fate of incident edge
(bulk) states after going through the sample. Due to disorder,
possible localization makes T ’s badly distributed over different
disorder realizations. Thus, it is essential to investigate the
geometric mean T typ = exp〈ln T 〉 to give the “typical value”
instead of the arithmetic mean T ave = 〈T 〉 [25].

III. ANDERSON DISORDER

In the presence of bulk-edge coexistence, a natural conjec-
ture is that disorder will localize the bulk states and remain
the edge states left robust. We will show that the case is not so
simple. Let us start from Anderson disorder, where the random
onsite potential Vi is independently and uniformly distributed
between (−W/2,W/2).

If the Fermi energy is in the bulk gap, as a typical 2D TI,
it is well known that the electronic transport should be robust
even with disorder. Indeed, as shown in the inset of Fig. 3(a)
for model I, the transmission as a function of sample length
Nx at EF = 0.05t is a robust plateau 2, carried by right-going
edge states L↓ and U↑. On the other hand, in the presence of
coexisting bulk states at EF = 0.55t , as discussed above, there
is only one right-going edge channel (L↓) left. Now, as shown
in the main panel of Fig. 3(a), the edge and bulk transmissions
are both decaying with transport length Nx , with almost the
same decay rate.

This nonrobustness can also be seen from the transmission
dependence on disorder strength W , as shown in Fig. 3(b):

FIG. 3. (Color online) Model I. Typical values of bulk (blue
square) and edge (red circle) transmissions with Anderson disorder.
Main panels are for EF = 0.55t (in band) while insets are for
EF = 0.05t (in bulk gap). (a) Transmissions as functions of sample
length Nx with W = 0.5t . (b) Transmissions as functions of disorder
strength W with Nx = 1000. Other model parameters are the same
as in Fig. 1(a). Each data point is averaged over 1000 samples.

the in-band edge and bulk transmissions (EF = 0.55t , main
panel) collapse to zero almost at the same time at W ∼ 0.8t ,
which are much earlier than the robust in-gap (EF = 0.05t ,
inset; notice different scales of horizontal axes between the
main and the inset panels) edge transmission at W ∼ 5t . In
this model, although the backscattering from the edge state L↓
(right-going) to the edge state L↑ (left-going) is still prohibited
by TRS, the edge state L↓ still decays by leaking into the bulk
and being reflected to left-going bulk channels.

Similar localization happens to model II, with all four edge
states surviving after going into the bulk, as plotted in Fig. 4.
In other words, although there exist pseudo-edge states [A and
D in Fig. 1(a)] or even real edge states [B, C, E, F, G, and H
in Figs. 1(a) and 1(b)], disorder does not necessarily make the
bulk states localized while keeping the edge states extended.
On the contrary, they are localized indiscriminately. This is the
first important finding in this work. With the coexistence, the
robustness of edge states has been destroyed by their leakage
and backscattering into the bulk, which make themselves easily
localized, as conventional electronic states in disordered 2D
systems. This is consistent with previous analytical results that
the coupling with bulk states will endow the edge states with
a finite lifetime τ ∼ 1

|g|2ν(EF ) , where g is the coupling and ν is
the bulk density of states [12].

IV. LONG-RANGE DISORDER

The above results show the disastrous consequence of
edge-bulk scattering in disordered 2D TI by destroying the
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FIG. 4. (Color online) Similar with Fig. 3 but for model II. Main
panels are for EF = 1.05t (in bulk band) while insets are for
EF = 0.5t (in bulk gap). Others are the same with Fig. 3.

robustness of edge states remarkably. We are now in a position
to look for means to avoid this. As can be seen in Figs. 1(a)
and 1(b), the bulk and edge states are well separated in k space
when they coexist. To effectively decouple them, it is useful to
consider the long-range disorder, which suppresses scattering
processes with large-momentum transfer. In the presence of
long-range disorder, the onsite potential Vi is the sum of
contributions from NI impurities randomly centered at {rm}
among N sites Vi = ∑NI

m=1 Um exp[−|ri − rm|2/(2ξ )], where
Um is randomly distributed within (−W/2,W/2). The above
Anderson disorder corresponds to short-range impurities with
correlation length ξ = +0 and density ni ≡ NI/N = 100%.
Impurities with correlation length ξ > a can be said to be
long range, as widely investigated in graphene with substrate
[26–28].

The transmissions for model I with long-range impurities
(ξ = 1.5a and ni = 2.5%) are plotted in Fig. 5. In Fig. 5(a),
interestingly, the edge transmission (red circle) almost does
not decay with length at all, restoring its robustness by
effective decoupling from bulk states. This robustness of
the edge channel can also be seen from its dependence on
disorder strength W in Fig. 5(b). On the other hand, the bulk
transmission (blue square) decays very fast before Nx < 200,
reflecting the Anderson localization nature of the 2D bulk
states. But, after that this bulk decay also ceases at another
perfectly conducting channel with unit transmission. This
residual PCC can be attributed to the imbalance between the
number of left- and right-moving bulk channels [29], which is
explained as follows.

The information of all channels at EF = 0.55t is listed
in Table I. The long-range nature of disorder effectively
decouples the edge channels (No. 8 for spin ↑ and No. 9

FIG. 5. (Color online) Model I with long-range impurities ξ =
1.5a, nI = 2.5%. (a) Transmissions as functions of sample length Nx

with W = 0.5t . (b) Transmissions as functions of disorder strength
W with Nx = 1000a. Others are the same with main panels in Fig. 3.

for spin ↓) from the bulk ones, which results in an imbalance
between opposite channels in the bulk. For the bulk spin-↑
component, there are four right-going channels (Nos. 13 to
16) but three left-going channels (Nos. 10 to 12). While for
the bulk spin-↓ component, there are four left-going channels
(Nos. 1 to 4) but three right-going channels (Nos. 5 to 7). In
brief, there is one more right- (left-) going bulk channel for
spin-up (-down) component, and there is no scattering between
states with opposite spins due to TRS. Thus, for a right-going
setup here, the residual right-going spin-up channel (in the
spin-↑ component) exhibits itself by the appearance of a
PCC. This picture can be confirmed by the channel-resolved
transmissions for a typical sample listed in Table II. Of the total
transmission

∑
n Tn = 2, 1 is from the edge channel (No. 9)

with spin ↓, and the rest 1 is mostly from the sum of four bulk

TABLE I. Model I. Information for 16 active channels at EF =
0.55t as plotted in Fig. 1(a): the directions of their group velocities
[+ (−) for right (left) going] and the orientations of their spins. The
numbers are sorted by ascending kx . States A, B, C, and D in Fig. 1(a)
correspond to channels No. 1, 8, 9, and 16, respectively.

n 1 2 3 4 5 6 7 8

Velocity − − − − + + + −
Spin ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑
Edge �
No. 9 10 11 12 13 14 15 16
Velocity + − − − + + + +
Spin ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑
Edge �
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TABLE II. Model I. Channel transmissions of the eight right-
going channels, for a typical sample with Nx = 1000 used in Fig. 5,
with long-range impurities at W = 0.5t . The channel numbers are
same as in Table I.

n 5 6 7 9 13 14 15 16 Sum

Tn 0.000 0.000 0.000 0.999 0.035 0.123 0.590 0.252 1.999
Spin ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑
Edge �

channels (Nos. 13, 14, 15, and 16) with spin ↑. Notice this PCC
in the bulk is a collective effect, and it does not correspond to
any one specific eigenchannel listed in Table I. For example,
even the transmission of the pseudo-edge state, channel No.
16, is much less than 1, as other bulk channels. Similar PCCs
in other quasi-1D systems with odd number of channels have
been discussed in Refs. [28,30]. To sum up, for model I, the
long-range disorder effectively decouples edge states from
bulk, resulting in two perfectly conducting channels, one from
the edge and one from the bulk. This originates from its special
configuration of edge and bulk states: only one pair of edge
states coexisting with bulk states.

Let us check the case of model II, with both pairs of edge
states surviving with bulk states. At Fermi energy EF = 1.05,
there are totally 40 active channels (see Table III), much more
than in model I. Now, for each spin component (↑ or ↓) of
model II plotted in Fig. 1(b) there are 18 bulk channels and
2 edge channels, both with exactly half left-going and half
right-going members, as listed in Table III. After the effective
decoupling from long-range disorder, as shown in Fig. 6(a), the
bulk states (now with even number of channels) are completely
localized to zero transmission after transport length Nx > 500,
even though there are much more bulk channels than in
model I. Meanwhile, two right-going edge channels (L↓ and
U↑), respectively, restore their robust transports, giving rise to
the total transmission 2. The transmissions of a typical sample
are listed in Table IV. Therefore, in the case of model II, after
the edge and bulk states have been effectively decoupled, there
is no “odd-channel” problem for the latter, which happened in
model I. Thus, the situation is simpler and clearer: the bulk

TABLE III. Similar with Table I, but for model II at EF = 1.05t .
States E, F, G, and H in Fig. 1(b) correspond to channels No. 7, 8, 33,
and 34, respectively.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Velocity − + + + + + − − − − − − − −
Spin ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↑
Edge � �
n 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Velocity − − − − − − + + + + + + + +
Spin ↑ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↑
Edge
n 29 30 31 32 33 34 35 36 37 38 39 40
Velocity + + + + + + − − − − − +
Spin ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↑
Edge � �

FIG. 6. (Color online) Model II with long-range impurities ξ =
4a, nI = 0.25%. Main panels are for EF = 1.05t (in band) while
insets are for EF = 0.5t (in bulk gap). (a) Transmissions as functions
of sample length Nx with W = 0.5t . (b) Transmissions as functions
of disorder strength W with Nx = 1000a. Others are the same with
Fig. 1(b).

states are easily localized as in conventional 2D systems, while
edge states regain their robustness.

V. EDGE GATING

The decoupling of edge and bulk states effectively recovers
the robust conducting behavior of topological states. The above
decoupling from long-range disorder is based on the k-space
consideration. However, the correlation length ξ and density nI

of impurities depend strongly on the details of materials, and
are hard to control. Now, we consider a real-space proposal. For
model I at the intrinsic Fermi energy EF = 0.55t in Fig. 1(a),
a simple way to discard the redundant bulk states is to gate the
whole 2D sample into the bulk gap, by a top gate covering the
whole sample sheet. However, we will show that an edge gating
is also sufficient to create a decoupling between edge and bulk
states and therefore results in PCCs. This seems unnecessary
for a 2D system as discussed above, but is intuitive for a
generalization to 3D TIs because a gate surrounding a 3D

TABLE IV. Transmissions for model II, for a typical sample with
Nx = 1000 used in Fig. 6, with long-range impurities at W = 0.5t .
The channel numbers are the same as in Table III.

n 33 34 Bulk Sum

Tn 1.000 0.997 0.003 2.000
Spin ↓ ↑ −
Edge � �
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FIG. 7. (Color online) Model I with edge gating. (a) Illustration
of the metal edge gate (orange)/insulator (gray) structure attached
around one edge of the 2D TI (green), which induces a local potential
so that the Fermi energy around the edge meets the bulk gap.
The electronic transport is along the x direction. The yellow arrow
represents the edge state. (b) and (c) are all the same with main
panels of Figs. 3(a) and 3(b), but with an edge gating VG = −0.5t

and ξG = 3a.

sample can only affect local carrier densities (therefore local
chemical potentials) near the interface to the gate, instead of
those in the whole bulk.

As illustrated in Fig. 7(a), consider that a local gate
structure [31,32] is attached around the lower edge (y = 0) of
the sample of model I, where the edge and bulk states coexist.
This edge-gate voltage can only change the sample’s local
potential V around this edge, say, in an exponential decaying
form as

V (x,y) = VG exp(−y/ξG), (5)

where ξG is the decay length. If VG can be tuned so that the
Fermi energy meets the bulk gap around the edge, and ξG is
larger than the penetration depth of the edge state in transverse
direction, then there will be only edge state [the yellow arrow
in Fig. 7(b)] in this gated region (0 ≤ y � ξG) near this edge,
in spite of the presence of bulk states outside it. Although, at
different potentials the gated and ungated regions still belong
to the same topological phase, with no additional edge states
at the interface (y ∼ ξG) between them. So far, edge and bulk
states have been well separated in real space. This decoupling

FIG. 8. (Color online) Model II with both edge gated. Same with
main panels of Fig. 4, but with both edges gated as EG = 0.8t and
ξG = 4a.

should also restore the robustness of transport even for
Anderson disorder. This is confirmed from the transmissions
shown in Fig. 7(c), where perfectly conducting edge and bulk
channels can be seen. The transmissions converge to unity
rapidly when EG goes into the bulk gap and when ξG is just
several lattice constants long. We also show the transmissions
at fixed length Nx = 1000a when varying disorder strength
W . As other proposals of edge tuning in 2D TI [33–36], we
have made this decoupling by taking advantage of the local
nature of edge states.

For model II, with two pairs of edge states at both edges,
edge gating on both edges is necessary. In Fig. 8, we plot the
transmissions for model II with both edge gated. Similar to the
results of long-range disorder shown in Fig. 6, this decoupling
of edge states from bulk also restores the robust transport
Tedge = 2 of two right-going channels, while it makes the bulk
easily localized, i.e., Tbulk ∼ 0.

Therefore, an edge gate can drive a disordered TI with
bulk-edge coexistence from Anderson insulator [Figs. 3(a)
and 4(a)] to a perfectly conductor [Figs. 7(b) and 8(a)]. This
transition can be experimentally tuned to make a topologi-
cal FET [14,15]. The on-off conductance ratio Gon/Goff ∼
exp[−Nx/λG]/ exp[−Nx/λ0], where λ0 and λG are the local-
ization length of zero gating and edge gating, respectively, as
long as Nx is within the phase coherence length. Moreover,
the ON state is very stable due to its topological origin.
Since this tuning only requires an electric control near the
boundary, it can be naturally generalized to 3D: A surface
gating surrounding a 3D TI can decouple surface and bulk
states coexisting at the same Fermi energy, so that the robust
transport of surface states is restored while the bulk states can
be localized by impurities. Recently, a 3D TI based FET with
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FIG. 9. (Color online) Model II with Rashba SOC λR = 0.4t .
(a) The band structure of a zigzag nanoribbon. Transmissions at
EF = 1.05t as functions of Nx for Anderson disorder (b), long-range
disorder (c), and edge gating (d). Other parameters are the same with
Figs. 1(b), 4(a), 6(a), and 8(a), respectively. The inset of (b) is at
EF = 0.5t in the bulk gap.

boundary gating has been experimentally observed in [37], and
our present work offers a possible theoretical explanation.

VI. FINITE RASHBA SOC

So far, we have neglected the Rashba SOC term, which
makes the spin sz a conserving quantity and decouples the
system into two spin components ↑ and ↓. In this case, the
quantum spin Hall system with Z2 = 1 can be viewed as two
Chern insulating systems with opposite Chern numbers, one
for each spin component [1,18,19]. Therefore, our conclusions
so far are also valid for Chern insulators. Finite Rashba
SOC does not break time-reversal symmetry but breaks the
conservation of sz, making two spin components ↑ and ↓
coupled and the spin orientation process with momentum.
Nevertheless, the system remains in the quantum spin Hall
phase with Z2 = 1 and with robust edge states, as long as the
Rashba SOC does not close the bulk gap.

To check the validity of our conclusions for the case of finite
Rasha SOC, in Fig. 9(a), we plot the nanoribbon band structure
for model II with λR = 0.4t , where two spin components
↑ and ↓ are coupled remarkably. Despite a different spin
configuration, similar to the version without Rashba SOC
plotted in Fig. 1(b), two pairs of edge states survive with the
bulk band when |EF | > t . In the bulk gap |EF | < t , also as a
typical 2D TI system with Z2 = 1, the edge transport is robust,
as shown in the inset of Fig. 9(b). At Fermi energy EF = 1.05t

with the coexistence of edge and bulk states, we repeat the
calculations of transmissions (as functions of length Nx) for
Anderson disorder, long-range disorder, and edge gating, and
the results are shown in Figs. 9(b), 9(c), and 9(d), respectively.
Interestingly, the results almost duplicate what has happened
in the case of λR = 0 [compare with Figs. 4(a), 6(a), and 8(a),
respectively]. It is now clear that all the above conclusions
apply to the case of finite Rashba SOC, as long as the
coexistence of edge and bulk states.

VII. PHASE DIAGRAM

In order to have a global view, in Fig. 10, we plot the total
transmission of model I for a specific sample on the W − EF

plane. For Anderson disorder [Fig. 10(a)], there is a clear
transmission plateau T = 2 (green) in the bulk-gap region
with |EF | < 0.5t , originating from two pairs of edge states.
Apart from this region, although there are still well-defined
edge states coexisting with bulk states, the scattering between
them makes the transmission decay rapidly to zero (blue), as
discussed in Sec. III. In the presence of long-range disorder
[Fig. 10(b)], on the other hand, the transmission plateau
T = 2 extends itself into the bulk-band region, as indicated
by the region enclosed by black dashed contours. Notice in
these regions the transmission was T ∼ 0 in Fig. 10(a). This
reflects the restoring of robust transport from the decoupling
of edge and bulk states. These two phase diagrams possess
particle-hole symmetry, which originates from that of the
Hamiltonian (1) and from the zero mean values of disorder
potentials.

As for the case of edge gating, as illustrated in Fig. 7(b), an
edge gate with EG will push the local chemical potential at the
edge to EF − EG. Therefore, with an edge gating EG = 0.5t

FIG. 10. (Color online) Total transmission as a function of W and EF for model I, of a sample with the size Nx×Ny = 500 × 120. (a)
Anderson disorder the same with Fig. 3. (b) Long-range disorder the same with Fig. 5. (c) Edge gating the same with Fig. 7.
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[Fig. 10(c)], it can push the edge potential back to the bulk
gap if Fermi energy is in the conduction band (EF > 0.5t).
However, if Fermi energy is in the valence band (EF < −0.5t),
this same edge gate will push the edge potential deeper into the
valence band, so it cannot decouple edge and bulk states. This
is reflected in Fig. 10(c) that the robust transmission plateau
(green) extends itself only into the conduction band while
remains the same in the valence band as in the ungated case
plotted in Fig. 10(a).

Let us discuss a few words about the size and energy
dependencies. The results in Fig. 10 are calculated from
samples with width Ny = 120, instead of Ny = 80 in all the
previous calculations in this paper. This means that the above
physical pictures are independent of the sample size as long as
it exceeds the threshold of finite-size effect [20]. In Figs. 10(b)
and 10(c), with Fermi energy deeper into the bulk band, the
transmission plateau (green) is narrower in the W direction, or,
states are more easily to be localized. This is also consistent
with the argument from the effective theory that, with fixed
coupling (whether large or small) from the bulk, the lifetime
of edge states is inversely proportional to the density of states
of the bulk [12].

Before closing, it is interesting to compare our results with
those related works from other 2D TI models. Another popular
model of 2D TI is the Bernevig-Hughes-Zhang (BHZ) model,
describing quantum spin Hall effects in HgTe/CdTe quantum
wells [2]. In previous numerical experiments, starting from
a topological nontrivial phase at clean limit, there may also
develop a transmission plateau T = 2 with the increasing
of Anderson disorder strength, at some Fermi energy in the
bulk band [38–40]. This is one type of so-called topological
Anderson insulator (TAI). We reproduce the transmission
diagram of the BHZ model in Fig. 11(b). At EF = 0.02 eV
(black lines in Fig. 11) in the bulk band, the transmission
plateau T = 2 appears after W > 0.1 eV. In the following, we
will demonstrate that this has different physics from our above
results summarized in Fig. 10.

First, now there are no “real” edge states for the BHZ model
at this Fermi energy in the clean limit. As can be seen in
Fig. 11(a) and insets, when E > 0.01 eV, the edge states from
the bulk gap merge into the continuum of the bulk band and
lose their edge nature, like states A and D in Fig. 1(a). This is

FIG. 11. (Color online) Bernevig-Hughes-Zhang model. (a) The
band structure of a Ny = 50 ribbon. Insets are real-space distributions
of wave functions at indicated states. (b) Total transmission as a
function of W and EF of a Nx×Ny = 500×50 sample, with Anderson
disorder. The model parameters are the same with Fig. 2(c) in
Ref. [38].

why we did not choose the BHZ model in this work. In a most
related work [12], in order to construct the coexistence of bulk
and edge states, same as we defined above, one more orbital
was deliberately added to the Haldane (spinless version of the
KM model) model. We found that appropriate parameters of
the Kane-Mele model itself can also attain the same purpose,
as plotted in Figs. 1(a) and 1(b).

Second, as can be seen from the W − EF phase diagram
in Fig. 11(b), starting from a topologically nontrivial phase
at W = 0, this type of TAI originates from the asymmetrical
renormalizations to two band edges from disorder [41,42].
In other words, with increasing W , the transmission plateau
2 is growing [from the bulk-gap region (−0.02,0.02) eV at
W = 0] upward towards positive energy direction, because
the model itself lacks particle-hole symmetry. Therefore,
at some appropriate EF in the bulk conduction band, one
will meet this transmission plateau with increasing W . This
seemingly “disorder-induced transmission plateau” at some
definite Fermi energy will not happen in our case of particle-
hole-symmetric system with Anderson disorder, shown as in
Fig. 10(a). Thus, in the case of the BHZ model, two methods
in our paper (long-range disorder and edge gating) to decouple
bulk and edge states are not applicable any more since there
are no edge states for one to decouple at all. As a result,
this model’s responses to disorders are different from the
two models we considered above. For example, it was found
that long-range disorder gives rise to a shrink of the T = 2
transmission plateau [43], instead of an expansion as shown in
Fig. 10(b).

In brief, at a definite Fermi energy, TAI is to induce a
topological edge transport by disorder, when there were no
edge states at clean limit; on the other hand, our work is to
restore the robustness of edge states, when they have been there
at the clean limit but were not robust due to backscattering from
the coexisting bulk.

VIII. CONCLUSIONS

As a summary, we studied the edge and bulk transmissions
of 2D TI when they coexist at the same Fermi energy. Anderson
disorder tends to localize edge and bulk states indiscriminately
because of unprotected backscattering between them. In order
to decouple them and restore the robust transport of edge
states, we introduced long-range disorder and edge gating,
based on momentum-space and real-space considerations,
respectively. After effective decoupling of bulk and edge
states, disorder can easily localize the bulk states, while
keeping the robust transport of edge states, if the bulk has
even number of transport channels. By edge gating, one can
electrically tune the disordered system between an Anderson
localized state and a robust extended state, making it a
topological FET.
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