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Equation of motion and subsonic-transonic transitions of rectilinear edge dislocations:
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A theoretical framework is proposed to derive a dynamic equation motion for rectilinear dislocations within
isotropic continuum elastodynamics. The theory relies on a recent dynamic extension of the Peierls-Nabarro
equation, so as to account for core-width generalized stacking-fault energy effects. The degrees of freedom
of the solution of the latter equation are reduced by means of the collective-variable method, well known in
soliton theory, which we reformulate in a way suitable to the problem at hand. Through these means, two
coupled governing equations for the dislocation position and core width are obtained, which are combined
into one single complex-valued equation of motion, of compact form. The latter equation embodies the history
dependence of dislocation inertia. It is employed to investigate the motion of an edge dislocation under uniform
time-dependent loading, with focus on the subsonic/transonic transition. Except in the steady-state supersonic
range of velocities—which the equation does not address—our results are in good agreement with atomistic
simulations on tungsten. In particular, we provide an explanation for the transition, showing that it is governed by
a loading-dependent dynamic critical stress. The transition has the character of a delayed bifurcation. Moreover,
various quantitative predictions are made, that could be tested in atomistic simulations. Overall, this work
demonstrates the crucial role played by core-width variations in dynamic dislocation motion.
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I. INTRODUCTION

In the last decade, high-velocity dislocation motion in
crystals has been the subject of many two-dimensional (2D)
studies by molecular dynamics [1–9] or via direct measure-
ments in a plasma crystal slab [11,12]. From these studies,
a wealth of data has been collected, either in the form of
time-velocity curves [5], or of terminal velocity-versus-applied
stress plots [1,9]. These data illustrate the wide variety of
behaviors presented by dislocations subjected to dynamic
loadings in the 2D problem. Among some intriguing effects,
the subsonic/transonic transition of an edge dislocation [1,9]
deserves special attention, in view of its complicated depen-
dence on the external loading. For instance, the long-time
asymptotic velocity state of the dislocation depends on the
loading being applied in one, or in two steps, which no theory
has yet reproduced. During the transition the dislocation core
undergoes drastic size variations [1,9]. Such dynamic effects
are expected to be important to high-strain rate deformation
processes, and could notably modify the well-established
interaction mechanisms between dislocations in quasistatic
deformation [10]. So far, discussion of the transonic/subsonic
transition has mainly been based either on the atomistic
simulations, or on steady-state models [13–15]. It is natural,
however, to expect that more complete understanding of the
phenomenon will arise from a suitable dynamic equation of
motion (EoM) of dislocations—yet to be found.

Apart from their intrinsic theoretical interest, the above
issues must clearly be elucidated in the recently advocated per-
spective of employing non-quasi-static dislocation-dynamics
methods to study fast deformation processes in metals at the
mesoscopic level, accounting for elastodynamic wave propa-
gation [16]. Traditionally, approaches to dislocation motion,
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mainly relevant to the low-velocity phonon-drag-controlled
regime [17], rely on a simple overdamped mobility law and
include inertia (when needed) by means of a Newtonian-like
dislocation mass factor [18,19]. However, such phenomeno-
logical approaches (including relativistic ones [20]) have been
ruled out by phase-field calculations when acceleration is
fast, and when the velocity becomes a sizable fraction of the
shear wave speed [21]. As has long been recognized [22],
the key to dislocation inertia resides in the phenomenon of
radiation reaction. At nonsupersonic velocities, inertia arises
from the finite-width dislocation moving within its own wave
field emitted at every past instant, which results in retarded
self-interaction and makes motion history dependent [21–24].
For high strain-rate processes, usual mobility laws are simply
not adequate.

Starting with Eshelby [22], progresses have been made
over the years in computing dynamic self-interactions and
fields radiated into the surrounding medium by nonuniformly
moving dislocations [16]. The self-force has been extensively
discussed by Markenscoff and co-workers under an assump-
tions of rigid dislocation core [25]. Based on Eshelby’s seminal
work (valid at small velocities), the issue of radiative-damping
losses has been addressed by Al’shits et al. [26], and a
phenomenological EoM aimed at velocities less than the shear
wave speed has been proposed by Pillon et al. [21]. More
recently, these questions were re-examined by the present
author, resulting in an extended EoM that, in principle, allows
for arbitrary core variations with time [24]. However, the
theory still lacks an independent governing equation for the
core and must be completed by an ad hoc approximation to be
of use, which considerably restricts its domain of validity. This
calls for a more firmly grounded derivation method, capable
of providing the missing equation.

Accordingly, the present work aims at obtaining from gen-
eral principles an improved EoM, in the framework of isotropic
elastodynamics, paying—in view of the aforementioned

1098-0121/2014/90(5)/054120(18) 054120-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.054120


YVES-PATRICK PELLEGRINI PHYSICAL REVIEW B 90, 054120 (2014)

available data—special attention to its predictions as to the
so-called transonic regime [27] and to the subsonic/transonic
transition. We restrict our attention to single rectilinear dislo-
cations (two-dimensional problem). In particular, the question
of dislocation splitting into partials [19], which is important
for instance in high strain-rate twinning processes [28], is left
out. Steady supersonic motion is not considered either, for
reasons to be clarified. However, transient supersonic states
will be permitted.

The Peierls model proves a convenient starting point to
account for core-related effects, via an input from the gen-
eralized stacking-fault (GSF) energy (or γ -surface) potential,
which measures the energy cost of lattice mismatch at the
core [29,30]. In statics, the Peierls-Nabarro (PN) functional
equation [31–34] determines the dislocation core shape from
balancing the projections on the glide plane of the (self-) stress
generated by the dislocation, and of the pull-back stress that
keeps the lattice together. The latter stress derives from the
GSF energy. Following Eshelby’s ideas [22], the PN equation
has been generalized by the author to dynamics [35,36] into
what is called hereafter the dynamic Peierls-Nabarro equation
(DPE), to be reviewed in Sec. II. In short, the DPE stems
from a reduction to one dimension (the coordinate along the
glide plane) of the two-dimensional elastodynamic problem
that consists in computing in the surrounding medium the
elastodynamic fields emitted by the dislocation, in the spirit
of boundary-integral-equation methods [37]. While the latter
problem can be addressed by means of phase-field type
numerical methods of solution [38], the computation of the
time-dependent fields outside the slip plane proves superfluous
for the EoM, for which only the stress field on the slip plane
is needed [36].

Solving numerically the DPE is an outstanding task. Here,
recourse is made to approximations. As the DPE deals with
infinitely many degrees of freedom (i.e., the full core shape
function) [22], our first step is to reduce this number by
employing a suitable ansatz for the master core shape, centered
on the dislocation position ξ (t) at time t and scaled by a time-
dependent core width variable a(t). These two quantities stand
as collective variables (CVs), for which simpler governing
equation of motion are sought. To this purpose, we appeal to the
systematic collective-variable method of projection [39–43],
well known in soliton theory [44], which we reformulate
in Sec. III in a way that suits our needs. Further details
are provided in Appendix A. Applying the method to the
DPE, we arrive at the desired EoM for the dislocation in
Sec. IV, in the form of a retarded integro-differential functional
equation for ξ (t) and a(t), with history dependence in the
latter variables. Rather unexpectedly, the EoM naturally shows
up in complex-valued form, of real and imaginary parts the
(coupled) governing equation for ξ and a, respectively. Its
real part turns out to be the previously obtained incomplete
EoM [24], while the imaginary part provides the missing
equation for the core width. By construction, the obtained EoM
will be seen to reduce in the steady-state limit to Rosakis’s
model I [15], which describes high-velocity steady motion
in the nonsupersonic range. As a byproduct, we retrieve
the kinetic relations of the latter model in a generic form,
independent of the dislocation character. The physical content
of the EoM is further explored in Sec. V. Specializing the

EoM to an edge dislocation, and solving it by means of a
specially devised numerical algorithm (Appendix B), we carry
out in Sec. VI an in-depth analysis of the subsonic/transonic
transition under single-step and double-step loadings, making
quantitative comparisons with some atomistic results by Jin
et al. [9]. A concluding discussion closes the paper.

Before proceeding, it is worthwhile to point out that in
field theories other than elastodynamics, the influence of
radiation reaction on the motion of charged particles is of
considerable interest as well (for a dislocation, the “charge” is
the Burgers vector). For instance, in classical electrodynamics,
the long-standing issue of finding a nonpathological equation
of motion for an extended electric charge is still attracting
attention. In the latter context, for lack of an appropriate force
model to bind the charge distribution together, a hypothesis of
rigid shape is almost always made, which leads to conceptual
difficulties [45]. By contrast, the EoM for dislocations to be
obtained is internally consistent within elastodynamics, and
allows one to study dynamic shape variations of the defect.

II. THE DYNAMIC PEIERLS-NABARRO EQUATION

In a two-dimensional setup, the DPE [35,36] describes a
rectilinear dislocation with a flat core that moves on its glide
plane, under the action of a time-dependent applied shear stress
σa(t), assumed uniform on the glide plane [46].

Hereafter, x stands for the coordinate along the direction of
motion, and t is the time. Peierls-type models can be viewed as
models of the so-called cohesive-zone type [47] that assume
nonlinear elasticity in a region of vanishing width surrounding
the glide plane and linear elasticity elsewhere. The nonlinear
elastic force-balance law reads

σa(t) − f ′(η(t)) = 0, (1)

where η(t) represents a uniform relative material displacement
(“slip”) between both sides of the glide plane, and −f ′(η) is the
“pullback” force that binds together, under shear deformation,
the two atomic planes separated by a distance d that surround
the glide plane. This force, of lattice origin, derives from
the cohesive potential f (η) of periodicity the Burgers vector
modulus b, often identified with the GSF energy potential [30].
In this paper, calculations are made with the usual Frenkel sine
force

f ′(η) = σth sin(2πη/b), (2)

where, with μ the shear modulus,

σth = max
η

f ′(η) = μb

2πd
, (3)

is the theoretical shear stress [33]. When η is small, Eqs. (1)
and (2) reduce to a linear elasticity law σa = 2με where
ε = η/(2d) represents the elastic shear strain [33]. We call
ηe the uniform “background” solution of Eqs. (1) and (2),
namely,

ηe = b

2π
Arcsin(σa/σth) (|σa| � σth), (4)

which describes purely elastic response. It saturates at ±b/4
for σa = ±σth. In presence of a single dislocation of Burgers
vector b, the slip becomes inhomogeneous. We write it η(x,t).
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It differs from ηe(t) by the quantity

η̃(x,t) ≡ η(x,t) − ηe(t), (5)

which characterizes the dislocation and stands as a local
Burgers vector component. The field η̃ (or η) is the unknown of
the problem. For a single dislocation coming from x = −∞,
boundary conditions are η̃(−∞,t) = b and η̃(+∞,t) = 0. We
define the (signed) dislocation density as

ρ = ∂η̃/∂x. (6)

Whereas the usual definition of the density in the Peierls model
is ρ = ∂η/∂x, both definitions are equivalent here since ηe is
uniform. Equation (6) introduces a slight modification with
respect to previous work [24,35] and is further commented at
the end of this section.

The DPE that determines η(x,t) is a nonlinear integro-
differential equation. We write it for convenience as the
dynamic equilibrium equation

F(x,t,[η]) = 0, (7)

where

F(x,t,[η]) = ση(x,t) + σD(x,t) + σa(t) − f ′(η(x,t)) (8)

is the total force acting on the dislocation. The term σD is a
phenomenological drag force [48] written as [13]

σD(x,t) = −α
μ

2cS

∂η̃

∂t
(x,t), (9)

where cS is the shear wave speed, the longitudinal wave speed
being written cL hereafter. The dimensionless friction parame-
ter α embodies various drag mechanisms of nonradiative origin
(e.g., Ref. [33] p. 209), among which phonon drag is the main
contributor at usual temperatures [17]. In order to simplify the
writing of Eq. (53a) below and like, α is defined here as twice
the α coefficient of Refs. [15,24]. As it does not act on ηe(t),
this force can be termed “viscoplastic.”

The term ση is the (retarded) dynamic stress induced by
the dislocation [49]. As will be seen below, it stands for
the negative of the inertial self-force on the dislocation. Its
expression stems from linear elasticity theory [24,35,36].
Setting �x = x − x ′ and �t = t − τ , it reads

ση(x,t) = −μ

π

∫
dτ dx ′ K(�x,�t)ρ(x ′,τ ) − μ

2cS

∂η̃

∂t
(x,t),

(10)

where the kernel K depends on the character of the disloca-
tion. It accounts for in-plane wave-propagation effects, and
for out-of-plane acceleration-radiation (i.e., Bremsstrahlung)
losses [50]. The “local” term in (10), proportional to ∂η̃/∂t ,
represents another sort of out-of-plane velocity-dependent
radiative losses. Apparently having been first noticed in
the context of dynamic crack-motion theory [51], it was
independently rediscovered in the context of the DPE by the
author [35]. Albeit superficially dissipativelike and of the same
form as the drag term (9) it is nonphenomenological, and
uniquely associated to K . It compensates for a contribution
emanating from the latter in the equal-time limit �t → 0
[24,35,36]. As it remains operative in steady motion, it should

not be attributed the character of an acceleration/braking
radiation term.

With the appropriate expression of K , Eq. (10) applies to
screw dislocations, or to edge dislocations of the “glide” type.
For edge dislocation components of the “climb” type [52]
the prefactor of the “local” loss term differs from the one
in (10) [35,53]. For brevity, climb edge dislocations are not
considered further hereafter.

As has been shown in Ref. [24], kernel K is related to the
steady-state quasimomentum function p(v) of the dislocation
where v is a velocity [20,23,54], by

K(x,t) = θ (t)

2w0
lim
ε→0

e−ε/t

t2
p(x/t), (11)

where

w0 = μb2/(4π ) (12)

is a characteristic line energy density, and θ is the Heaviside
function. The factor e−ε/t regularizes the approach of t = 0.
Included here only for definiteness, it is needed when dealing
with Volterra (zero-width core) dislocations but could be
omitted in the present problem [24]. A slight abuse of language,
repeated hereafter, has been committed in writing (11) (see
Note [55]). For a screw dislocation, p(x/t) is a locally
integrable function; for an edge dislocation, one of its terms
contains a “finite part” prescription [24].

For uniform motion at velocity v under constant stress,
Eq. (7) written in a co-moving Galilean frame reduces to [35]

−A(v)

π

∫
dx ′

x − x ′
∂η

∂x
(x ′) + Bα(v)

∂η

∂x
(x ′) + σa = f ′(η),

(13)

where Bα(v) = B(v) + α(μ/2)v/cS, and where the integral
is defined as a principal value at x ′ = x. This equation, first
proposed by Weertman, who determined the functions A(v)
and B(v) [13,14], has more recently [with Eq. (2)] been
revisited by Rosakis under the name “model I” [15].

The developments below rely on the availability of an
explicit solution to Eq. (13). Such a solution is known when
σa is uniform and |σa| � σth [15], which is why we restrict
ourselves to such loadings. However, writing down the DPE
with position-dependent σa(x,t) is feasible, provided one
adheres to definition (6) of the dislocation density rather than to
the usual one. Under nonuniform σa , the background solution
ηe becomes non uniform as well by Eq. (4), so that defining
ρ as in Eq. (6) ensures that ση is only due to the dislocation
density, and possesses no spurious contribution from ηe.

III. COLLECTIVE VARIABLES FROM
D’ALEMBERT’S PRINCIPLE

A. Method

We know of no exact method of solution for the DPE.
While multiple-dislocation solutions most certainly exist (just
as Nabarro’s dipole in statics [32]), the following application
of the collective-variable method allows us to construct an
approximate solution in the restricted subspace of single-
dislocation solutions.
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We start by reshuffling the degrees of freedom of η by
writing it as

η(x,t) ≡ η0(x,t) + �η(x,t), (14)

where η0 is a single-dislocation “mean-field” ansatz, and �η

is the residual. Likewise, we write the dislocation density as

ρ(x,t) = ρ0(x,t) + �ρ(x,t) (15)

where ρ0 = (∂η0/∂x) and �ρ = (∂�η/∂x). According to the
general principles of the CV approach, the ansatz must be of a
form consistent with the steady-state limit of the field equation
under study. We take therefore [24]

η0(x,t) = ηe(t) + b

π

[
π

2
− Arctan

2(x − ξ (t))
a(t)

]
, (16)

where ηe is given by Eq. (4). The dislocation position along the
x axis, ξ (t), and width, a(t), stand as CVs for which governing
equations are sought. In the steady state where a is a constant,
and in the co-moving frame where x − ξ = x − vt is replaced
by x, this ansatz solves Eq. (13) for nonsupersonic velocities
(i.e., |v| < cS for screws, and |v| < cL for edges) [15], under
conditions that connect a, v, and σa , to be retrieved in
Sec. IV D. It should be noted that (16) describes a dislocation
with negative density ρ0. Calculations of a similar spirit
have previously been carried out with a different formalism
on a lattice dislocation model—but with fixed width, the
residual being further decomposed into phononlike degrees
of freedom [39].

By d’Alembert’s principle [56], a weak form of Eq. (7)
is obtained by requiring the virtual work to vanish for
instantaneous variations δη(x,t):

δI(t,[η]) =
∫

dx F(x,t,[η]) δη(x,t) ≡ 0. (17)

The main governing equations for �η and the CVs simply
follow from replacing in (17) the field η by its parametrization
η0 + �η, and by writing the variation δη(x,t) in terms of the
independent variations δ�η(x,t), δa(t), and δξ (t). Setting

ρ1(x,t) = 2

a(t)
[x − ξ (t)]ρ0(x,t), (18)

one obtains

δη = δ�η − ρ0 δξ − ρ1
δa

a
. (19)

Employing this expression in δI and zeroing each varia-
tion yields the following coupled equations of motion, ex-
pressed for convenience using the bracket notation 〈f1|f2〉 =∫

dx f1(x)f2(x), where f1,2 are arbitrary functions:

F(x,t,[η0 + �η]) = 0, (20a)

〈ρi |F([η0 + �η])〉 = 0, i = 0,1. (20b)

Equation (20a) determines �η given the CVs, whereas the
set (20b) provides governing equations for the CVs given
the residual �η. Equation (20a) is nothing but the DPE (7),
in which η has been substituted by η0 + �η. On the other
hand, Eqs. (20b) are projections of (20a) onto ρ0 = −∂ξη0

and ρ1 = −∂aη0. Quite generally, in the projector approach,
the basis functions appear as derivatives of the ansatz in

the collective coordinates [41]. The above derivation by
d’Alembert’s principle makes this obvious. Definition (16) of
η0 moreover implies the orthogonality property 〈ρ0|ρ1〉 = 0.

To ensure equivalence between Eqs. (20) and the DPE,
the overall number of degrees of freedom must be preserved.
Therefore, constraints must be imposed to relate �η to a(t)
and ξ (t). Equations (20a) and (20b) are not yet usable, as they
are unconstrained. The constraints are deduced [41,42] from
minimizing over ξ and a the quadratic norm of the residual [57]

N =
∫

dx �η(x,t)2 =
∫

dx [η(x,t) − η0(x,t ; a,ξ )]2, (21)

where we have explicitly indicated the dependence of the
ansatz in the CVs. Differentiating N with respect to the CVs
leads to the following constraints, to be obeyed at all times:

Ci(t) ≡ 〈�η|ρi〉 ≡ 0, i = 0,1. (22)

We shall assume that the initial state is either rest, or more
generally a steady state at constant velocity v [for which
ξ = vt and a can be determined from the functions A(v) and
Bα(v); see (53a)]. Then ρ0(x,t) is the exact solution at t = 0.
Consequently, �η = 0 and Eqs. (22) are trivially satisfied at
t = 0. To enforce them at later times, it suffices to require their
time derivative (denoted with a dot) to vanish, namely, Ċ0,1 ≡
0 [42]. This provides the following relationships between the
first time derivative of �η(x,t) and that of the CVs:

〈ρi |∂t�η〉 + 〈∂aρi |�η〉ȧ + 〈∂ξρi |�η〉ξ̇ = 0, i = 0,1.

(23)

In short, the procedure to write down the constrained form
of Eqs. (20a) and (20b) is as follows (see Appendix A for
details). Calling “passive” in some equation a variable with no
time derivative thereof involved, the principle is to make �η

“passive” in the equations for the CVs, and to make the CVs
“passive” in the equation for �η. To achieve this, one expresses
in (20a) in terms of ∂t�η the time derivatives of the CVs arising
from ∂tη0; conversely, in Eq. (20b), one expresses 〈ρi |∂t�η〉
in terms of the time derivatives of the CVs. These substitutions
are carried out by means of (23). This procedure is adequate
to equations involving only first-order time derivatives such
as the DPE. Were higher-order derivatives present, further
substitutions would be needed, differentiating Eq. (23) with
respect to t to obtain the necessary relationships [41].

In the rest of the paper, we consider Eq. (20b) only to leading
order in �η, leaving to further work the study of the residual
and of its influence on the CVs. Then, constraints (23) and
Eq. (20a) are irrelevant (see Appendix A) and the equations
reduce to

〈ρ0|F[η0]〉 =
∫

dx ρ0 F[η0] = 0, (24a)

〈ρ1|F[η0]〉 =
∫

dx ρ1 F[η0] = 0. (24b)

Equation (24a) has been studied in Ref. [24] where,
following Eshelby [22], it was postulated (rather than derived
as above). By contrast, Eq. (24b) has not previously been
considered for dynamic dislocation motion. Since F is a stress
and ρ0 is a Burgers “charge” density, Eq. (24a) represents
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a dynamic force balance equation. Likewise, Eq. (24b)—a
virial-type equation—expresses a dynamic energy balance.

B. Comments

Some general comments are in order, since Boesch et al.’s
systematic CV theory was developed in the framework of
Lagrange-Hamilton dynamics (LHD) [41,42]. As such, the
original approach is well suited to propagating kink models
such as the sine-Gordon one, or Frenkel-Kontorova’s [44,58],
which are one-dimensional from the outset and admit a
Hamiltonian [58]. By contrast (see Introduction) the DPE
results from a one-dimensional reduction of a two-dimensional
elastodynamic problem, which makes it history dependent and
dissipative, and elude standard Hamiltonian dynamics. This
prompted us to use d’Alembert’s priciple instead. To make the
connection with the original CV method, we note first that
there is of course complete equivalence between d’Alembert’s
principle and standard LHD in nondissipative cases where the
latter approach can be used: starting from kinetic and potential
energies, LHD provides governing force-balance equations
that can be cast in the variational form of d’Alembert’s
principle as in Eq. (17); conversely, given nondissipative and
non-history-dependent field equations, Hamilton’s variational
principle can be logically deduced from d’Alembert’s princi-
ple [56]. However, d’Alembert’s principle is more fundamental
in the sense that it is operative without any restriction [56].
Second, Boesch et al. showed within LHD that using the
constraints in the form of total time derivatives as in Eq. (23)
alleviates the need for Lagrange multipliers, which we need
not use either. Indeed, adding such constraints by means of
Lagrange multipliers to some hypothetical Lagrangian would
leave the Euler-Lagrange equations of motion unchanged, the
constraints acting as an ignorable null Lagrangian [42]. Thus
the same governing equations for the CVs and the residual as
with d’Alembert’s principle would be obtained, the constraints
being put into action in both cases as above, namely, in a
second step by substitutions in the governing equations. This
shows that the present approach is fully consistent with that
by Boesch et al., while being usable with the DPE for which
no Lagrangian is available, mainly due to the “local” term
in Eq. (10).

IV. EQUATIONS OF MOTION

A. Governing equation for ξ (t)

We first briefly recall the explicit form of Eq. (24a) for
ξ , already obtained in Ref. [24], which we cast hereafter in
a slightly different form. For notational consistency with the
latter work we drop from now on the subscript 0 in η0(x,t) and
ρ0(x,t) unless otherwise stated and denote these quantities
by η(x,t) and ρ(x,t), keeping in mind that they refer to
ansatz (16). Compatibility with the latter requires us to restrict
ourselves to homogeneous stress conditions σa(x,t) ≡ σa(t).
Indeed, ηe(t) can be independent of x only if σa is. Introduce
the complex position-width coordinate (i = √−1)

ζ (t) = ξ (t) + i
a(t)

2
, (25)

and the mean complex “velocity” between instants τ and t

v(t,τ ) = ζ (t) − ζ ∗(τ )

t − τ
, (26)

where the star denotes the complex conjugate. In Ref. [24],
Eq. (24a) was reduced to

− 2 Re
∫ t

−∞

dτ

�t2
p(v) + κ

2w0

cSa(t)
ξ̇ (t) − bσa(t) = 0, (27)

where �t = t − τ , and κ = 1 + α. The quantity cS is the shear
wave velocity, v stands for v(t,τ ), and p(v) is the quasimomen-
tum function relevant to screw or edge dislocations introduced
in Eq. (11). The equal-time limit of p(v) is purely imaginary
if a 
= 0, of value

p(v(t,t)) = lim
τ→t−

p(v(t,τ )) = p(+i∞) = i
w0

cS
. (28)

More precisely,

p(v(t,τ )) = p(v(t,t)) + O(�t2). (29)

To underline the connection with Eq. (37) below, it is
appropriate to introduce the quasimomentum variation

�p(t,τ ) = p(v(t,t)) − p(v(t,τ )), (30)

and write (27) as

2 Re
∫ t

−∞
dτ

�p

�t2
+ κ

w0

cS

2

a
ξ̇ − bσa = 0, (31)

where ξ̇ , a, and σa are evaluated at instant t . Because of
the Re operator, this modification is only a “cosmetic” one.
Introducing next the mass function

m(v) = dp

dv
(v), (32)

and integrating by parts the first term of (31), the boundary
contribution at τ = −∞ vanishes trivially, while that at τ = t

vanishes owing to (29). One thus arrives at the governing
equation for ξ in “mass form,”

2 Re
∫ t

−∞

dτ

�t
m(v)

dv

dτ
+ κ

w0

cS

2

a
ξ̇ − bσa = 0. (33)

Its most important component, the self-force, is the sum of the
first two terms with κ = 1. It has been studied in Ref. [24].

B. Governing equation for a(t)

Turning to (24b), we evaluate in succession each contri-
bution to (2/a)

∫
dx (x − ξ )ρ F , with F read from Eqs. (8)

and (9). Consider first

2

a(t)

∫ +∞

−∞
dx [x − ξ (t)]ρ(x,t)[σa(t) − f ′(η(x,t))]

= bσth

√
1 − σa(t)2/σ 2

th, (34)

where expression (4) has been used. Next,

2

a(t)

∫
dx [x − ξ (t)]ρ(x,t)

∂η̃

∂t
(x,t) = − b2

2π

ȧ(t)

a(t)
. (35)
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Finally, one finds that, for both screw and edge,

− 2

a(t)

μ

π

∫
dx dx ′ [x − ξ (t)]ρ(x,t)K(x,t |x ′,τ )ρ(x ′,τ )

= − 2

�t2
Im �p(t,τ ). (36)

The calculation leading to (36) closely follows the Fourier-
transform approach detailed in Ref. [24] and uses the integrals
provided in that reference. Gathering terms yields the govern-
ing equation for a(t),

−2 Im
∫ t

−∞
dτ

�p

�t2
+ κ

w0

cS

ȧ

a
+ bσth

√
1 − σ 2

a

σ 2
th

= 0, (37)

or, in “mass form,” after integrating by parts, and changing the
sign

2 Im
∫ t

−∞

dτ

�t
m(v)

dv

dτ
− κ

w0

cS

ȧ

a
− bσth

√
1 − σ 2

a

σ 2
th

= 0. (38)

C. Combined governing equation for ζ (t)

Equations (33) and (38) are seen to constitute the real and
imaginary parts of one single complex EoM for ζ (t), namely,

2
∫ t

−∞

dτ

�t
m(v)

dv

dτ
+ κ

w0

cS

ζ̇ ∗

Im ζ
= −i bσthg

(
σa

σth

)
, (39a)

where

g(x) = −
√

1 − x2 + ix (|x| � 1). (39b)

The generalized (complex) self-force associated to ζ (t) is

Fζ (t) = 2
∫ t

−∞

dτ

�t
m(v)

dv

dτ
+ w0

cS

ζ̇ ∗

Im ζ
. (40)

The dislocation position and half-width are deduced from
ζ (t) as ξ (t) = Re ζ (t) and a(t)/2 = Im ζ (t). Equation (39a)
is equivalent to ∫

dx (x − ζ ∗)ρ0 F[η0] = 0, (41)

which follows from combining (24a) and (24b).
EoM (39a) is a retarded integro-differential functional

equation of a type unprecedented for dislocations. The oc-
currence of complex numbers allows it to deal with faster-
than-wave motion without any modification. This technical
simplification finds its origin in the simple Lorentzian form
of the ansatz density ρ0(x,t), which has one pair of conjugate
poles x = ξ (t) ± ia(t)/2. However, the physical significance
of the complex-valued nature of the EoM is not obvious,
although a connection between imaginary parts and dissipation
exists (next section). The presence of the “mean velocity” v

instead of the instantaneous velocity [23] in the mass kernel is
more transparent, as it indicates that retarded self-interactions
are mediated by elastic waves between past emission times τ

at position ξ (τ ) and current time t at position ξ (t) [21,22,24].

D. Steady motion

We examine next the steady-state form of (39). It is obtained
by assuming that ζ (t) = vt + i(a/2), where the dislocation

velocity v and the dislocation width a are constant. Then,

v(t,τ ) = v + i
a

�t
, (42a)

dv

dτ
(t,τ ) = i

a

�t2
. (42b)

The integral in (39a) can be carried out exactly by changing
the integration variable into u = v(t,τ ), and by remarking that

m(v) = dp(v)

dv
= d2L(v)

dv2
, (43)

where L(v) is the steady-state Lagrangian built from the elastic
field of the dislocation [20,55]. While obviously a related
object, this quantity is not the Lagrangian function of the model
in the sense of Hamiltonian dynamics. In terms of u,

1

�t
= 1

ia
(u − v), (44)

so that

2
∫ t

−∞

dτ

�t
m(v)

dv

dτ
= 2

ia

∫ +i∞

v+i0+
du (u − v)

d2L

du2

= 2

ia

{
[(u − v)p(u)]i∞

v+i0+ −
∫ +i∞

v+i0+
du

dL

du

}
= 2

ia

{
lim

u→+i∞[(u − v)p(u) − L(u)] + L(v + i0+)

}
. (45)

The function W (v) = v p(v) − L(v) is the steady-state line
energy density [20,55], and it has been shown in Ref. [24] that
W (+i∞) = 0 for both screws and edges. Invoking, moreover,
Eq. (28) leads to

2
∫ t

−∞

dτ

�t
m(v)

dv

dτ
= 2

ia
L(v + i0+) − w0

cS

2

a
v. (46)

The steady-state expression of the self-force (40) follows as

Fζ (v) = 2

ia(v)
L(v + i0+). (47)

The phenomenological drag term can be included in an
augmented Lagrangian defined as

Lα(v) = L(v + i0+) + iαw0
v

cS
. (48)

The real-valued functions A(v) and Bα(v) in Eq. (13) are
related to the real and imaginary parts of Lα(v) by the
identity [24]

Lα(v) = 2w0[−A(v) + iBα(v)]. (49)

Nonzero values of Im L(v + i0+) arise for transonic (cS <

|v| < cL, for edges only) or supersonic (|v| > cS for screws;
|v| > cL for edges) velocities in connection with dissipation
in Mach fronts. Overall, steady-state dissipation processes are
described by Im Lα .

Since κ = 1 + α, the steady-state form of the left-hand side
of (39a), namely, the sum of the generalized self-force (47) and
the drag force, reads

Fα(v) ≡ 2Lα(v)

ia(v)
, (50)
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whereby EoM (39a) reduces to

Fα(v) = −i b σthg

(
σa

σth

)
. (51)

Combining (12) and (3) yields the identity bσth/w0 = 2/d,
which with (50) brings Eq. (51) to

d

w0
Lα(v) = a g

(
σa

σth

)
. (52)

Remarking that |g(x)| = 1 by (39b), the width a(v) follows
from taking the modulus of (52):

a(v) = d

w0
|Lα(v)|. (53a)

Then, (52) reduces to a condition of equality between the
complex arguments of both sides, which provides the stress-
velocity relationship

σa = σth sin Arg Lα(v) (cos Arg Lα(v) � 0). (53b)

Equations (53a) and (53b) are a reformulation, in complex
Lagrangian form, of the steady-state kinetic relations of
Rosakis’s model I [15]. The above shows that Eq. (39a)
stands as a leading-order approximation to the fully dynamic
extension of this model. In Ref. [24], for lack of the governing
equation (38), an instantaneous relationship a(t) ≡ a(ξ̇ (t))
with a(v) given by (53a) was assumed in order to comple-
ment (33)—using different notations. Employing (39a) avoids
this approximation, and produces Eqs. (53a) and (53b) as
particular steady-state consequences. Figure 1 represents, for
an edge dislocation, the velocity/stress relationship deduced
from inverting (53b), where we introduce the denominations
“stable subsonic” (SS), “stable transonic” (ST), and “unstable
transonic” (US) branches, to be used hereafter. The unstable
branch is characterized by dv/dσa < 0 [15].

FIG. 1. (Color online) Edge dislocation. Velocity/stress branches
of the steady-state relationship (53b) for α = 0.1 and cL = 2cS. Solid
black: stable branches; dashed grey: unstable branch. Dot-dashed
(red): linear regime (56). Horizontal lines: limiting velocities cL,
cS, and Rayleigh velocity cR. The interval (cR,cS) constitutes a
velocity gap.

The content of Eq. (52) is as follows. The dislocation core
is a region of high atomic disregistry akin to a stacking fault
spread over the width a. In expanded form, and setting for
brevity s = σa/σth, Eq. (52) reads

2w0[−A(v) + iBα(v)] = w0
a

d
(−

√
1 − s2 + is), (54)

in which (a/d)w0

√
1 − s2 represents the misfit energy cost of

the core, given the application of σa . Moreover, by definition
of the Lagrangian function, 2w0A(v) is the excess elastic strain
energy, over the displacement kinetic energy, at velocity v. De-
noting by cR the Rayleigh velocity [root of A(v) for an edge dis-
location], the restriction in (53b) constrains this energy differ-
ence to be non-negative, and forbids edge dislocations to move
steadily in the velocity gap (cR,cS) (see Fig. 1), the only interval
where it is negative. The excess energy determines the misfit
energy cost. Moreover, the imaginary part of Eq. (54) provides
the mobility law as an equilibrium equation between the
Peach-Koehler force bσa and the overall drag force, in the form

bσa = 2(db/a)Bα(v) = (db/a) Im Lα(v)/w0. (55)

The prescription +i0+ in Eq. (48) has the following mean-
ing. For the dislocation to move in the direction of the applied
stress, v must be of the sign of σa. Thus, by Eqs. (48) and (55),
Im L(v) must be an odd function. The infinitesimal quantity
+i0+ handles the branch cut of the square-root “relativistic”
factors in L(v) for transonic or supersonic motion to fulfill this
condition. Its introduction finds its origin in the core width
being nonzero, which can therefore be considered a necessary
requirement for transitions to faster-than-wave states.

For small applied stress and velocity (Fig. 1), “relativistic”
effects and radiative drag are negligible and the mobility
law (55) reduces to the well-known linear law

B̃v = bσa, (56)

where B̃ is the usual drag coefficient [not to be confused with
B(v)] expressed in units of Pa s. In terms of α, B̃ reads

B̃ ≡ 2w0

a(0)cS
α = μb2

2πa(0)cS
α, (57)

where a(0) is the core width at rest. For a screw (respectively,
edge) dislocation Eq. (53a) gives a(0) = d [respectively,
d/(1 − ν), where ν is the Poisson ratio]. Both b and the
interplane distance d depend on the slip system [33]. Use
of (57) with values of B̃ from, e.g., atomistic simulations [5]
at 300 K on Al and Ni, provides values of α of typical order
of magnitude 10−2.

V. LOCAL ANALYSIS OF THE SELF-FORCE

Further insight into the generalized self-force (40) is
obtained by carrying out an expansion of the integrand near the
current time τ = t . To this aim, we assume that accelerated or
decelerated motion begins at time τ = 0 and position ξ (0) = 0,
following the initial steady-state motion (possibly rest) from
τ = −∞ to τ = 0 with constant velocity ζ̇ = vi and core width
ai. The force is split as

Fζ (t) = F<
ζ (t) + F>

ζ (t), (58)
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where, for t > 0,

F<
ζ (t) = 2

∫ 0

−∞

dτ

�t
m(v)

dv

dτ
, (59a)

F>
ζ (t) = 2

∫ t

0

dτ

�t
m(v)

dv

dτ
+ w0

cS

ζ̇ ∗

Im ζ
. (59b)

The term F<
ζ (t) is computed in closed form by the method

of Sec. IV D. One obtains [24]

F<
ζ (t) = 2

t

[
p(v<(t)) − L(v<(t)) − L(vi + i0+)

v<(t) − vi

]
, (60a)

where

v<(t) ≡ 1

t

[
ζ (t) + i

ai

2

]
= ξ (t)

t
+ i

[a(t) + ai]

2t
. (60b)

The series expansion of F>
ζ (t) proceeds from

ζ (τ ) = ζ (t) − ζ̇ (t)�t + 1
2 ζ̈ (t)�t2 − 1

6

...
ζ (t)�t3 + O(�t4).

(61)

Introducing

u(t,τ ) ≡ ζ̇ ∗(t) + i
a(t)

�t
, (62)

one finds

v(t,τ ) = [ζ (t) − ζ ∗(τ )]/�t

= u(t,τ ) − 1
2 ζ̈ ∗(t)�t + 1

6

...
ζ (t)∗�t2 + O(�t3),

(63a)

whence

dv

dτ
(t,τ ) = ia(t)

�t2
+ 1

2
ζ̈ ∗(t)�t − 1

3

...
ζ

∗
(t)�t + O(�t2).

(63b)

Expanding next m(v) around v = u yields, with ζ = ζ (t)
and time derivatives of ζ ∗ evaluated at t :

2m(v) = 2m(u) − m′(u)ζ̈ ∗�t

+ [
1
3m′(u)

...
ζ

∗ + 1
4m′′(u)ζ̈ ∗2

]
�t2 + O(�t2).

(64)

Using the above expansions provides, with a = a(t),

2

�t
m(v)

dv

dτ
= 1

�t3

{
2ia m(u)�0 − ia m′(u)ζ̈ ∗�t �1

+
[
m(u)ζ̈ ∗ + i

a

3
m′(u)

...
ζ

∗

+ i
a

4
m′′(u)ζ̈ ∗2

]
�t2 �2

}
+ O(�t0�3), (65)

where a bookkeeping variable �, to be taken as � = 1 in the
final result, has been introduced in the numerator to keep track
of the expansion order of the terms.

The expansion of F>
ζ follows from integrating each term

of (65) over τ from τ = 0 to τ = t−. As u(t,τ ) is of the
form (42a) integrations can be carried out as in the previous
section by using u as an integration variable on a path in the

upper complex half-plane, going from u = v>(t) to u = +i∞,
where

v>(t) ≡ ζ̇ ∗(t) + i
a(t)

t
. (66a)

The result reads, with v> = v>(t),

F>
ζ (t) = 2

ia

[
L(v>) − i

a

t
p(v>)

]
�0 + m(v>)ζ̈ ∗�1

+
[
M (0)

(
ζ̇ ∗,

a

t

)
ζ̈ ∗ + i

3
a M (1)

(
ζ̇ ∗,

a

t

)
...
ζ

∗

+ i

4
a M (2)

(
ζ̇ ∗,

a

t

)
ζ̈ ∗2

]
�2 + O(�3), (66b)

where the following functions, defined for y > 0 and v an
arbitrary complex number, have been introduced:

M (0)(v,y) =
∫ +∞

y

dz

z
m(v + iz), (66c)

M (k)(v,y) = ∂kM (0)

∂vk
(v,y) (k � 1). (66d)

To understand F>
ζ and F<

ζ , consider an evolution between
two steady states of different velocities. In the initial and final
states, different stress fields surround the dislocation. In the
course of motion, the “old” field is replaced by the “new” one,
which occurs via wave emission from the dislocation. Thus the
motion can be viewed as simultaneous steps of destruction of
the old field, and of creation of the new one. Quite generally,
the “destruction” contribution is the part of the integral from
τ = −∞ up to the instant where accelerated motion begins,
taken as τ = 0 by convention. This is already apparent at the
level of the field ση, e.g., for a Volterra screw dislocation [see
Eq. (9) in Ref. [24]]. In the CV framework, this destruction
contribution is represented by F<

ζ (t). It is purely kinematic,
since Eqs. (60) depend on ξ (t) and a(t) but not on their
derivatives. However, (60a) has an “effective” inertial content
since for v � vi,

2

t

[
p(v) − L(v) − L(vi)

v − vi

]
� m(vi)

v − vi

t
, (67)

where (v − vi)/t is akin to an acceleration.
The “creation” part is described by F>

ζ (t). In (66b), the
leading term involves velocities and a(t) but not accelerations.
In the steady-state limit ξ̇ → v at large times, it reduces to
2L(v + i0+)/(ia), namely, expression (47). Dynamic tran-
sients are accounted for by the higher-order terms, which
vanish in the latter limit. Among them is a Newtonian-like
inertial term of the form meff ζ̈ ∗, with effective mass

meff(ξ̇ ,a,ȧ,t) = m(v>) + M (0)

(
ζ̇ ∗,

a

t

)
, (68)

obtained by combining terms of order �1 and �2. It is noted
that integral (66c) diverges logarithmically as y → 0, so that
M (0)(ζ,a/t) displays at large times the well-known ln t inertial
behavior [22] (see also, e.g., Ref. [24]). The remaining terms of
order �2 involve the so-called jerk (third time derivative of mo-
tion), and the acceleration squared. The latter nonlinear term is
a consequence of “relativistic-like” effects. Notwithstanding
imaginary parts, their sum represents the elastodynamic
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equivalent of the Lorentz-Abraham reaction-radiation force
on charged classical particles in electrodynamics [59].

The above suggests another decomposition of Fζ , namely,

Fζ (t) = F
dyn
ζ (t) + F adia

ζ (t), (69)

where the “dynamic” part F dyn
ζ gathers the Newtonian-like and

higher-order terms in F>
ζ , and where the “adiabatic” part,

F adia
ζ = 2

t

[
p(v<) − p(v>) − L(v<) − L(vi + i0+)

v< − vi

]
+ 2

ia
L(v>), (70)

is the sum of F<
ζ and of the O(�0) term of F>

ζ . This pure
relaxation term differs from its steady-state limit (47) by an
O(1/t) correction, interpreted as a manifestation of the so-
called “afterglow” effect—a distinctive feature of problems
involving moving line sources: as time increases any point
along the accelerated line receives spherical waves emitted in
the past by increasingly distant points on the line, which leads
to a tail in the local response [60]. Expression (70) will be
employed for analysis in the next section.

What has just been said applies as well to Fα(t), the force
with drag term included, provided one replaces everywhere
L(v) by Lα(v), and p(v) by pα(v) = dLα(v)/dv = p(v) +
iw0/cS. Only the O(�0) term in F>

ζ is modified by this
substitution: m(v) is unchanged since the second derivative
of Lα(v) does not depend on α, and F<

ζ is unchanged as well
because terms linear in the velocity in L cancel out in (60a).
Hence the destruction of the “old” field is drag independent.

One could be tempted to use a low-order truncation of
expansion (66b) as a cheap alternative to (59b). However, there
is a catch. The functions L(v), p(v), and m(v) involve square
roots, of the type (1 − v2/cS)1/2 for the screw dislocation,
and (1 − v2/c2

S)1/2 and (1 − v2/c2
L)1/2 for the edge [24]. Thus,

employing principal determinations, the functions L(v), p(v),
and m(v) of the complex variable v have branch cuts on
the (overlapping) semi-infinite intervals |v| > cS and |v| > cL

of the real axis. In (59b), v is by definition of positive
imaginary part, so that these branch cuts are never crossed:
no discontinuity arises in the integrand, and (59b) causes
no trouble. This not true any more with v> in (66a) whose
imaginary part a/t − ȧ/2 can be of any sign, implying
the possibility of crossing branch cuts in expansion (66b).
Since physics requires continuity over time, we need to remove
the branch-cut discontinuities of L, p and m by analytic
continuation. This is achieved by gathering the Riemann sheets
from the complete set of determinations of the square roots,
which makes L(v), p(v), and m(v) multivalued. Then, passing
from one sheet to another in the course of evolution prevents a
simple computation of M (0)(ζ̇ ∗,a/t), which turns out to be
path-dependent in the complex plane. In our opinion, this
complication disqualifies expansion (66b) as an alternative
to Eq. (59b).

VI. NUMERICAL RESULTS

This section presents some numerical solutions of
the EoM (39) obtained with the algorithm described in

FIG. 2. (Color online) Loading types used: (a) single-step load-
ing from rest, (b) single-step loading from steady-state with nonzero
velocity, and (c) double-step loading from rest.

Appendix B. We apply it to an edge dislocation subjected
to three different kinds of stress loadings (Fig. 2). In most
of the calculations, a ratio cL/cS = 2 is imposed between
longitudinal and transverse wave speeds. This corresponds
to a Poisson ratio ν = 1/3 typical of most metals, and to
cR � 0.93 cS. For α = 0, the SS branch in Fig. 1 is degenerate
at σa = 0 with undetermined velocity [15]. So, α � 10−4

is used hereafter. Our aim being to delineate some general
features of the EoM, we allow for unrealistically high values of
α. The natural time unit is τ0 = d/cS, namely, the characteristic
propagation time of a shear wave across the interplane distance.

A. Single-step loading from rest and dynamic
subsonic-transonic transition

The first case of interest is that of single-step loading from
rest, where a stress σa is instantaneously applied at t = 0 and
kept constant afterwards [Fig. 2(a)].

1. Overview

Figure 3 represents velocity-time plots for α near zero,
for increasing stresses in the range 0.1 � σa/σth � 0.9 (from
bottom to top), with emphasis around a special stress value
to be analyzed shortly. After an initial velocity jump at
t = 0+ [21,22], the dislocation accelerates smoothly over a
time interval of order τ0. For low σa , motion is overdamped,
whereas moderate stress results in damped core-induced
velocity oscillations, akin to those observed in atomistic
simulations by Olmsted et al. [5]. In the initial acceleration
stage, and for high applied stress, a velocity peak culminates
in the transonic or even supersonic regimes, with no particular
signal at wave-speed values. Past the initial stage subsequent
evolution leads to either subsonic velocities bounded upwards
by cR, or transonic velocities, as given by the steady-state
theory (Sec. IV D). Both types of motions are separated by a
dynamic critical stress σc(α).

The closer σa to σc, the longer the dislocation remains on
an unstable transonic plateau of slowly decreasing velocity
(Fig. 3). On this plateau, the core width grows as ln t

(Fig. 4), before the dislocation either quickly leaps to a faster
transonic state (black curves), or decays into the subsonic
range (grey curves) depending on whether σa ≶ σc. In both
cases, the core contracts rapidly during the transition. The
explanation resides in that the expanding dislocation stores
excess stacking-fault energy, to be released as it contracts,
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FIG. 3. (Color online) Single-step loading from rest. Velocity-
time response ξ̇ (t) of an edge dislocation subjected to increasing
stress levels σa (from bottom to top). Dotted (respectively, dashed)
black horizontal lines: shear and longitudinal (respectively, Rayleigh)
wave speeds. Dot-dashed red line: approximation to the plateau state
(see text).

either in the form of a velocity boost, or in the form of elastic
waves emitted as the shear Mach wavefront separates from the
decelerating dislocation. In the latter case, the dislocation may
almost stop, in agreement with observations made on atomistic
simulations [1,9], which has been interpreted as a consequence
of the backwards momentum push of the detaching front [1].

The response at higher α values is similar, except that
transients are further damped and that the asymptotic state is
reached sooner (not shown). The threshold σc(α), represented
in Fig. 5, is determined by a dichotomy search from the
asymptotic behavior. It is drag-dependent and defines a phase
boundary in the (α,σa) plane.

FIG. 4. (Color online) Core width-time response a(t) of an edge
dislocation subjected to instantaneously applied stresses σa close to
σc. Dot-dashed: empirical function y = 0.45 ln(4.65x), for compari-
son purposes.

FIG. 5. Critical stress σc vs drag coefficient α for single-step
loading from rest. The value at origin is σc(α = 0) � 0.415 σth.

The dynamics of the model is surveyed in Fig. 6 for
three drag coefficients α = 10−4 (a), 0.1 (b), and 0.5 (c), by
comparing transient velocities to steady states. The figures
display density maps of the velocities, obtained as follows.
Calculations for 76 stress values σa evenly spread in the
interval [0,σth], were run up to t = 100 τ0 to generate velocity
curves such as in Fig. 3. With time step δt small enough to
ensure good sampling, the obtained velocity sets vk = v(t =
kδτ ) were distributed into 300 equispaced bins as a normalized
frequency histogram [61]. In the figures, one such distribution
is plotted vertically in grey tones, for each σa . The whole
array makes up the density map. For α small, because of slow
relaxation, making meaningful comparisons with steady-state
curves supposes long-time runs, which has the drawback of
giving excessive weight to the vicinity of the asymptotic states.
Therefore, to bring local extrema of the time-velocity curves
into light, distributions are cut off at 0.005, which is the value
of the white regions of the maps, while the dominant grey tone
represents value 0.

The spread of the white region in the subsonic range
illustrates the slow character of relaxation towards asymptotic
states. At low drag and low driving stress, the subsonic
asymptotic state is far from being reached [Fig. 6(a)],
consistently with observations previously made on atomistic
simulations [9]. The lower envelope of the white regions
bends downwards as the critical stress is approached, and
represents the lowest velocities in Fig. 3. The white line of
transient states that “connects” the subsonic and transonic
stable branches represents the first local maximum of the
velocity observed in Fig. 3. Its presence indicates that σa is
high enough to make core-induced effects noticeable.

2. The transition as a delayed bifurcation

To study the nature of the transition, let us briefly leave the
full EoM. Here, we simply enrich the steady-state equation by
using, in a slightly modified form, the “adiabatic” contribution
to the self-force isolated in Sec. V. Thus we substitute to
Eq. (51) the equation

F̃ adia
α (v>,v<) = −i b σthg(σa/σth), (71a)
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FIG. 6. Single-step loading from rest, for t/τ0 � 100. From background grey (zero) to white (threshold), along the vertical axis, normalized
distributions of nonuniform velocities v = ξ̇ thresholded at 0.005 vs σa . Solid black (respectively, dashed white): stable (respectively, unstable)
steady states of Fig. 1. Vertical dashed line: critical stress σc. White arrow in (a): transient plateau state of Fig. 3.

where

F̃ adia
α = 2

t

[
p(v<) − pα(v>) − L(v<) − L(vi + i0+)

v< − vi

]
+ 2

ia
Lα(v>), (71b)

v< = v + i(a + ai)/(2t), (71c)

v> = v + ia/t. (71d)

The above force F̃ adia
α was obtained from empirically

modifying F adia
ζ in (70) in several ways, because F adia

ζ is
not much helpful as it stands. First, drag was added to F>

according to the remark closing Sec. V; next, expression (60b)
of v< was simplified by means of the approximation ξ (t)/t �
v, which neglects accelerations; finally, expression (66a) of
v> was simplified by taking ζ̇ ∗(t) � v, which neglects ȧ.
Equations (71) are solved for a(t) and v(t) as functions of
t and σa .

Results are shown in Fig. 7. By construction, the steady-
state velocity branches are retrieved for t = +∞, and Fig. 7(a)
depicts how they form. Keeping σa fixed, the solution v(σa,t) of
Eq. (71) is unique at small times. However, branch separation
takes place near t = 3.4τ0. Afterwards, the velocity either

turns subsonic or transonic depending on σa ≶ 0.41σth. So,
this approximation captures the correct stress threshold. The
“turning point” marked out by a dot in Fig. 7(a) slowly moves
down towards the unstable steady-state branch (dashed). Its
evolution with t is represented as the dot-dashed line in
Fig. 3, showing that it lies at the origin of the unstable
plateau. Parenthetically, we must indicate that—as useful as
it is—approximation (71) has pathologies. For instance, the
solutions for a(t) in Fig. 7(b) have several branches near
v � cR at small times, that coalesce just after t � 6.25τ0.

The S shape of the curves in Fig. 7(a) is typical of an
imperfect Hopf bifurcation [62] in which both the time and σa

act as control parameters. We note [Fig. 7(b)] that near to bifur-
cation time t = 3.4 τ0, at the bifurcation velocity v/cS � 1.2,
ȧ vanishes, consistently with our approximations. However,
Eq. (71) cannot reproduce the tunable delay observed in
Fig. 3. Therefore this delay must be caused by the inertial
terms that we neglected. The following picture emerges: so to
speak, the transition involves a slow, relaxationlike, process
that shapes the stage on which a faster but inertia-controlled
evolution takes place. Such delayed bifurcations [63], rather
common in physical and biological sciences, are the sub-
ject of intense research [64] subtended by a sophisticated

FIG. 7. (Color online) Simplified relaxation model, for cL = 2cS and α = 10−4. (a) Velocity/stress curves for times t/τ0 = 0.5, 1.5, 2.5,
4.3, 6.25, 10, 20, 60 (lighter to darker grey), t/τ0 = 3.4 (blue), and t/τ0 = 7 (red). (b) Width a(v,t) vs velocity v for t/τ0 = 0.5, 1, 2.5, 4, 10,
40 (lighter to darker grey) and t/τ0 = 6.25 (red). In (a) and (b), the dashed curve (green) is the steady-state solution.

054120-11



YVES-PATRICK PELLEGRINI PHYSICAL REVIEW B 90, 054120 (2014)

mathematical theory [65]. Hereafter, we limit ourselves to a
few basic observations, leaving formal characterizations to the
future.

3. Delay to bifurcation and Lyapunov exponent

Returning to the full EoM, the delay time to bifurcation,
denoted by td (σa,α), is extracted as follows. We first estimate
the threshold σc(α) with 15-digits accuracy for several values
of α. Setting σa equal to this estimate yields a reference
velocity curve vref(t ; σc,α) with a plateau longer than 40 τ0,
sufficient for our purpose. Next, the difference �v(t ; σa,α) =
v(t ; σa,α) − vref.(t ; σc,α) is computed for applied stresses
σa = σc(1 ± 2−i) close enough to σc (with i = 13, . . . ,40),
which produces plots of �v with longer and longer delays
before “lift-off.” To isolate the latter, assumed to be of expo-
nential form (see Fig. 3), time evolution is stopped at the first
inflexion of �v(t). The resulting data sets are fitted to the form

�v(t ; σa,α) � cS exp{λ(σa,α)[t − td (σa,α)]/τ0}, (72)

where the Lyapunov exponent, λ, and td are fitting parameters.
The resulting fits to (72) are indistinguishable to the eye
from the data. We find [Fig. 8(a)] that td has logarithmic

dependence in the distance to the critical stress, namely,

td (σa,α) � s0(α) + s1(α) ln ε(σa,α), (73)

where ε(σa,α) = |σa/σc(α) − 1|. Both coefficients s0(α)
[Fig. 8(b)] and s1(α) [Fig. 8(c)] depends quasilinearly on
α in the considered range. Moreover, λ(σa,α) tends to a
constant as σa approaches σc(α), and decreases away from
it with logarithmic corrections well represented by the
three-parameter expression

λ(σa,α) �
2∑

k=0

Ak(α)[ln ε(σa,α)]−k, (74)

where A0 = λ(σc,α) > 0 is of order one, and A1 and A2 are
negative of order 1 and 10, respectively [Fig. 8(d)]. All three
parameters increase mildly in a nonlinear way with α. Given
the arbitrariness of (74), this point is not elaborated further.
The dislocation is expelled from the plateau with greater
strength near the critical line, where exponent λ is the largest
(see Fig. 3). The results of Fig. 8, obtained for σa very close
to σc, do not depend on which side of σc the applied stress
is. The values indicated, computed with algorithmic time step
δt = τ0/20 (see Appendix B), slightly vary with δt while the
fitting forms remain valid.

FIG. 8. (Color online) Analysis of the delay to bifurcation (“plateau length”). Solid lines represent fits. (a) Delay td (σa,α) vs applied stress
σa for drag coefficients α = 0, 0.125, 0.25, 0.375, and 0.5 (from bottom to top) and fits by Eq. (73). (b) Intercept s0(α) and (c) slope s1(α) of
the fits in (a). (d) Lyapunov exponent λ(σa,α) vs applied stress for the values of α in (a), and fits by Eq. (74).
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FIG. 9. (Color online) Single-step loading from steady state with
nonzero velocity. For various values of α are represented drag-
dependent critical stress lines (CSL) in the plane (σ1,σ2). Pairs (σ1,σ2)
lying above (respectively, below) one particular CSL lead as t → ∞
to an asymptotic velocity state of the ST (respectively, SS) type. Both
cases where the initial velocity vi(σ1) lies either on the SS branch or
on the ST branch (see Fig. 1) are examined. Left: small-σ1 blow-up
of the main plot. CSLs are sampled as circles (black, α = 10−4),
squares (red, α = 10−2), left triangles (green, α = 0.1), or right
triangles (brown, α = 0.5). For CSLs relative to the ST branch of
initial velocities, only pairs (σ1,σ2) where σ1 lies at the right of
the corresponding vertical dashed line (that must be extended up to
σ2 = 1) are relevant.

B. Single-step loading from nonzero velocity

We next examine the effect of single-step loading from
σa = σ1 to σ2, the dislocation being now at negative times in an
initial state of finite steady velocity vi = v(σ1) > 0 [Fig. 2(b)].
Two possibilities arise, since this initial state can belong either
to the SS branch or—for σa large enough if α > 0—to the ST
branch of Fig. 1.

Figure 9 represents for some values of α the critical
stress line (CSL) that separates, in the plane (σ1,σ2), loading
conditions leading to subsonic asymptotic states from those
leading to transonic ones. The dislocation has constant
velocity on the diagonal where σ2 = σ1. Achieving an upwards
(respectively, downwards) velocity shift requires increasing
(respectively, decreasing) the applied stress. Hence subsonic-
to-transonic transitions can only occur within a subregion of
the domain σ2 > σ1, whereas transonic-to-subsonic transitions
can only occur within the complementary domain σ2 < σ1.
Within either of these domains, a point (σ1,σ2) lying below
(respectively, above) any given CSL leads to a subsonic
(respectively, transonic) steady state.

The figure shows that initial steady states of nonzero
velocity have huge inertia, which we attribute to their “field-
dragging” character, and that dissipation proves essential in
helping transitions to take place. Indeed, consider the domain
σ2 > σ1. When α → 0, we see that subsonic-to-transonic
transitions are impossible for finite initial velocity vi > 0
(i.e., finite applied stress σ1 > 0). However, they become
allowed when α 
= 0, in the low-stress interval proportional to
α where(roughly) the linear drag-controlled mobility law v �
B̃σa predominates. On the other hand, transonic-to-subsonic
decays in the domain σ2 < σ1 are possible whatever α, even
though for α → 0 the stress σ2 must be lowered below 0.025σth

for them to occur. In this domain as well, the figure shows

FIG. 10. (Color online) Critical stress lines (CSLs) for double-
step loading from rest. Loading σ1 (respectively, σ2) is applied at
t = 0 (respectively, t = T > 0). The dislocation is asymptotically
subsonic below any CSL, and asymptotically transonic above it.
Circles (black), CSL for T = τ0; squares (blue), T = 5 τ0; right
triangles (red), T = 15 τ0; up triangles (orange), T = 30 τ0; left
triangles (green), T = 60 τ0; down triangles (brown), T = 100 τ0.

that a finite α eases transitions by shifting upwards the CSL.
Thus, transonic-to-subsonic transitions when α → 0 should
be attributed to the α-independent Mach-cone dissipation in
the initial transonic state.

C. Double-step loading from rest

We finally consider double-step loading from rest, which
has been employed in atomistic simulations [1] to “lock”
the dislocation onto small-stress transonic states that were
unavailable with single-step loading. Our EoM reproduces
this effect, for which no explanation has been given so far.
The dislocation being initially at rest under zero stress, stress
σ1 is applied from t = 0 to time t = T > 0, and stress σ2 is
applied next at t = T and kept constant thereafter [Fig. 1(c)].
The resulting CSLs are represented in Fig. 10 for α = 10−4

and increasing values of T .
Stress σ1 is irrelevant in the limit T → 0 where the

CSL becomes the horizontal line σ2 = σc(α)—the single-step-
loading critical stress discussed in Sec. VI A. In the opposite
limit T → ∞ the dislocation has enough time to relax towards
the asymptotic state determined by σ1, prior to being subjected
to σ2, so that the situation approaches that of Fig. 1(c) examined
in Sec. VI B. However, the branch-selection process described
in Sec. VI A now takes place after the first acceleration step.
Consequently, the trend observed in Fig. 10 is that the T = ∞
limit of the CSLs stands as a discontinuous combination of
the CSLs of Fig. 9, the chosen one depending on whether
σ1 ≶ σc(α). Moreover, the slow saturation with T of the CSLs
in the low-σ1 region of Fig. 10 makes clear that the CSLs of
Fig. 9 are only ideal ones, never observed at finite times. The
reason is that in an infinite medium the build-up of a steady
elastic field configuration takes infinite time.

Figure 10 also explains how to reach steady transonic states
at small applied stress: from rest, apply a stress σ1 > σc(α)

054120-13



YVES-PATRICK PELLEGRINI PHYSICAL REVIEW B 90, 054120 (2014)

FIG. 11. (Color online) (a) and (b) Velocity distributions for double-step loading from rest, with σ1/σth = 0.5 in the first stage. Second
stage occurs at T = 5τ0 in (a) and T = 15τ0 in (b). The time window is t � 100τ0 + T . In (c), velocity vs time plots corresponding to case (b),
for the following selected values of σ2/σth (from bottom to top): 0.013, 0.026, 0.067 (grey), 0.080, 0.120, 0.253, 0.387, 0.507, 0.653, 0.787,
and 0.920 (black).

to drive the dislocation into the transonic regime, wait for
some time T , and then decrease the stress level to a value σ2

slightly above the CSL at this T . This recipe is illustrated by
Fig. 11 where σ1 = 0.5 > σc(α = 10−4) � 0.41. The larger
T , the smaller σ2 can be, and the closer the asymptotic state
to the left tip of the ST branch. Consistently with Fig. 10, the
critical stress for σ2 is near to 0.25σth in (a) and to 0.075σth

in (b).
For α � 0, this point is the radiation-free transonic state

discovered by Eshelby, where in principle the dislocation can
move at zero applied stress without dissipation. Figures 9
and 10 indicate that it cannot be reached dynamically, as for
σ1 > σc(α), any stress σ2 below the “black/circle” CSL in
Fig. 9 inevitably leads to decay into the subsonic range. Ac-
cording to Sec. VI B, this is caused by Mach-cone dissipation.
We infer that dissipation destabilizes the dislocation before
it has any chance to settle in the dissipation-free state. The
drag α being finite is another reason why in practice such a
dissipation-free state is unreachable.

Finally, Fig. 11(c) presents velocity-time curves for some
of the stresses σ2 used in Fig. 11(b), at same σ1. For a huge
stress drop, the dislocation can temporarily recoil under the
backwards push of the detaching Mach cone. Subsequent
velocity bounces, attributable to core-width dynamics, are
observed before the dislocation resumes a regular forward
motion.

D. Comparisons with atomistic data

We compare in Fig. 12 the model with recent atomistic
simulation data by Jin, Gumbsch, and Gao [9] obtained
in tungsten with a Finnis-Sinclair potential [66]. Because
tungsten is a quasi-isotropic bcc metal, those simulations
constitute the most appropriate benchmark for the model.
To cope with the nonlinear elastic effects at high applied
shear distortion εa pointed out in Ref. [9], which result in
strain-dependent wave speeds, we use average speeds defined
as cS,L ≡ ε−1

th

∫ εth

0 dε cS,L(ε) where the integral of the wave
speed curves cS,L(ε) of Ref. [9] is carried out up to the
critical distortion εth = 0.115 above which the simulated
crystal is unable to sustain a rigid shear [9]. We identify the
corresponding critical shear stress σth = 14.5 GPa [9] with

the theoretical shear stress of the Peierls model. We obtain
cS = 2629 m/s and cL = 5350 m/s. Using the density ρ =
19.257 g/cm3, we next define over the considered distortion
range a consistent effective shear modulus μ ≡ ρ c2

S = 134.61
GPa, an effective interplane distance d ≡ μb/(2πσth) = 3.89
Å, and an effective characteristic time τ0 ≡ d/cS � 0.148 ps.
We note that d � 3.01d is somewhat larger than the crystallo-
graphic interplane distance d = a0/

√
6, where a0 = 3.165 Å

is the lattice parameter, relevant to the [112] glide plane in
the atomistic simulation [9]. This discrepancy is due to the
oversimplified cohesive-zone approximation in the Peierls
model.

FIG. 12. (Color online) Comparisons with atomistic simulation
data on tungsten by Jin, Gumbsch, and Gao (Fig. 2 of Ref. [9]). Full
and open disk symbols represent dislocation velocities in the twinning
direction of motion, achieved in Ref. [9] with single-step loading
(black and grey disks) and smoothed double-step loading (open
circles). Other symbol shapes represent results at t = 10 ps from the
present model under single-step (square symbols) and double-step
(up and down triangles) loading conditions.
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In bcc metals motion is asymmetric with respect to
the twinning and anti-twinning directions [9]. Since the
model cannot account for such an asymmetry, we limit our
comparisons to motion in the antitwinning direction. We
display velocities values at 10 ps, the typical duration of the
simulations [9]. In Fig. 12, black and grey disks are atomistic
simulation data for steady-state velocities obtained with single-
step loading. Remarkably, taking α = 0.01—a value consis-
tent with typical values for metals (see Sec. IV D)—makes
the critical distortion for the subsonic/transonic transition in
single-step loading (square symbols) coincide with that of
atomistic data, as shown in Fig. 12. Moreover, atomistic data
obtained with a smoothed kind of double-step loading [9]
(open symbols) are reasonably reproduced by employing
abrupt double-step loading with either σ1 = 0.5 σth for 0 �
t � 6.3,τ0 � 0.93 ps (up triangles), or σ1 = 0.3 σth for 0 �
t � 7 τ0 � 1.04 ps (down triangles), and σ2 = μεa during the
rest of the calculation.

VII. CONCLUDING DISCUSSION

Thus the proposed EoM allows one to pinpoint for the
first time the existence of a well-defined drag-dependent
threshold stress in the subsonic/transonic transition of edge
dislocations, which we identified as a delayed bifurcation. The
present work demonstrates the need to take into account core-
width variations in dislocation motion, which prove crucial
to the transition examined. Confirmation is provided by a
reinterpretation of simulation data that departs from a previous
attempt [15]. In particular, we can now closely approach these
data by using a realistic value of the phenomenological phonon
drag coefficient, namely, α ∼ 10−2. Moreover, critical stress
lines such as obtained in Sec. VI C, easy to compute with
the model, might be used as guidelines for future atomistic
simulations. For instance, it would be interesting to reproduce
the recoil of the dislocation computed in Fig. 11(c). By
contrast, long unstable plateau states of duration ∝ln |σa − σc|
should not be observable, for their obtention requires a very
accurate determination of the critical threshold, which thermal
fluctuations will most probably forbid. Whereas the present
theory is essentially valid for an infinite medium, it is relevant
to finite systems as well inasmuch as wave reflection on
boundaries can be ignored (time of flight small enough, or
quasiperfect absorbing boundary conditions).

Figure 12 shows that discrepancies with simulations re-
main. First, the subsonic and transonic branches of the model
lie above simulation data. While a better treatment of nonlinear
elasticity could somewhat reduce the mismatch, the differences
involved more probably indicate that we underestimate radia-
tive drag. Additional possibly relevant sources of radiative
drag could be investigated by slight modifications of the
present framework, such as the periodic oscillations of the
dislocation on the Peierls potential [26,67], and the extension
of the core normal to the glide plane, which cannot be
excluded [1]. Another limitation of the present work is that the
parametrization employed imposes a symmetric core shape.
One could instead expect the core to become asymmetric in
transient regimes, due to motion-induced forwards-backwards
symmetry breaking. Also, alleviating the absence of steady
supersonic steady states at stresses lower than σth in the

model would probably require enriching the model with
lattice dispersion effects [6,15,68]. This is challenging because
the collective-variable approach relies on the existence of
explicit and reasonably easy-to-handle steady-state solutions.
However, it should be noted that, due to the instability of
straight dislocation lines at high velocities [28], endowing
the model with steady supersonic states might not be much
relevant to “real” (i.e., non-rectilinear) dislocations. Besides,
whereas transient supersonic states have been observed in a
two-dimensional plasma crystal, recent measurements [11] did
not provide conclusive evidence for steady supersonic states
in such systems.

The present CV formalism could easily lend itself to
the use of a multi-dislocation ansatz, or to more elaborate
parameterizations, by means of which other types of solutions
could be explored. This includes twinning dislocations, or even
plane sets of dislocations with Burgers charge ±b in dynamic
interaction, which would constitute one further step towards
fully dynamic two-dimensional DD simulations. Another
immediate perspective consists in extending the present EoM
to anisotropic elasticity [33], to exploit the wealth of available
simulation data on anisotropic materials [5,6,8,69].
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APPENDIX A: EXPLICIT CONSTRAINED EQUATIONS

For completeness, we derive here the constrained evolution
equations for �η(x,t), a(t) and ξ (t) in full form, according
to the method outlined in Sec. III. Consider first Eq. (20a).
Introducing C = (1 + α)μ/(2cS), and omitting x and t , we
write F as ([·] indicates a functional dependency)

F[η] = ση[η] − C∂t η̃ + σa − f ′(η), (A1)

where ση[η] stands in this section for expression (10) ampu-
tated from the “local” loss term proportional to ∂t η̃. Taking
η = η0 + �η, so that η̃ = η0 − ηe + �η, one has

∂t η̃ = ∂t η̃0 + ∂t�η, (A2)

where ∂t η̃0 = −ρ1(ȧ/a) − ρ0ξ̇ . Moreover, from Eq. (23)
follows that

ȧ

a
= 1

a

〈∂ξρ0|�η〉〈ρ1|∂t�η〉 − 〈∂ξρ1|�η〉〈ρ0|∂t�η〉
〈∂aρ0|�η〉〈∂ξρ1|�η〉 − 〈∂aρ1|�η〉〈∂ξρ0|�η〉

≡ A[�η], (A3a)

ξ̇ = 〈∂aρ1|�η〉〈ρ0|∂t�η〉 − 〈∂aρ0|�η〉〈ρ1|∂t�η〉
〈∂aρ0|�η〉〈∂ξρ1|�η〉 − 〈∂aρ1|�η〉〈∂ξρ0|�η〉

≡ X[�η], (A3b)

which introduces the functionals A and X of �η. They are
of zero degree of homogeneity in this quantity, and also
depend of a and ξ (dependence omitted). Thus the equation
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F[η0 + �η] = 0 becomes the following equation for �η:

ση[�η] − C{∂t�η − ρ1A[�η] − ρ0X[�η]}
+ σa − f ′(η0 + �η) + ση[η0] = 0, (A4)

which does not depend any more on ξ̇ and ȧ.
We now turn to Eq. (20b). By adding and subtracting

〈ρi |f ′(η0)〉 in these equations, and substituting 〈ρi |∂t�η〉 by
its expression derived from Eq. (23), one finds

0 = 〈ρi |F[η0 + �η]〉 = 〈ρi |F[η0]〉
+ 〈ρi |ση[�η]〉 + 〈ρi |f ′(η0) − f ′(η0 + �η)〉
+ C{〈∂ξρi |�η〉ξ̇ + 〈∂aρi |�η〉ȧ}, (A5)

where the last two lines represent an O(�η) correction to the
leading-order mean-field equations (24).

APPENDIX B: NUMERICAL METHOD

The numerical procedure employed to solve the complex-
valued EoM (39a) warrants a detailed explanation. Up to t =
0, the dislocation is assumed to move initially with constant
velocity vi, and core width ai. These values must consistently
be related together and with the initially applied stress by
Eq. (53). The dislocation moves nonuniformly at times t > 0,
due to a change of applied stress.

Motion is discretized as a series of velocity jumps [21].
Effects of velocity jumps on the self-force have been widely
studied in the past. In Eq. (39a), the position and core-width
variables stand on the same footing and must therefore be
of same order of regularity. Thus any velocity jump must
go along with a jump of the core-width variation rate. This
information makes discretization straightforward, and avoids
the complications of the simultaneous velocity and core-width
jumps considered in Ref. [24].

Let velocity jumps occur at discrete times tk = kδt , with
k a positive integer, and δt > 0 the time step. Let moreover
t−1 = −∞. The characteristic function of the time interval
Ik = (tk,tk+1) for k � −1 is

θk(t) = θ (t − tk) − θ (t − tk+1), (B1)

with θ−1(t) = θ (−t). The prescribed initial velocity is

ζ̇−1 ≡ vi. (B2)

The coordinate at t = t0 = 0 is

ζ0 ≡ ξ0 + (i/2)ai, (B3)

where ξ0 is the reference position at which accelerated motion
begins; and ai = a(vi) by (53a). Then ζ (t) = ζ0 + vit for t <

0, and the piecewise-constant complex velocity reads

ζ̇ (t) =
∑
k�−1

ζ̇k θk(t), (B4)

where the ζ̇k must be determined for k � 0. Likewise,
the imposed time-dependent force in (39a) is sampled at
intermediate times tn+1/2 as

G(n)
a ≡ (tn+1 − tn)−1

∫ tn+1

tn

dt Ga(t), (B5)

where

Ga(t) ≡ −ibσthg

(
σa(t)

σth

)
= −2i

w0

d
g

(
σa(t)

σth

)
. (B6)

Taking vi 
= 0 requires by (52) Fα(vi) to be equal to G(−1)
a ,

namely, the constant force force applied before nonuniform
motion.

Let, for positive times, n = [t/δt] be the integer such that
t ∈ In (brackets denote the integer part). Positions at times
t = tn are introduced as

ζn = ζ0 + δt

n−1∑
k=0

ζ̇k (n � 0) (B7)

where the sum is zero if n = 0. Thus

ζ (t) = ζn + ζ̇n(t − tn) (t > 0). (B8)

The adopted discretization requires us to compute the self-
force (40) at time t = tn+ 1

2
= tn + δt/2. For τ ∈ Ik , we define

the following quantities:

�ζn
k = ζn + ζ̇n

δt

2
−

{
ζ ∗

0 + ζ̇ ∗
k (n + 1/2)δt, if k = −1,

ζ ∗
k + ζ̇ ∗

k (n − k +1/2)δt, if 0 � k � n.

(B9)

We notice for further use that

�ζn
n = 2i Im[ζn + (δt/2)ζ̇n]. (B10)

From (26) and (B8) follows that

v
(
tn+ 1

2
,τ

) = ζ̇ ∗
k + �ζn

k

�t
, (B11a)

dv

dτ

(
tn+ 1

2
,τ

) = �ζn
k

�t2
, (B11b)

where now �t = tn+ 1
2
− τ . With (40) and (B8), the self-force

at time tn+1/2 is written as

F
(n)
ζ = 2

[
n−1∑

k=−1

∫ tk+1

tk

+
∫ t−

n+ 1
2

tn

]
dτ

�t
m(v)

dv

dτ
+ 2i

w0

cS

ζ̇ ∗
n

�ζn
n

,

(B12)

where the last (“local”) term has been written by appealing
to (B10). Since velocity is constant over each time interval,
integrals can be carried out as in Sec. IV D. Using (B11a)
and (B11b), one obtains∫ tk+1

tk

dτ m(v)

tn+ 1
2
− τ

dv

dτ
= �Wn

k − ζ̇ ∗
k �pn

k

�ζn
k

(B13)

where we introduce the following intermediate quantities for
−1 � k � n:

�Wn
k =

{
W

(
vn

k+
) − W

(
vn

k

)
if k < n

−W
(
vn

n

)
if k = n

, (B14a)

�pn
k =

{
p
(
vn

k+
) − p

(
vn

k

)
if k < n

−p
(
vn

n

)
if k = n

, (B14b)
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vn
k+ = ζ̇ ∗

k + �ζn
k

(n − k − 1/2)δt
, (B14c)

vn
k =

{
vi + i 0+ if k = −1

ζ̇ ∗
k + �ζn

k

(n−k+1/2)δt if 0 � k � n
(B14d)

(remark that vn
k+ 
= vn

k+1). Since W (i∞) = 0 and
p(i∞) = iw0/cS, the rightmost integral in (B12) reduces
to ∫ t−

n+ 1
2

tk

dτ
m(v)

tn+ 1
2
− τ

dv

dτ

= W (i∞) − W
(
vn

n

) − ζ̇ ∗
n

[
p(i∞) − p

(
vn

n

)]
�ζn

n

= �Wn
n − ζ̇ ∗

n �pn
n

�ζn
n

− i
w0

cS

ζ̇ ∗
n

�ζn
n

. (B15)

Substituting expressions (B13) and (B15) into Eq. (B12)
yields the following discretized expression of the self-
force:

F
(n)
ζ = 2

n∑
k=−1

�Wn
k − ζ̇ ∗

k �pn
k

�ζn
k

, (B16)

in which the contribution of the “local” loss term in ση has
canceled out, in agreement with a remark made in Sec. II.
The term k = −1 in the sum is a representation of F<

ζ (tn+1/2)
[Eq. (60a)]. Expression (B16) is quite remarkable, as it
involves only the known energy and momentum functions
W (v) and p(v) [20,24].

Including the phenomenological drag, of same form as the
last term in (B12), the discretized EoM at time tn+1/2 finally
reads

En(ζ̇n,ζ̇
∗
n ) ≡ F

(n)
ζ + 2iα

w0

cS

ζ̇ ∗
n

�ζn
n

− G(n)
a = 0, (B17)

where F
(n)
ζ is given by (B16), and G(n)

a is given by (B5).
Given ζ̇−1 = vi, and assuming that the velocities ζ̇k have been
computed for 0 � k � n − 1, each term of the sum (B16)
depends on ζ̇n—the unknown at time step n—for which (B17)
constitutes an implicit complex-valued equation.

This equation is solved by the Newton-Raphson method.
Using the shorthand notation z = ζ̇n, and since En is a
nonholomorphic function, iterations read

z(0) =
{
ζ̇−1 if n = 0
2ζ̇n−1 − ζ̇n−2 if n � 1

, (B18a)

z(k+1) = z(k) + (∂En/∂z∗)E∗
n − (∂En/∂z)∗En

|∂En/∂z|2 − |∂En/∂z∗|2 , (B18b)

where k � 0 is the iteration counter, z(0) is an initial convenient
guess, and En and its derivatives are evaluated at z(k).
Equation (B18b) follows from elementary formulas [70] of
complex-variable function theory. The derivatives are readily
obtained as sums involving the functions W ′(v) = v m(v) and
p′(v) = m(v).

In all cases examined, we found this algorithm stable and
inexpensive. No drift in the velocity occurs when applying the
algorithm to an initial steady state, under a consistent value of
σa . Reasonably well converged results are obtained with the
time step δt = τ0/10, where τ0 = d/cS.
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