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Anisotropic phonon coupling in the relaxor ferroelectric (Na1/2Bi1/2)TiO3
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The lead free relaxor Na1/2Bi1/2TiO3 (NBT) undergoes a structural cubic-to-tetragonal transition near 800 K
which is caused by the cooperative rotations of O6 octahedra. These rotations are also accompanied by the
displacements of the cations and the formation of the polar nanodomains (PNDs) that are responsible for the
characteristic dielectric dispersion of relaxor ferroelectrics. Because of their intrinsic properties, spontaneous
polarization, and lack of inversion symmetry, these PNDs are also piezoelectric and can mediate an interaction
between polarization and strain or couple the optic and acoustic phonons. Because PNDs introduce a local
tetragonal symmetry, the phonon coupling they mediate is found to be anisotropic. In this paper we present
inelastic neutron scattering results on coupled transverse acoustic (TA) and transverse optic (TO) phonons in the
[110] and [001] directions and across the cubic-tetragonal phase transition at TC ∼ 800 K. The phonon spectra
are analyzed using a mode coupling model. In the [110] direction, as in other relaxors and some ferroelectric
perovskites, a precipitous drop of the TO phonon into the TA branch or “waterfall” is observed at a certain
qwf ∼ 0.14 r.l.u. In the [001] direction, the highly overdamped line shape can be fitted with closely positioned
bare mode energies which are largely overlapping along the dispersion curves. Two competing lattice coupling
mechanism are proposed to explain these observations.
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I. INTRODUCTION

Among relaxors, NBT has recently been the subject of
extensive studies due to its environmentally friendly chemical
composition and high electromechanical coefficients, both
characteristics that are desirable for future device applica-
tions [1–4]. Unlike the B site disordered PbMg1/3Nb2/3O3

(PMN) and PbZn1/3Nb2/3O3 (PZN), NBT and a few others
are rarer cases in the relaxor family in which the substitution
takes place on the A site. In NBT, Na1+ and Bi3+ are
randomly substituted for each other in a 1:1 average ratio. Size
and/or valence mismatch between substituted cations usually
induces off-centering. Systems with the perovskite structure
are known to exhibit one of two structural instabilities leading
to phase transitions, rotations of the anion octahedra (tilting),
or displacements of the cations (shifting). Tilting transitions
are well known to occur in compounds such as SrTiO3,
KMnF3, and NaNbO3 [5–7] and shifting or ferroelectric
transitions in BaTiO3 and PbTiO3, etc. NBT is a special mem-
ber of the perovskite family, simultaneously exhibiting both
instabilities [8,9]. Therefore, in NBT, the rotations of the O6

octahedra appear to be coupled to certain cation displacements.
In addition, the off-centered cations form local dipoles which
eventually lead to the formation of nanosize polar domains
(PNDs) [10,11]. It is the reorientation of these PNDs that gives
rise to the characteristic low frequency dielectric dispersion in
NBT [12]. In addition, because they are polar and tetragonally
distorted, PNDs represent local “piezoelectric” regions within
the surrounding paraelectric cubic lattice [13]. Their polariza-
tion can therefore be modulated by the soft transverse optic

phonon (TO) which can thus become coupled to the transverse
acoustic phonon (TA). As is shown later, the data presented
can be explained by such a coherent interaction between TO
and TA phonons, piezoelectrically mediated by PNDs.

NBT undergoes two structural phase transitions, a cubic-
to-tetragonal transition at ∼800 K and a tetragonal-to-
rhombohedral transition at ∼580 K [8]. The high temperature
transition is triggered by the condensation of a soft mode (�3

symmetry [5]) at the M point of the Brillouin zone boundary,
which corresponds to the a0a0c+ (Glazer notation [7]) tilting
of the O6 octahedra. However, this transition also coincides
with the onset of the characteristic dielectric dispersion that is
due to the formation of the PNDs, and the displacements of the
Na/Bi and Ti cations against one another when viewed along
〈001〉 [8,12]. The lower temperature transition is triggered by
the condensation of a soft zone boundary phonon at the R point,
corresponding to a−a−c− tilting of the O6 octahedra [8,14,15].
Concurrently, Na/Bi and Ti cations become displaced parallel
to 〈111〉 in order to accommodate the antiphase rotation of the
O6 octahedra and a ferroelectric order is established [8,15],
presumably accompanied by the alignment of the PNDs.

A commonly observed phonon anomaly in relaxor systems
is the so-called “waterfall” effect. It manifests itself as a
precipitous drop of the TO branch toward the acoustic branch
at some finite wave vector qwf, below which the TO mode
is no longer distinguishable in the spectrum. Early studies in
Pb relaxors related this effect to the critical damping of the
TO mode, either due to its strong interaction with PNDs of a
characteristic size comparable to 1/qwf or to the presence of
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strong disorder-induced random fields [16–19]. Other studies
have suggested that the waterfall is the result of mode coupling
between the TO and TA phonon modes [20,21]. A similar
phonon dispersion anomaly was also reported by Swainson
et al. in Pb(Mg1/3Nb2/3)O3 at the zone boundary, which was
referred to as “columns” of TO mode [22]. Most recently, a
waterfall behavior was reported by Matsuura et al. in NBT at
lower temperature [3]. In spite of the large amount of literature
on the waterfall effect, significant differences of opinion still
persist with regard to its physical interpretation.

In the present study we report inelastic neutron scattering
results of the lowest energy TA and TO phonons in the
(002) and (220) Brillouin zones (BZ) from the � point to
the zone boundary, respectively, M and X points. Phonons
propagating along the two orthogonal directions 〈110〉 (�4)
and 〈001〉 (�5) [5] were measured in constant q and constant
E scans between 1000 and 700 K. These results reveal a
prominent waterfall feature at small q in the (002) Brillouin
zone, which can be satisfactorily described by a mode coupling
model. In the [220] zone the dispersion curves do not reveal
a similar waterfall effect but suggest a different coupling
mechanism between the TO and TA branches. Results in
the two zones are successively reported, then compared and
discussed.

II. EXPERIMENTAL SETUP

A single NBT crystal about 5 × 10 × 20 mm was cut to
a half dome shape out of a larger boule grown by the TSSG
method. Neutron scattering measurements were performed on
the HB1a triple axis spectrometer at the High Flux Isotope
Reactor (HFIR), Oak Ridge National Laboratory. The sample
was mounted on a tantalum sample holder in vacuum inside a
furnace. The HB1A spectrometer operates with a fixed incident
energy Ei = 14.6 meV using a double pyrolitic graphite (PG)
monochromator system. A collimation of 40′-40′-sample-40′-
80′ was used throughout the experiment, giving an energy
resolution of 1 meV. Measurements of the phonon spectra
were made in the neutron energy gain mode. Such a mode
is adequate for high temperature phonon measurements,
for which the energy transfer �E is much smaller than
kBT [23]. One set of scans was taken at room temperature
and the others were taken upon cooling from 1000 down
to 700 K.

The phonons were measured in the [HHL] scattering
plane. The scattering relationship Q = τhkl + q holds for our
inelastic scans, where Q is the scattering vector, τhkl is a
reciprocal lattice vector, and q is the phonon wave vector.
Transverse scans were performed near the (002) and (220)
Bragg reflections where the structure factors for both TA
and TO phonons are large. Focusing conditions were chosen
within the (Q,E) plane by selecting negative q values in the
(002) zone and positive q values in the (220) zone. In the
following, pseudocubic notations are used throughout and
the wave vectors are indicated in reduced lattice units ξ , where
ξ = |q|

2π/a
, with a = 3.92 Å measured at high temperature in

the cubic phase. All inelastic scans were corrected for the
resolution volume effect as stipulated in Ref. [23] for fixed
Ei mode; and all data were normalized to the beam monitor
count.

III. RESULTS AND ANALYSIS

A. Phase transition and the [110] phonon in the (002) zone

In the measurement sequence, the (002) Bragg peak
was monitored during cooling to determine the transition
temperature. As seen in the inset of Fig. 1, the transition
is marked by a large increase in the intensity of the Bragg
peak below ∼800 K (relief of extinction). Such an intensity
increase is a commonly observed phenomenon near symmetry
lowering transitions. It is due to the formation of domains
along different possible orientations, resulting in strains in
the crystal that effectively increase its mosaicity and reduce
internal back scattering. The transition temperature obtained
is in good agreement with that from other diffraction studies
of NBT [4,8,15]. The rather abrupt change of intensity below
∼800 K suggests a first-order-like transition. NBT undergoes
another transition at lower temperature (∼580 K), which was
not part of the present study.

In the (002) zone, measurements were made of the TA
and TO phonons propagating in the q ‖ [110] direction and
polarized along the e ‖ [001] direction (�4 symmetry [5,24]).
Constant q scans were made from the zone center � point
to the zone boundary at ξ = 0.5. Representative spectra for
different temperatures are shown in Fig. 2. Two features can
immediately be noticed at the zone center in Fig. 2(a): the
lack of temperature variation in the inelastic portion of the
spectrum and the absence of a well-defined phonon mode up
to 15 meV. At ξ = 0.05 in Fig. 2(b), a single peak is observed
at �E ≈ 2.5 meV. Note that a strong central peak background
appears to contribute to the asymmetric line shape, as shown
in the inset. Figure 2(c) shows the zone boundary phonon
behavior at (0.5, 0.5, 2). At this q value the TO mode is
very broad and centered around ∼18 meV, whereas the TA
phonon mode remains well structured and centered at ∼5 meV.
The dashed line indicates the approximate position of the TA
mode peak, whose energy is seen to remain relatively constant
throughout the temperature range investigated.

Next, in Fig. 3 we examine the near zone center spectra
at ξ = 0.1 and ξ = 0.15 and at several temperatures. The

FIG. 1. (Color online) θ -2θ scan at (002) Bragg reflection mea-
sured across TC = 800 K. The inset shows the sharp increase of
integrated intensity at TC = 800 K.
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FIG. 2. (Color online) Constant q scans near (002) zone at
(a) � point, (b) (0.05, 0.05, 2), and (c) (0.5, 0.5, 2). The inset in
(b) indicates that the central peak background intensity is very high
at (0.05, 0.05, 2). The spectra in (c) are offset by a constant for clarity
and the dashed line is guide to the eye for the average peak position.

multitemperature plots at ξ = 0.1 are shown in the left column
and the ξ = 0.15 plots in the right column. The ξ = 0.1
spectra show a single peak, with a possible shoulder on the
high frequency side, but the ξ = 0.15 spectra distinctly reveal
both a TA and a TO mode, particularly well resolved at room
temperature. Neither set of the spectra displays a noticeable
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FIG. 3. (Color online) Near zone center plots of the [110] phonon
fitted with mode coupling equation at (a) ξ = 0.1 and (c) ξ =
0.15. The resulting coupling constants are plotted in (b) and (d),
respectively.

temperature dependence in the temperature range studied,
except at room temperature. At higher temperatures however,
the two modes overlap and, being of the same symmetry,
must therefore be coupled. Consequently, the spectra were
fitted with a mode coupling (MC) function previously used to
describe the phonon interaction in perovskite systems [25–27].
It is important to note that fitting with other models such as
two uncoupled damped harmonic oscillators (DHOs) was also
attempted but the MC model was found to give the fastest
converging and best overall fitting as well as the smallest χ2

value. Together with a Gaussian central peak and a constant
background, the scattering function can be expressed as

Stotal = Selastic + SMC + Sbkg,

in which SMC takes the form

SMC(ω) = n(ω)(AX − BY )/(A2 + B2), (1)

where

A = ω
[
γ1

(
ω2

2 − ω2
) + γ2

(
ω2

1 − ω2
) − 2(ω1ω2)1/2�12�12

]
,

B = (
ω2

1 − ω2
)(

ω2
2 − ω2

) + ω2
(
�2

12 − γ1γ2
) − ω1ω2�

2
12,
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X = F 2
1

(
ω2

2 − ω2
) + F 2

2

(
ω2

1 − ω2
) − 2F1F2(ω1ω2)1/2�12,

Y = ω
(
F 2

1 γ2 + F 2
2 γ1 − 2F1F2�12

)
.

In this equation n(ω) is the Bose factor, ω1,2 are the TA
and TO phonon frequencies, γ1,2 are the phonon linewidths,
and F1,2 are the dynamic structure factors. Factoring out F 2

1
allows rewriting Eq. (1) in terms of the ratio F2/F1, thus
reducing the number of fitting parameters by one. �12 and �12

are, respectively, the harmonic and the dissipative coefficients
coupling the two modes. Most if not all the authors who have
used the MC model to describe their phonon spectra have
chosen to retain only one of these two coefficients and to set
the other one to zero. Barker et al. [28] have shown that the two
descriptions are mathematically equivalent through a unitary
transformation. Because of this mathematical indeterminacy,
the justification for using either harmonic (real) or dissipative
(imaginary) coupling in the analysis of a given spectrum
must be based on physical arguments, e.g., temperature or
q dependence. We should also note that the expression for
X in Eq. (1) is simplified, assuming that the two dynamic
structure factors F1 and F2 have the same phase. A more
general expression should include a cos φ factor, in which φ

is the phase angle between the two complex structure factors.
As pointed out in by Eijt et al. [27], not only are the dynamic
structure factors complex quantities which can differ from one
zone to another but, in addition, the nature of the coupling
(real vs imaginary) imposes a strict phase relation between the
two eigenvectors. As a result, the sign of the coupling terms
can be either positive or negative. In the fitting procedure we
have considered these different possibilities, real vs imaginary
coupling and positive vs negative coupling terms, and are
making a determination based on the quality of the fits and
especially on the physical validity of the values obtained for
the fitting parameters. Because the instrumental resolution was
much narrower than the observed full width at half maximum
(FWHM) of the inelastic peaks [see the horizontal bar in the
bottom panel of Fig. 4(a)], no resolution convolution was
needed in fitting the data. In the (002) zone, the better fits by far
were obtained assuming real coupling, as is usually the case for
low frequencies and therefore low q since the coupling term
for imaginary coupling is a function of ω [27,29]. In Figs. 3(b)
and 3(d) the coupling constant is seen to be finite at q = 0.05
and 0.1 but zero at q = 0.15 below 800 K.

The mode coupling analysis was further extended to all
q values in the (002) Brillouin zone. Since the temperature
variations were found to be small (Figs. 2 and 3), the results
are only shown for 723 K as representative of the temperature
range studied across the 800 K transition. The fitted spectra
and the phonon dispersion relations are shown in Fig. 4 and the
values of the fitting parameters listed in Table I. The TO mode
is found to be soft and overdamped at ξ = 0.05 and 0.1 and
underdamped at larger q, while the TA mode is underdamped
at small q but becomes overdamped near the zone boundary.
As mentioned earlier, the TO mode is not clearly identifiable
at ξ = 0.1 and not at all at ξ = 0.05. In addition, the intensity
of the single peak, most certainly the TA mode, is nearly an
order of magnitude larger at ξ = 0.05 than at ξ = 0.1. These
observations do seem to point to a transfer of energy from the
TO to the TA mode. At large q the two phonons are resolved

and well separated and therefore noninteracting. Accordingly,
the coupling constant �12 is found to be zero for larger q.

Complementary to the above constant q scans measure-
ments, constant E scans were also made in the (002) zone at
low energies. Such E scans can be particularly informative
when the phonon peaks become very broad and overlapping
in the constant q spectra, as in the present case with the TO
and TA peaks. These scans were performed for fixed energy
transfers from 3 to 10 meV and are presented in Fig. 4(c). The
peaks were fitted with Gaussian function to determine the q

peak position of the phonon mode for each energy transfer.
The fitting results of both constant q and constant E

scans were used to map out the phonon dispersion in the
[110] direction (�4) as shown in Fig. 4(d). The vertical bar
on each point of the curve represents the FWHM of the
phonon peak at that q value. The TA phonon energy rises
linearly at small q, then goes through a cusp at q = 0.15 and
finally decreases toward 5 meV at the zone boundary. Between
ξ = 0.1 and ξ = 0.15 the TO branch drops precipitously into
the TA branch. This corresponds to the so-called waterfall
phenomenon discussed in the Introduction. Constant E scans
allowed us to follow the TO branch to its very intersection with
the TA branch. Also noteworthy is the sudden increase of the
TO mode FWHM at ξ = 0.1. A large FWHM that is increasing
with q is a characteristic that is commonly observed in other
relaxors displaying a waterfall feature, but it only represents
an inhomogeneous broadening of the TO mode due to the
particular shape of the TO phonon dispersion curve rather
than dissipation and energy loss. The sharp drop of the TO
branch can also explain the absence of a well defined soft
TO mode intensity below qwf. At higher q, the TO phonon
energy increases continuously and reaches ∼18 meV at the
zone boundary, while the TA phonon energy decreases slightly
toward the zone boundary. A recent study of NaNbO3 by
Tomeno et al. [30] reveals a similar behavior of the �4 TO
and TA phonons, although the TA mode in NaNbO3 does
not soften toward the zone boundary as it does here in NBT.
It is also worth noting that the energy of the �4 TA mode
at the zone boundary is significantly lower in NBT than in
nonrelaxor perovskite oxides such as SrTiO3, NaNbO3, and
KMnF3 [30–32] in which the rotation of the O6 octahedra
leads to the softening of the �3 transverse acoustic branch
toward the M point of the Brillouin zone. The eigenmode
analysis [33] indicates that the M point zone boundary mode
of the �4 line consists of antiparallel displacements of the A

site atoms (Na/Bi) along the cube edge in two adjacent columns
along a cubic axis. The softening of the �4 mode toward the
M point may therefore suggest a partial correlation of the A

site cation off-centering, a suggestion confirmed by neutron
diffraction [15].

B. [001] phonon near (220) zone

We have also studied the TO and TA phonons in the orthog-
onal direction, i.e., propagating in the [001] direction and po-
larized in the [110] direction (�5 in symmetry notation), with
a similar set of constant q scans. The (220) spectra are shown
in Fig. 5 near zone center (a) and at larger q toward the zone
boundary (b). At small q, the (220) spectra are very similar to
the (002) ones, except for the observation of a TO mode below
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10 meV at the (220) zone center in Figs. 6(a) and 6(b), which
is absent near or at the (002) zone center in Fig. 2(a). At large
q however, the (220) spectra appear to be very different, with
features that are much broader and more strongly overlapping
than those in the (002) spectra, suggestive of a different type
of coupling mechanism between the TO and TA phonons. In
this (220) zone, the line shapes and energies of the modes do
not vary significantly with temperature as shown in Fig. 5 and
the spectra were therefore fitted and analyzed at 873 K.

To obtain the dispersion relation of the TO and TA phonon
modes propagating in the [001] direction and polarized in the
[110] direction, the same MC fitting model as in the (002) zone
was successfully used. At small q and small frequencies, the

(220) spectra were fitted assuming real coupling, as was done
for the small q spectra in the (002) zone on account of the
previously indicated ω dependence of the imaginary coupling
term. Fitting assuming imaginary coupling was also attempted
but was unsuccessful. At larger q (ξ � 0.2), similarly good
fits of the spectra could be obtained assuming either real
or imaginary coupling, in both cases with opposite signs for
F2/F1 and �12 or �12 (negative coupling term). It is important
to reiterate that, although good fits can be obtained with
either choice of coupling, these result in two different sets
of fitted values of the parameters. The data points and fitted
curves are shown in Fig. 6(c) and the dispersion curves are
shown in Figs. 6(d) and 6(e) for real and imaginary coupling,

TABLE I. Fitting parameters for the MC model.

BZ Q ωTA (meV) γTA (meV) ωTO (meV) γTO (meV) �12 (meV) �12 (meV) F2/F1

(002) (0.05, 0.05, 2) 2.21 0.50 2.89 5.96 1.79 0 1.39
(0.1, 0.1, 2) 4.78 0.94 7.99 11.70 3.22 0 1.55

(0.15, 0.15, 2) 7.48 4.68 12.10 5.18 0 0 1.41
(0.2, 0.2, 2) 7.34 7.18 14.40 4.75 0 0 1.58
(0.3, 0.3, 2) 6.41 7.94 17.80 5.53 0 0 1.41
(0.4, 0.4, 2) 5.50 6.47 19.30 12.80 0 0 1.43
(0.5, 0.5, 2) 5.78 6.91 18.30 7.51 0 0 1.57

(220) Real (2, 2, 0.1) 3.82 0.76 7.37 9.66 2.43 0 0.75
(2, 2, 0.2) 11.06 2.92 9.24 8.53 4.06 0 − 2.46
(2, 2, 0.3) 13.11 2.96 11.90 19.60 6.43 0 − 2.44
(2, 2, 0.4) 14.93 2.42 15.60 27.40 9.72 0 − 2.60
(2, 2, 0.5) 16.10 2.40 16.30 29.30 10.85 0 − 2.83

(220) Imaginary (2, 2, 0.2) 8.02 9.05 11.16 3.00 0 8.52 − 2.35
(2, 2, 0.3) 8.85 14.71 14.12 6.39 0 12.96 − 2.40
(2, 2, 0.4) 8.87 13.88 19.11 14.30 0 16.28 − 2.50
(2, 2, 0.5) 8.95 13.79 25.65 25.2 0 17.75 − 2.63
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FIG. 5. (Color online) Temperature overplots of constant q scans
at (a) near zone center (2, 2, 0.1) and (b) near zone boundary (2, 2, 0.4).
The spectra between temperatures are offset by a constant for clarity.

respectively. On the dispersion curves, the points mark the bare
phonon frequencies obtained from the model fit. The values of
the fitting parameters are listed in the second part of Table I for
both real and imaginary coupling. With real coupling, the bare
frequencies of both modes fall within the measured spectral
intensity, the TO mode is increasingly overdamped with q but
the TA mode remains underdamped, more directly reflecting
the raw spectral behavior. The two phonon branches become
very close or even cross between ξ � 0.2, which is where
the goodness of fit imposes that the sign of the ratio F2/F1

be changed to negative. The coupling constant shown in the
inset of Fig. 6(d) also exhibits a regular behavior, replicating
the shape of the dispersion curves. With imaginary coupling,
both modes are overdamped, the bare TO frequency falls well
outside the measured spectral intensity and is much higher
than the frequency of the TA mode which is suppressed. In
order to couple the two modes and properly fit the measured
spectra, the coupling constant must then be made to exceed
the frequency of the phonon themselves, casting doubt on even
the validity of two separate bare phonons. Based on the fitted
values of the parameters, the dispersion behavior and the above
considerations, the real coupling version of the MC model
appears to be better justified than the imaginary one. Such a
choice is also supported by complementary measurements of
NBT made in the same conditions [34]. These show the two
phonon branches almost overlapping. Note that the phonon
mode energies below ξ = 0.1 are estimated from spectral
intensity, and the dispersion curves are extrapolated from
higher q. Therefore, the difference in the zone center TO
phonon behavior as indicated by the dispersion curves in
Figs. 4(d) and 6(d) may be overestimated. In addition, the large
q spectra in Fig. 6(a) show a remarkable resemblance with
those at constant q in BaTiO3 (Fig. 4 in Ref. [29]), a system in
which a real coupling model was used, resulting in a similar
crossing of the two [001] phonon branches of the phonons.
Similar dispersion curves to these obtained in NBT have also
been reported by Eijt et al. for the Sn2P2Se6 system [27],
which were also described assuming real coupling. Finally,
this choice can also be justified on the basis of the physical
considerations proposed in the next section.
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FIG. 6. (Color online) (a) (2, 2, 0) and (b) (2, 2, 0.1) constant q

scans plotted in log scale. (c) (2, 2, q) phonons measured in constant
q mode at 873 K and fitted with the MC model. Phonon dispersion
relation obtained by assuming real coupling (�12) and imaginary
coupling (�12) are shown in (d) and (e), respectively. The inset in (d)
shows the real coupling constant �12 as function of q. The solid gray
circles are apparent spectral intensities at (2, 2, 0) and (2, 2, 0.1). The
dashed lines are guides for the eye, see text for explanation.

IV. DISCUSSION

The key features of the two sets of inelastic scans presented
can be summarized as follows: (i) In the (002) zone along
the �4 branch, the TO phonon exhibits a precipitous drop
or waterfall in the vicinity of (0.1, 0.1, 2) and is no longer
identifiable below. The TA mode is underdamped throughout
the Brillouin zone and rapidly increases in intensity with
decreasing q. (ii) In the (220) zone along the �5 branch, the
TO phonon intensity is still observed near the zone center,
hence the waterfall effect is either suppressed or absent. At
larger q, the TO and TA phonon overlap significantly and
therefore remain strongly coupled throughout the (220) zone,
even more so in the case of real coupling. The mode coupling
model was found to be more adequate describing our data than
the individual damped harmonic oscillator model, particularly
in the small q region. This is because the two phonon modes in
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both Brillouin zones are overdamped and largely overlapping.
However, at large q in the (002) zone, the TA and TO phonons
are well separated and underdamped. As a result, the coupling
constant in MC fitting is essentially zero for near (002) zone
boundary spectra. In this regard, the MC model is not superior
to the individual harmonic oscillator model in the large q

region. Therefore, whether or not the mode coupling model
is appropriate in describing the phonon data depends on the
individual mode character and its relation with the neighboring
phonon mode.

In the following we first discuss the significance of the MC
model in describing the neutron spectral data and then examine
the differences in phonon behavior between the two zones, first
near the zone center and second near the zone boundary.

A. The presence of waterfall feature in the (002) zone

The fact that a waterfall feature is observed in the (002)
zone but not in the (220) zone may be surprising at first since
the phonons are the same in cubic symmetry in the limit of
q = 0, i.e., at the zone center. It is therefore necessary to
examine the values of the fitting parameters to understand the
cause of the different phonon behaviors in the two zones. As
pointed out by Hlinka et al. [20] and others, a waterfall feature
might be observed in certain zones and not in others since the
dynamical structure factors and therefore the coupling term in
Eq. (1) can vary between zones (the Q2 dependence). However,
different behaviors can also be explained by varying degrees
of overlap of the phonons or different coupling mechanisms
and values of the coupling parameter. As seen in Table I, the
coupling constant in the (220) zone is only 2/3 that in the
(002) zone and the overlap between the two modes at small q

is also much smaller. In addition, two physical considerations
may be determinant in explaining the absence or suppression
of a waterfall feature in the (220) zone. First, we note that
the high temperature transition in NBT corresponds to an
in-plane cog wheel-type rotation of the oxygen octahedra that
leads to (a) a doubling of the unit cell and, more importantly,
(b) a rotation of the crystal axes by 45◦, similar to that
in the systems mentioned previously, SrTiO3, NaNbO3, and
KMnF3. As a result, the new horizontal axes now lie along
the 〈110〉 cubic directions while the tetragonal c axis is still
along a cubic 〈001〉 direction. Second, in NBT this rotation of
octahedra is accompanied by cation displacements along the
c axis [15], resulting in the formation of polar nanodomains
(PNDs), the reorientation of which gives rise to the relaxor
behavior below ∼900 K [12]. The PNDs, being polar and
therefore without inversion symmetry, are also piezoelectric.
This fact was recently shown to explain the electroacoustic
resonances observed in the relaxor K1−xLixTaO3 (KLT) [13].
These two physical considerations and the piezoelectric nature
of the PNDs may explain the observation of a waterfall effect
in the (002) zone at small q. In this zone indeed, the TO
mode is polarized along the c axis and can directly modulate
the PND polarization while the propagation direction of the
phonons along the pseudocubic 〈110〉 direction ensures the
transverse piezoelectric coupling to strain. In such a scenario,
the piezoelectric coefficient defined in terms of the new axes
would be d34 or d35, coupling the local polarization component
P3, with the product of the atomic displacements u3u2 or

u3u1. The existence of a piezoelectric interaction between
optic and acoustic phonons was already proposed very early
by Dvorak [35] to explain the TO-TA coupling in tetragonal
BaTiO3, although in this case the piezoelectric character was
simply an intrinsic attribute of the ferroelectric phase. In the
same tetragonal BaTiO3, Fleury and Lazay demonstrated the
piezoelectric nature of the coupling between an overdamped
optic mode and an underdamped acoustic mode [36]. They
reported a greatly enhanced Brillouin scattering cross section
that was strongly dependent on phonon polarization and
propagation direction. Now considering the particular wave
vector qwf, at which the waterfall feature is observed, only
phonons with wavelengths that are greater than the average size
of PNDs or a wave vector q � qwf can coherently modulate
their polarization. For phonon wavelengths greater than the
typical size of a PND or wave vectors smaller than qwf,
the polarizations of an increasing number of PNDs can be
simultaneously and therefore coherently modulated by the
TO phonon, the energy of which is then piezoelectrically
transferred to the TA phonon. This can explain why the
TO phonon first broadens and is then no longer observed
for ξ < 0.1, while the intensity of the TA mode increases
rapidly below ξ = 0.15. This interpretation might seem to
be contradicted by the smaller fitted value of the coupling
coefficient obtained at (0.05, 0.05, 2) than at (0.1, 0.1, 2) in
Table I. However, the assumption of two coupled independent
modes is expected to no longer be valid for strong piezoelectric
coupling below qwf.

A description of mode coupling was proposed early on by
Fano to describe the interaction between a discrete state or
configuration and a continuum of configurations, leading to an
admixture state and resulting in characteristically asymmetric
spectral line shapes [37]. This does seem to correspond to
the present NBT case in which the TO phonon can decay
into a continuum of long wavelength polarization fluctuations
and piezoelectrically transfer its energy to the TA phonon. In
Fano’s model, the spectral density is expressed as

I (ω) = (Q + ε)2

1 + ε2
, (2)

where ε = ω−ω0
�

is the reduced energy, � is the spectral width
of the discrete excited state, and the Fano Q is a modified
coupling constant which incorporates the ratio of the transition
probabilities, respectively, to the admixture state and to the
unperturbed continuum state. The fitted curves in Fig. 7 show
a good match between the Fano line shape and our data. The
two spectra are taken at small q values where the coupling is the
strongest. The values of the parameters are given in Table II.
As expected, the Fano coupling constant Q is more than three
times larger and the width � less than half at ξ = 0.05 than it is
at ξ = 0.1, demonstrating that the coupling of the two modes
is much stronger or their hybridization much more complete
at the lower q.

If the phonon spectra appear similar at small q in the (002)
and in the (220) zone, apart from the absence of waterfall
in the latter, they are very different at larger q and close
to the zone boundary. In the (002) zone past qwf, the TO
mode energy increases up to approximately 18 meV where
it is underdamped and therefore well separated from the TA

054118-7



LING CAI, JEAN TOULOUSE, HAOSU LUO, AND WEI TIAN PHYSICAL REVIEW B 90, 054118 (2014)

(a)

(b)

0 2 4 6 8 10 12 14 16

0

500

1000

1500

2000

2500
In

te
ns

ity
 [a

.u
.]

E [meV]

0 5 10 15 20

0

50

100

150

200

250

In
te

ns
ity

 [a
.u

.]

E [meV]

FIG. 7. (Color online) Data and fitted curve of Eq. (2) for
constant q scan at (a) (0.05, 0.05, 2) and (b) (0.1, 0.1, 2). The fitting
parameters are shown in Table II.

mode. However, the TA mode displays an unusual frequency
dependence, going through a cusp at ξ = 0.15 and decreasing
to an energy of 5 meV at the boundary. This softening was
discussed earlier in Sec. III A as reflecting a second order
coupling between the antiphase cation displacements and
rotations of the oxygen octahedra.

B. Phonon anisotropy in the (220) zone

As noted at the beginning of this section, the low q

spectra in the (220) zone differ from those in the (002) zone
by the observation of a TO mode. The waterfall feature is
therefore absent or suppressed in that zone. At larger q, the
(220) spectra are quite different from the (002) ones and,
although still well described by the MC model with real
coupling, they yield very different dispersion curves for the
bare phonons. Given the presence of polar nanodomains and
their likely role in coupling the phonons, this difference can
also be attributed to a coupling anisotropy between the two

TABLE II. Fitting parameters for phonon spectra at (0.05, 0.05, 2)
and (0.1, 0.1, 2) to the Fano model.

Parameters (0.05, 0.05, 2) (0.1, 0.1, 2)

ω0 (meV) 2.43 4.94
� (meV) 0.65 1.50
Fano Q 33.42 10.08

zones. In the (220) zone, the TO phonon propagates in the c

direction and is polarized in a 〈110〉 direction. Such a phonon
cannot modulate the PND polarization as effectively as in the
other zone (as supported by the respective values of the TO
damping coefficient listed in Table I at q = 0.2). Moreover,
the cog-wheel rotations of the octahedra, accompanying cation
displacements and resulting strain are correlated in-plane but
not out-of-plane. Therefore, in the (220) zone the coupling
between polarization and strain corresponding the TO-TA
interaction is likely not coherent. This anisotropy in the phonon
coupling may be further amplified by a chemical distribution
of Bi and Na in alternating planes along a single cubic
direction [38].

In the (220) zone, a satisfactory fit of the spectrum at
q = 0.1 could only be obtained assuming real coupling and
a positive ratio of the dynamical structure factors F2/F1. At
larger q, satisfactory fits could be obtained assuming either
real or imaginary coupling but with a negative sign for the
ratio F2/F1 in either case. As indicated in the results section,
based on the values of the fitted parameters and the shape of
the dispersion curves, real coupling is deemed more physical.
However, it is interesting to note that the value of the ratio
was found to be approximately the same for both choices.
As discussed below Eq. (1), the sign change for ξ > 0.1
should reflect a relative phase change between the two complex
structure factors. It may be meaningful to note that this sign
change occurs at a q value where the two branches become
extremely close.

V. SUMMARY AND CONCLUSION

In summary, we have reported measurements of the low en-
ergy transverse optic and acoustic phonons of Na1/2Bi1/2TiO3

(NBT) in two different zones, (002) and (220), in the [HHL]
scattering plane and in a 200 K temperature range around
the higher temperature transition Tc 	 820 K. The results
reveal a significant anisotropy in the phonon coupling and
damping between the two orthogonal directions. The phonons
are found to be coherently coupled at small q, but more
strongly in the (002) zone than in the (220) zone. In the
(002) zone, the TO phonon branch falls precipitously into
the TA branch at qwf ∼ 0.14 r.l.u. (waterfall) and is no longer
observed at smaller q. This is interpreted as a hybridization
of the two phonon modes which are (real) coupled via the
piezoelectric polar nanodomains (PNDs) that are known to be
present in this temperature range. Accordingly, the intensity
of the TA phonon is seen to increase by an order of magnitude.
This coupling is reinforced by the rotation of the lattice axes
resulting from the in-plane cog-wheel rotation of the oxygen
octahedra. At intermediate q, the TA mode exhibits a cusp
and is slightly depressed toward the zone boundary, due to
what appears to be an indirect coupling of its eigenmode
to rotations of the oxygen octahedra. At small q in the
(220) zone, the TO-TA coupling is 30% weaker than in the
other zone and no waterfall is observed. This is tentatively
attributed to the incoherent out-of-plane coupling of octahedra
and accompanying cation displacements between layers. At
larger q, the dispersion curves cross but the bare phonons
overlap extensively over most of the Brillouin zone possibly
due to coupling via short wavelength polarization fluctuations
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(within PNDs). Similarities in the phonon spectra of NBT,
NaNbO3 and even BaTiO3 are noted, which can be traced to
the existence of local polar order in these systems, although
much more developed in NBT. The similarity between the
dispersion curves obtained in NBT and Sn2P2Se6 also suggests
that coupling between phonons should be a general feature of
systems in which local order develops before long range order
is established.
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