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Cubic scaling algorithm for the random phase approximation: Self-interstitials and vacancies in Si
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The random phase approximation (RPA) to the correlation energy is among the most promising methods to
obtain accurate correlation energy differences from diagrammatic perturbation theory at modest computational
cost. We show here that a cubic system size scaling can be readily obtained, which dramatically reduces the
computation time by one to two orders of magnitude for large systems. Furthermore, the scaling with respect
to the number of k points used to sample the Brillouin zone can be reduced to linear order. In combination,
this allows accurate and very well-converged single-point RPA calculations, with a time complexity that is
roughly on par or better than for self-consistent Hartree-Fock and hybrid-functional calculations. The present
implementation enables new applications. Here, we apply the RPA to determine the energy difference between
diamond Si and β-tin Si, the energetics of the Si self-interstitial defect and the Si vacancy, the latter with up to
256 atom supercells. We show that the RPA predicts Si interstitial and vacancy energies in excellent agreement
with experiment. Si self-interstitial diffusion barriers are also in good agreement with experiment, as opposed to
previous calculations based on hybrid functionals or range-separated RPA variants.
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I. INTRODUCTION

The random phase approximation (RPA) is presently one of
the most promising routes to improve upon conventional local
or semilocal density functionals [1]. It yields a rather good and
balanced description of most bonding types, including metallic
bonding, covalent, ionic, and, maybe most importantly, van
der Waals (vdW) bonding. Initial applications were limited to
small molecules [2], but first applications to bulk materials
followed soon [3]. The initial results were, however, not
particularly encouraging with lattice constants and binding
energies generally worse than for standard density functionals.
Only when improved implementations, extrapolation to the
infinite-basis-set limit, and relative energies between chemi-
cally relevant entities were considered, results often surpassed
that for semilocal functionals [4–7]. The studies now span
a wide range of applications, including molecular reactions
[8], rare gas solids [5], properties of covalent, metallic, and
ionic solids [9–13], dispersion forces in graphite and between
graphene and surfaces [14–16], layered compounds [17],
adsorption of molecules on surfaces [18], bulk ice properties
[19], and many more applications are emerging.

Conventional local or semilocal density functionals only
describe covalent, metallic, and ionic bonding correctly, or
one should rather say “reasonably” accurately. However,
all local approximations will necessarily fail for dynamic
dipole-dipole interactions. Schemes to add nonlocal dynamic
correlation effects (van der Waals–type bonding) are currently
an active research field. These include atom-centered disper-
sion corrections [20–23] as well as nonlocal van der Waals
corrections considering the density at two points in space
[24–28]. But, none of these approaches are as seamless as the
random phase approximation. For instance, the random phase
approximation sets out from the exact exchange (EXX) energy
and adds correlation on top, whereas the semiempirical van
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der Waals corrections all need to rely on a more approximate
description of the exchange, usually conventional semilocal
density functionals or hybrid functionals.

There is no denying that RPA is not perfect. Among all
the possible many-body diagrams that should be included,
direct RPA exclusively sums the bubble diagrams. Attempts
to include other kind of diagrams, for instance, higher-order
exchange interactions [29,30], the contribution of single
excitations [31–34] or approximate exchange and correlation
contributions inspired by density functional theory [35] are
currently vigorously explored research directions. Also, better
starting points than standard density functionals are explored
[36,37]. Likewise, forces are yet only implemented in two
molecular codes [38,39], and they are not available in solid-
state codes.

Another obstacle of the random phase approximation is
that even the most efficient implementations are presently
scaling with the fourth power of the system size M (i.e.,
M4), and related to this, the time complexity also increases
quadratically with the number of k points that are used to
sample the Brillouin zone. Hence, calculations are limited to,
by today’s standards, small system sizes, typically 50–100
atoms and very few k points, or even smaller systems with
10–20 atoms and at most 100 k points. But, such calculations
can require days or even weeks on modern high-performance
computers.

A solution to this problem has been suggested about
two decades ago by Godby and co-workers in the context
of the GW approximation [40,41]. In the RPA and GW

approximation, the computationally most demanding step is
the calculation of the independent-particle response function
at a set of imaginary frequencies [42,43]. At each frequency,
the calculation of the response function involves a summation
over all pairs of occupied and unoccupied states (NoNu), with a
rank-one update of the microscopic response function for each
pair (scaling quadratically with number of basis functions Nb).
Overall, this yields the previously described scaling. There is
one, in principle, exact alternative that avoids this unfavorable
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scaling. Calculate the Green’s function of the occupied states
G (NoN

2
b ) and likewise the Green’s function of the unoccupied

states G (scaling like NuN
2
b ) and determine the response

function by contraction over the two functions. This step
is ideally performed at a set of imaginary-time points. The
problem that then needs to be addressed is the transformation
from the imaginary time to the imaginary frequency using
a minimum set of time and frequency points. All previous
implementations of this approach relied on a combination of
interpolations, analytic continuations, and standard Fourier
transformations using uniform grids. In a recent work, the
present authors derived an efficient discrete Fourier transform
that allows us to achieve μeV accuracy per atom with as few
as 16 time and frequency points [44]. An alternative favorably
scaling approach was recently discussed by Moussa [45].

In this paper, a detailed discussion of the favorably scaling
RPA implementation is presented for the projector augmented
wave (PAW) method at finite k-point sampling in Sec. II. After
briefly discussing results for bulk Si (Sec. IV A), we show that
the present approach can be applied to 64 atoms and rather
accurate 3 × 3 × 3 k-point grids, or 216 atoms and up to 4 k

points (Sec. IV B). In both cases, the required computation time
is a few hours on 128 cores. Using the present approach, we
calculate the Si self-interstitial energies and Si monovacancy
formation energy and compare to previous results in Sec. IV C.
The comparison with experiment and diffusion Monte Carlo
suggests that the RPA yields excellent results. Furthermore,
the present results agree well with vdW corrected hybrid-
functional calculations, validating these calculations [22].

II. THEORY

In this section, we discuss the basic steps for the com-
putation of the correlation energy in the random phase
approximation ERPA. In the random phase approximation, the
correlation energy is given by [1,46]

ERPA =
∫ ∞

0

dω

2π
Tr {ln [1 − χ (iω)ν] + χ (iω)ν} . (1)

Here, χ is the independent-particle polarizability on the
imaginary frequency axis and ν represents the Coulomb
interaction. The trace Tr in Eq. (1) is evaluated most efficiently
in the reciprocal space and is discussed elsewhere [5].

However, this is only the final step in the full RPA algorithm
shown schematically in Fig. 1. We discuss the individual
steps separately in the following subsections, starting with
a discussion of the chosen frequency grid and the evaluation
of the cosine transformation from the imaginary time to the
imaginary frequency axis.

A. Imaginary-time and frequency grids: The sloppy cosine
transformation

The frequency integration in Eq. (1) is evaluated by a
numerical quadrature and discussed in detail in Ref. [44]. Here,
we summarize only the main points. The frequency and time
grids are obtained by minimizing the discretization error of the
leading contribution to ERPA, the direct Møller-Plesset energy

FIG. 1. Calculation scheme for the RPA correlation energy ERPA

adopted in this paper. The first and third steps are a spatial fast Fourier
transformation (FFT) described in Sec. II B. The second step is the
contraction of two Green’s functions in the space-time domain (GG)
giving the independent-particle polarizability χ (see Sec. II C). The
cosine transformation (CT) in the fourth step is described in Sec. II A.
The adiabatic connection fluctuation dissipation theorem (ACFDT)
is formulated in Eq. (1).

in second order [47,48]

E(2) = −
∫ ∞

0

dω

4π
Tr([χ (iω)ν]2). (2)

To obtain a closed expression for the energy, the Adler
and Wiser formula for the independent-particle polarizability
[42,43]

χk(g,g′,iωk) =
∑
ia

ξia(iωk)〈ψi |ei(g+k)r|ψa〉

×〈ψa|e−i(g′+k)r′ |ψi〉 (3)

with the weights

ξia(iωk) = 2(εa − εi)

(εa − εi)2 + ω2
k

(4)

is inserted into Eq. (2). The imaginary frequency integral is
carried out analytically yielding

E(2) = 1

2

∑
ijab

|〈ψiψj |ν|ψaψb〉|2
εi + εj − εa − εb

, (5)

the conventional direct Møller-Plesset energy expression. In
the last expressions, the indices i and j label occupied orbitals
with one-electron energies εi,εj , and a and b indicate unoccu-
pied orbitals. After discretization of (2) by a quadrature with
weights �γ = (γ1, . . . ,γNω

) and abscissas �ω = (ω1, . . . ,ωNω
),

the resulting expression is subtracted from the exact second-
order energy Eq. (5). The discretization error is minimized
only for the dominating terms with εa = εb and εi = εj [44].

This yields an error estimate

η(x, �ω, �γ ) = 1

x
−

Nω∑
k=1

γk

4x2

(
x2 + ω2

k

)2 (6)

for each transition energy x in the interval

min(εa − εi) � x � max(εa − εi).

This error function is minimized with respect to the Chebyshev
norm giving the optimum Nω quadrature points for the
evaluation of the RPA correlation energy Eq. (1).
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The time grid is constructed analogously using the corre-
sponding imaginary-time representations of Eqs. (3) and (2)
yielding the error function [49]

η̂(x,�τ , �w) = 1

x
−

Nω∑
i=1

wie
−xτi . (7)

In the RPA algorithm presented in this work, the independent-
particle polarizability on the imaginary frequency axis ωk is
determined by a Fourier transformation from the imaginary-
time representation χ (iτi) (see Fig. 1). This is achieved using
the nonuniform cosine transformation [44]

χ (iωk) =
Nω∑
i=1

γik cos(ωkτi)χ (iτi). (8)

The coefficients γik are determined in analogy to the time and
frequency grid by minimizing the error function

η̃(x,ωk, �γ ) = 2x

x − ω2
k

−
Nω∑
i=1

γik cos(ωkτi)e
−xτi (9)

for each frequency point ωk separately. We have observed that
the RPA integral (1) as well as the cosine transformation can
be evaluated accurately with a modest number of grid points
[44]. Typically, 16 time and frequency points suffice for μeV
accuracy per atom.

B. Fast Fourier transforms within supercells

In order to calculate the polarizability efficiently, spatial
fast Fourier transformations (FFTs) in steps one and three in
Fig. 1 are required. Using supercells allows us to achieve linear
scaling with respect to the number of k points in the contraction
step GG (discussed in Sec. II C). Before continuing, we review
a few basic relations between real and reciprocal space and
introduce a concise terminology.

Given a unit cell C, the corresponding first Brillouin zone
will be denoted by C∗. We call the set of all translation vectors
of the unit cell Lc and, vice versa, L∗

c indicates the set of
all translation vectors vectors of C∗. The vectors g ∈ L∗

c are
the usual reciprocal lattice vectors (large dots in Fig. 2). If
the unit cell C is replicated N times along each direction,
a supercell S containing N 3 copies of the original unit cell
C is obtained. Then, the corresponding Brillouin zone S∗
is a subset of C∗. Their origins, the 
 point, coincide (cf.
Fig. 2) [50]. Analogously to the unit cell, we write Ls and L∗

s

for the translational vector sets of the supercell S. It follows
immediately that [50,51]

L∗
c ⊆ L∗

s . (10)

The reciprocal superlattice vectors G build a uniform N ×
N × N lattice Kc∗ containing Nk vectors k in the first
Brillouin zone of the original unit cell C∗. These are the
k points (see Fig. 2) used to sample the Brillouin zone in
the original primitive computational cell. In the following,
we will distinguish between reciprocal superlattice vectors
G ∈ L∗

s and the k points k ∈ K∗
c .

Quantities such as the response function χ or the Green’s
function G are periodic in space

G(r + a,r′ + a) = G(r,r′), ∀ a ∈ Lc. (11)

FIG. 2. (Color online) Illustration of relation between reciprocal
cell C∗ (dark gray cell), k-point grid K∗

c (red dots in dark gray
square), and reciprocal supercell S∗ (small light gray square) for
a two-dimensional cubic cell with S = (2 × 2)C. The vector g is a
reciprocal lattice vector of C∗ and G is a reciprocal lattice vector of
S∗. The set of all reciprocal lattice vectors L∗

c is represented by big
dots and is a subset of L∗

s , the set of all reciprocal superlattice vectors
(small and big dots). The k point k coincides with the reciprocal
superlattice vector G′ and every vector k + g can be represented by
a reciprocal superlattice vector G.

This implies that the Fourier representation of G can be written
as [52]

G(r,r′) = 1

Nk

∑
k∈K∗

c

Gk(r,r′), (12)

where

Gk(r,r′) =
∑

gg′∈L∗
c

e−i(k+g)rGk(g,g′)ei(k+g′)r′
(13)

and Nk = N 3 denotes the number of k points in the first
Brillouin zone of the unit cell. In the last expression, the
notation

Gk(g,g′) = G(k + g,k + g′), ∀ k ∈ K∗
c ,g ∈ L∗

c (14)

was used, which indicates that for each k ∈ K∗
c a different set

of points in the reciprocal space k + g,k + g′ form a matrix
Gk with indices g,g′ ∈ L∗

c . We note that for each k, the set
{k + g}g∈L∗

c
covers a different subset of L∗

s , so that

L∗
s =

⋃
k∈K∗

c

{k + g}g∈L∗
c

(15)

holds. This implies that G = k + g is a reciprocal lattice vector
of the supercell (dashed vector in Fig. 2) and that the Fourier
transform (12) alternatively can be written as

G(r,r′) =
∑

GG′∈L∗
s

e−iGrG(G,G′)eiG′r′
. (16)

The notation G(G,G′) indicates a single huge matrix with
indices G,G′ ∈ L∗

s . However, one has to keep in mind that this
matrix is essentially block diagonal. That is, for two reciprocal

054115-3
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lattice vectors G = k + g and G′ = k′ + g′, the matrix reads
as

G(G,G′) = δkk′Gk(g,g′). (17)

Therefore, the two representations (16) and (12) have the same
complexity.

In analogy, using inverse arguments for the polarizability,
one obtains the two real-space Fourier representations

χk(g,g′) =
∑

rr′∈C

ei(k+g)rχ (r,r′)e−i(k+g′)r′
, (18)

χ (G,G′) =
∑

RR′∈S

eiGRχ (R,R′)e−iG′R′
. (19)

We summarize the most important result of this section
so far. The relations (12) and (16) imply that the Fourier
transformation can be evaluated in two different ways. In
Eq. (12), the Fourier transformation Gk(g,g′) is a set of
N × N × N individual matrices “centered” at k ∈ K∗

c with
reciprocal lattice vectors of the unit cell g ∈ L∗

c . Alternatively,
the Green’s function (16) can be considered to be a single
huge block-diagonal matrix G(G,G′) with matrix indices
G,G′ of the reciprocal lattice of the supercell L∗

s . We note
that Steinbeck et al. used similar strategies, but with one
crucial difference: in their work, an auxiliary supercell Green’s
function is defined without the Bloch phase factors e−ik(r−r′).
Although elegant, we found no way to extend this prescription
to the PAW methodology discussed below. The present strategy
is equally efficient, but exploits the translational symmetry
relations

G(r − a,r′) = G(r,r′ + a), (20)

G(r,r′) = G∗(r′,r) (21)

instead.
These relations follow trivially from the definition of the

Green’s function

G(r,r′,iτ ) =
∑

n

ψn(r)ψ∗
n (r′)e−εnτ (22)

and imply the symmetry of the matrix G(R,R′) illustrated
in Fig. 3 with the irreducible stripe G(r,R′) depicted by the
thick rectangle. This stripe is obtained from the primitive block
Gk(r,r′) using

Gk(r,R′ = r′ + a) = e−ikaGk(r,r′) (23)

with (12) and contains all necessary data in order to determine
the remaining matrix elements of the super matrix G(R,R′).

In practice, we exploit these symmetries and evaluate the
Fourier transformation of the Green’s function in two steps:

G(r,k + g′) =
∑
g∈L∗

c

Gk(g,g′)ei(k+g)r, (24)

G(r,R′) =
∑

G′∈L∗
s

e−iG′R′
G(r,G′). (25)

The first spatial index of the Green’s function G is determined
by an FFT using the unit cell C, and the second spatial index
by an FFT with respect to the supercell S. In the second FFT,
G′ is the union of k + g′ as specified in Eq. (15). Hence,
the first spatial index of G is restricted to the unit cell,

r + a3r + a2r + a1R =
R

=
r

+
a

1
r

+
a

2
r

+
a

3
r

r

FIG. 3. Symmetry of the Green’s function matrix in real space
G(R,R′) for a S = (2 × 1)C supercell with the irreducible stripe
G(r,R′) (thick rectangle). Due to Eq. (21), the blocks below the
diagonal are complex conjugated.

whereas the second extends over the entire supercell building
the irreducible stripe G(r,R′).

Analogously, the FFT of the RPA polarizability from real
space to reciprocal space is determined by

χ (r,G′) =
∑
R′∈S

χ (r,R′)eiG′R′
, (26)

χk(g,g′) =
∑
r∈C

e−i(k+g)rχ (r,k + g′). (27)

Because of |L∗
s | = Nk|L∗

c | = NkNb (with Nb being the total
number of considered basis vectors g) the time complexity for
all steps (24)–(27) is of the order

ln
(
N2

b Nk

)
N2

b Nk ≈ ln(M2Nk)M2Nk, (28)

i.e., roughly linear in Nk and quadratic in the system size M .
A final remark concerning the first FFT in Fig. 1 is in

place here. In principle, the FFT step for the Green’s functions
from reciprocal to real space can be avoided by evaluating
the Green’s function directly on the real-space grid. However,
this would require considerably more storage for the Green’s
function and would increase the computational cost since the
number of real-space points is at least twice but often up to
eight times larger than the number of plane-wave coefficients.

C. Forming G(iτ )G(−iτ ) in the PAW basis

In analogy to the previous section, here and in the following
small bold letters indicate vectors of the unit cell, whereas
capital letters represent vectors in the super cell.

In this section, we discuss the contraction of two Green’s
functions in the space-time domain yielding the independent-
particle polarizability [40,41]

χ (r,R′,iτ ) = −G(r,R′,iτ )G∗(r,R′,−iτ ). (29)
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For the PAW basis, this is a rather involved step and requires
careful consideration. We start with a short review of the PAW
method.

Within the PAW approach, the all-electron orbital ψi is
represented by the corresponding pseudo-orbital ψ̃i via the
linear transformation [53,54]

|ψi〉 = |ψ̃i〉 +
∑

μ

(|φμ〉 − |φ̃μ〉)〈p̃μ|ψ̃i〉. (30)

Here, the second term acts only within the augmentation sphere
�R enclosing the atoms. The index μ = (Rμ,nμ,lμ,mμ) is
an abbreviation for the atomic site Rμ, the energy quantum
number nμ and angular momentum numbers (lμ,mμ) char-
acterizing the solution φμ of the Schrödinger equation for
a reference atom. The pseudocounterparts φ̃μ are smooth
functions coinciding with φμ outside �R . They are dual to
the projectors p̃μ within �R:

〈p̃μ|φ̃ν〉 = δμν. (31)

For further information about the chosen projectors p̃μ and
pseudopartial waves φ̃μ, we refer the reader to the literature
[53,54].

Representing the all-electron orbitals ψi by pseudo-orbitals
ψ̃i using Eq. (30), additional contributions to χ , defined in
Eq. (3), appear. These contributions stem from the evaluation
of the all-electron matrix elements [54,55]

〈ψi |ei(k+g)r|ψa〉
= 〈ψ̃i |ei(k+g)r|ψ̃a〉 +

∑
r∈C

ei(k+g)r
∑
μν

〈ψ̃i |p̃μ〉

×Qμν(r)〈p̃μ|ψ̃a〉. (32)

Here, the auxiliary function Qμν ,

Qμν(r) = φ∗
μ(r)φν(r) − φ̃∗

μ(r)φ̃ν(r), (33)

describes the difference between the charge density of the
pseudopartial and all-electron partial waves. Typically, this
function is oscillatory in the augmentation sphere �R , so that
in practice further approximations to Qμν are applied. In the
present code, the function is expanded in an orthogonal set
of functions, and the rapid spatial oscillations are neglected
beyond a certain plane-wave energy cutoff [54,56].

Using Eqs. (32) and (3) and Fourier transforming the RPA
response function to real space and imaginary time iτ , the
resulting expression for χ (r,R′,iτ ) contains four terms

χ (r,R′,iτ ) =
4∑

j=1

χ (j )(r,R′,iτ ). (34)

Each contribution χ (j ) is characterized as follows: χ (1)

contains a summation of pseudoterms only

χ (1)(r,R′,iτ ) ∝ ξia(iτ )ψ̃i(r)ψ̃∗
i (R′)ψ̃∗

a (r)ψ̃a(R′) (35)

and is represented on a plane-wave grid. The second χ (2) and
third contribution χ (3) contain terms from one augmentation
sphere

χ (2)(r,R′,iτ ) ∝ ξia(iτ )ψ̃i(r)ψ̃∗
a (r)

×
∑
αβ

〈ψ̃i |p̃α〉Qαβ(R′)〈p̃β |ψ̃a〉, (36)

χ (3)(r,R′,iτ ) ∝ ξia(iτ )ψ̃∗
i (R′)ψ̃a(R′)

×
∑
μν

〈ψ̃a|p̃μ〉Qμν(r)〈p̃ν |ψ̃i〉. (37)

The fourth term contains only augmentation terms

χ (4)(r,R′,iτ ) ∝ ξia

∑
μν

〈ψ̃a|p̃μ〉Qμν(r)〈p̃ν |ψ̃i〉

×
∑
αβ

〈ψ̃i |p̃α〉Qαβ(R′)〈p̃β |ψ̃a〉. (38)

All terms need to be accounted for when computing the RPA
polarizability from Green’s functions using the contraction
formula (29). For this purpose, we define the following Green’s
functions:

G
(1)
k (g,G′,iτ ) =

∑
n

〈ψ̃nk|g〉〈G′|ψ̃nk〉e−εnkτ , (39)

G
(2)
k (μ,G′,iτ ) =

∑
n

〈ψ̃nk|p̃μ〉〈G′|ψ̃nk〉e−εnkτ , (40)

G
(3)
k (g,α,iτ ) =

∑
n

〈ψ̃nk|g〉〈p̃α|ψ̃nk〉e−εnkτ , (41)

G
(4)
k (μ,α,iτ ) =

∑
n

〈ψ̃nk|p̃μ〉〈p̃α|ψ̃nk〉e−εnkτ , (42)

where the notation

〈ψ̃nk|g〉 =
∑
r∈C

ψ̃∗
nk(r)ei(k+g)r, (43)

〈ψ̃nk|G′〉 =
∑
R′∈S

ψ̃∗
nk(R′)eiG′R′

(44)

was used, the Fermi energy was set to εF = 0 and G′ = k + g′
is assumed for Eqs. (39)–(41). For each function G(j ) two

representatives G(j ),G
(j )

, for occupied and unoccupied states,
are stored. Occupied Green’s functions (εi < 0) are thereby
evaluated on the negative, unoccupied functions (εi > 0) on
the positive time axis τ only. In this way, the resulting
Green’s functions G(j ) are linear combinations of decaying
exponentials and therefore bounded in time.

The computational cost for each term G(j ) is

NωNkN
3
b ≈ NωNkM

3, (45)

where Nω is the number of imaginary grid points. Using the
FFTs (24) and (25) from the previous section, the real-space
Green’s functions are contracted as follows:

χ (r,R′,iτ ) = G(1)(r,R′,iτ )G
∗(1)

(r,R′,−iτ )

+
∑
μν

G(2)(μ,R′,iτ )G
∗(2)

(ν,R′,−iτ )Qμν(r)

+
∑
αβ

G(3)(r,α,iτ )G
∗(3)

(r,β,−iτ )Qαβ(R′)

+
∑
μναβ

G(4)(μ,α,iτ )G
∗(4)

(ν,β,−iτ )

×Qμν(r)Qαβ(R′). (46)

Here, the atom positions Rμ,Rν are restricted to the unit cell C,
while Rα,Rβ take values within the supercell S (cf. Sec. II B)
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[41]. From χ (r,R′,iτ ), χk(g,g′) at individual k points is finally
determined using Eqs. (26) and (27), and the correlation energy
in the random phase approximation is then determined in the
usual manner at each k point.

Considering the computational time for each step (46), (45),
(28), and (8) for the evaluation of ERPA shows that the present
algorithm determines the RPA energy with a computational
cost of ≈NkN

3
b . This reduces the time complexity by a factor

≈NkNb compared to previous implementations.

D. Symmetry

The present code allows us to use symmetry partially.
For instance, the density functional theory calculations are
performed using only the irreducible wedge of the Brillouin
zone, and furthermore the RPA correlation energy is only
calculated at the irreducible k points k using χk(g,g′) [compare
Eq. (27)]. The Green’s function Gk(g,g′) could be also
constructed in the irreducible wedge, however, presently we
first use symmetry to construct the orbitals at the all k points
and then construct the Green’s function for all k points in the
full Brillouin zone.

Currently, we disregard any symmetry, whenever a super-
cell index G or R is involved. This implies that all quadratically
scaling steps fail to benefit from symmetry, whereas the
cubically scaling steps [except the construction of Gk(g,g′)]
exploit symmetry. This seems to be a reasonable compromise
between the implementation effort and the compute cost.

III. TECHNICAL DETAILS

In this work, all calculations were performed using the
Vienna ab initio simulation package (VASP) using the projector
augmented wave method of Blöchl in the implementation of
Kresse and Joubert [53,54]. The Si potential was constructed
to conserve the scattering properties of the atoms well up
to about 15 Ry above the vacuum level. This was achieved
by using additional projectors above the vacuum level. Core
radii of 1.90 a.u. were used. Specifically, the Si GW potential
released with VASP.5.2 was employed.

All plane waves with the kinetic energy Ecut lower then
250 eV are used in the DFT calculations, and the DFT
calculations are performed using the Perdew-Burke-Ernzerhof
(PBE) functional [57]. The EXX + RPA@PBE calculations
are performed at the same plane-wave cutoff. When summa-
tions over unoccupied Kohn-Sham states are required (virtual
orbitals), all orbitals spanned by the basis set are determined
by exact diagonalization of the Kohn-Sham Hamiltonian. The
correlation energy in the random phase approximation ERPA

is then calculated as discussed in the previous section.
The response function itself is also expanded in a plane-

wave basis set. The plane-wave cutoff for this basis set is set
to 120–166 eV (smaller than the basis set for the orbitals),
and the correlation energy is extrapolated to the infinite basis
set limit assuming that the basis set error falls off like the
inverse of the number of plane waves included in the basis set
for the response function [5]. In the VASP code, this requires
a single calculation, as the response function is truncated
at different cutoffs after calculation at the largest basis set
of 166 eV. The extrapolation is performed automatically by

the code, requiring a minimum of extra computational time.
The structures used for the calculations were determined by
relaxing all internal degrees of freedom at the PBE level
(keeping the cell shape and volume fixed). In the subsequent
RPA calculations, the PBE structures were used since forces
and the stress tensor are presently not available. Similar
strategies are also routinely adopted in diffusion Monte Carlo
simulations and most quantum chemistry, e.g., coupled cluster,
calculations.

IV. RESULTS

A. Bulk properties

With the present PAW potentials, the volume per atom is
20.46 Å3 and 15.35 Å3 for cubic diamond and β-Sn for PBE.
As a first test, we calculated the volume per atom for the RPA
for these two phases. Using 6 × 6 × 6 k points and 10 × 10 ×
10 k points for diamond and β-Sn, respectively, the predicted
atomic volumes are 20.0 and 15.25 Å3, slightly smaller than the
PBE volumes. Per atom, the RPA energy difference between
the two phases is 380 meV. A similar energy difference of 390
meV using the same PAW potentials was also calculated by
Xiao et al. [11].

This is 100 meV larger than the energy difference predicted
by the PBE functional (280 meV). Using diffusion Monte
Carlo (DMC), Batista et al., Alfè et al., and Henning et al.
predicted values of 480 ± 50 meV [58], 475 ± 10 meV [59],
and 424 ± 20 meV [60], respectively (the latter two values
are including core polarization contributions). In this case, the
DMC does not seem to be suitable to gauge the quality of
the RPA since the transition pressure from diamond to the
β-Sn phase predicted from the DMC data is about 16.5 GPa
[58] and 14.0 ± 1.0 GPa [60], respectively, which is larger
than the experimental estimates of 10.3–12.5 GPa [59]. The
energy difference predicted by the RPA (380 meV), however,
corresponds to a transition pressure of about 13.5 GPa in
reasonable agreement with the experimental estimates. The
origin of the error of the DMC is not known, but we
believe it could be related to the fixed-node approximation,
or insufficient convergence of the sampling of the Brillouin
zone for the metallic β-Sn phase.

Including the 2s and 2p electrons in the valence for the RPA
calculations has a negligible effect on the predicted volumes
[10]. However, it still lowers the energy difference between
the two phases to 340 meV. A similar reduction from core
polarization was also predicted in DMC calculations [59]. This
lowers the predicted transition pressure to 12 GPa, now in
excellent agreement with the experimental estimates. Overall,
these results support the quality of the RPA predictions. For a
more detailed discussion of RPA results, for instance inclusion
of zero-point vibration effects, we refer to Xiao et al. [11].

B. Time complexity for large supercells

The results for the Si self-interstitials and Si vacancies will
be discussed in the next section. Here, we briefly elaborate on
the required computation time. The present calculations were
performed for 64, 128, and 216 atom supercells (and 256 for the
vacancy). The RPA corrections were determined for various
k-point grids starting with the 
 point. For the smallest cell, we
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FIG. 4. (Color online) Computational time for 64, 128, and 216
atoms as a function of the number of k points (in the full Brillouin
zone). The total (wall clock) time is shown for 64, 128, and 224
cores. The computational demand increases linearly in the number
of k points and cubically in the number of atoms. The deviation
from linearity is related to the need to double the number of cores for
3 × 3 × 3 k points (64 atoms) and 2 × 2 × 2 k points (128 atoms), and
the nonperfect scaling with the number of cores. The corresponding
reported compute time has been doubled.

could perform RPA calculations for up to 3 × 3 × 3 k points
in less than 4 h on 128 cores, a very modest computational
effort. Calculations with more k points are difficult since the
memory requirements would force us to increase the number of
cores, but the parallel efficiency of the present code version is
not yet very good, making such calculations rather inefficient.
The loss of efficiency is already witnessed for 3 × 3 × 3 k

points, where we had to increase the number of cores from
64 to 128, gaining only little speedup from the additional 64
cores (compare Fig. 4). This is the reason why the reported
computation time for 64 atoms and 3 × 3 × 3 k points (scaled
back to 64 nodes) deviates from the straight-line behavior. For
128 atoms we performed 
-only calculations and calculations
using 2 × 2 × 2 k points. Again, calculations using 2 × 2 ×
2 k points required an increase in the number of cores, here
from 128 to about 200. A k-point sampling with four k points
was also realized by using only every second k point of the 2 ×
2 × 2 grid, corresponding to an fcc subgrid of the full simple
cubic grid. For 216 atoms, the calculations were performed
with a single k point and two and four k points. The second k

point corresponds to the coordinates (1/4, 1/4, 1/4) 2π/a or
a bcc subgrid of a 2 × 2 × 2 mesh.

In order to investigate the scaling with system size in more
detail, we performed RPA calcuations for 54, 128, and 250
bcc unit cells using the 
 point (see Table I). The timings
reported in Table I and Fig. 4 clearly confirm that the present
code scales linearly in the number of k points, and roughly
cubically with the number of atoms as discussed at the end of
Sec. II C.

A few final comments are in place here. First, the reported
timings were obtained using a complex code version. At
the 
 point, however, the response function is real valued,
which allows us to reduce the computational time by a
factor 2 compared to the reported values. The corresponding

TABLE I. Timings in minutes for an RPA calculation for different
bulk Si bcc cells. The calculations are done for the 
 point only and
the number of cores is increased with system size. Since one of the
computational steps scales only quadratically with system size, the
total scaling is better than cubic.

Atoms Cores Time Time×cores/atoms3 × 103

54 32 14.3 2.91
128 64 83.2 2.54
250 128 299.9 2.45

calculations take 6 min for 64 atoms on 64 cores, or about
1 h for 216 atoms on 224 cores. The scaling is very close to
the expected scaling. We can also compare the computational
time to our previous code version that scales quadratically
with the number of k points and with the fourth power of the
number of atoms. For 64 atoms and the real 
-point version,
the old version required a reasonable 30 min (only a factor
5 slower than the new version), however, for four k points the
calculations are already a factor 10 slower, and for 3 × 3 × 3 k

points we expect the factor to be around 100. Considering
common runtime constraints on supercomputers, this would
make the calculations almost impossible using the previous
RPA implementation [5].

C. Interstitial and vacancy

1. Considered structures and k-points sampling

We start with a brief discussion of the various self-
interstitials. The energetically most stable self-interstitial is
the so-called dumbbell configuration (X), in which two Si
atoms reside at the position originally occupied by a single
Si atom. The “dimer” is placed symmetrically in this position
and oriented parallel to the [110] direction. The second most
favorable position is the hexagonal hollow (H), where the Si
interstitial is coordinated to six Si atoms forming a hexagonal
ring. In PBE, this position is unstable, and the central Si atom
tends to move slightly away from the central position in a
direction orthogonal to the hexagonal ring [61]. As for instance
done by Rinke et al., we denote this lower-symmetry sixfold-
coordinated position as C3v (corresponding to the symmetry
of this configuration) [62]. Somewhat higher in energy than
the other interstitial sites is the tetragonal site (T), in which the
additional Si atom is coordinated to four nearest Si neighbors,
so that the local coordination of the interstitial is identical to
the other Si atoms. This position is unique insofar that the
highest occupied orbital is threefold degenerate (t2 symmetry)
but only occupied by two electrons. This would suggest that the
position is susceptible to a Jahn-Teller distortion, but at least
in PBE and for 64 atoms, a calculation of all vibrational modes
does not show any instabilities. Likewise, the vacancy (V) is
characterized by a threefold-degenerate t2 highest orbital that is
also occupied by two electrons. This configuration is known to
undergo a Jahn-Teller distortion to a D2d symmetry with slow
supercell convergence [63]. In PBE, we observe the distortion
from the 216-atom cell on, with the distortion fully developed
only for a 256-atom cell; e.g., the magnitude of the structural
distortion is about 25% smaller in the 216-atom cell than in
the 256-atom cell. For the smaller cells, the distortion only
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TABLE II. The second, third, and fourth columns report the
difference between RPA and PBE formation energies for different
defect configurations, k points and supercells, with the k-point set
indicated in the first row (all values in eV). The second row in each
set reports the k-point convergence of the PBE formation energies.
The columns PBE and RPA report the final converged formation
energies. The RPA value was calculated by adding the most accurate
corrections to the k-point converged PBE values. The range separated
rsRPA values are from Ref. [65], and the values for HSE + vdW are
from Ref. [64].

16 atoms 23 33 43 PBE RPA
X(PBE) 2.525 3.481 3.541 3.561
X 0.824 0.706 0.711 3.561 4.27
C3v 0.855 0.800 0.745 3.644 4.39
H 0.830 0.750 0.707 3.740 4.45
T 0.930 0.882 0.868 3.659 4.53
V 0.426 0.444 0.446 3.023 3.47
X→H 0.862 0.809 0.760 3.783 4.54

64 atom 
 23 33 PBE RPA rsRPA
X(PBE) 2.440 3.616 3.611 3.614
X 0.818 0.659 0.654 3.614 4.27 4.50
C3v 0.849 0.788 0.745 3.651 4.40
H 0.820 0.753 0.708 3.658 4.37 4.65
T 1.025 1.080 1.046 3.790 4.84
VJT 0.851 0.813 0.781 3.642 4.42 4.24
X→H 0.789 0.770 0.698 3.924 4.62 4.99

128 atom 
 4 23 PBE RPA
X(PBE) 2.662 3.603 3.571 3.610
X 0.814 0.670 0.683 3.610 4.29
C3v 0.843 0.839 0.817 3.647 4.46
H 0.832 0.775 0.755 3.654 4.41
T 1.153 1.078 1.112 3.766 4.88
VJT 0.855 0.795 0.829 3.636 4.47

216 atom 
 2 4 PBE RPA HSE
+vdW

X(PBE) 3.256 3.341 3.571 3.566
X 0.724 0.710 0.632 3.566 4.20 4.41
C3v 0.820 0.812 0.743 3.619 4.36 4.40
H 0.789 0.779 0.707 3.626 4.33
T 1.105 1.144 1.139 3.791 4.93 4.51
VJT 0.789 0.755 0.742 3.646 4.39 4.38

256 atom 
 2 PBE RPA
VJT(PBE) 3.272 3.518 3.589
VJT 0.839 0.745 3.589 4.33

occurs if the k-point mesh is chosen artificially coarse (e.g.,
2 × 2 × 2 for 64 atoms), and we have used such k-point sets to
prepare the symmetry-reduced Jahn-Teller distorted vacancy
configuration (VJT). The energy difference to the undistorted
configuration is, however, small and only of the order of
20 meV and can be safely disregarded for the present purpose.

The DFT calculations were carefully converged. In agree-
ment with other studies, we found that 4 × 4 × 4 k points are
usually sufficient for 64-atom cells, and 2 × 2 × 2 k points
for 216-atom cells [63,64]. The only exception is the metallic
T configuration, which in our calculations only converged to
meV accuracy using slightly more k points. The final PBE
values reported in Table II were obtained using 8 × 8 × 8,

6 × 6 × 6, 4 × 4 × 4, and 3 × 3 × 3 k points for 16, 64, 128,
and 216 atoms. For the Si vacancy, also a 256-atom cell with
3 × 3 × 3 k points was used. With these settings, the values are
converged to within a few meV. Except for a constant offset,
the present PBE values agree well with the values reported by
Gao et al. [64]. It is gratifying that two very different codes
can obtain some 10-meV agreement for tiny relative energy
differences, when the setups are carefully converged.

2. Energetics of point defects

The results for Si self-interstitials and Si vacancies are
summarized in Table II. The RPA energies were evaluated
using 16 frequency points. For 64 atoms, increasing the number
of frequency points from 16 to 20 changed the results by less
than 0.5 meV supporting the previous claim that few μeV
accuracy per atom can be attained (the changes are largest
for the defects with very small or even vanishing Kohn-Sham
one-electron gaps). Here, we adopted the strategy to evaluate
the difference between RPA + EXX and PBE at various k-point
sets. This strategy seems to work quite well: even though the
PBE energies are wrong by more than 1.2 eV using the 
 point
only [see lines marked X(PBE)], the error in the difference
between RPA + EXX and PBE is at most 150 meV at the 


point for 64 atoms. First useful corrections to DFT can hence be
obtained already with a rather coarse sampling. With 2 × 2 × 2
k points, the errors in the RPA correction are below 50 meV,
which is most likely acceptable for many purposes. For 128
atoms, the difference between four k points (the fcc grid) and
eight k points is a rather modest 20 meV. As a general rule of
thumb, it seems that the k-point errors in the RPA corrections
are about 1

3 of the k-point errors of the PBE energies. This also
suggests that four and two k points will yield only errors of
about 10–20 meV for the calculation of the RPA correction for
the 216- and 256-atom cells, respectively.

Considering the 
-point only, the errors in the DFT energies
and the RPA corrections are 300 and 100 meV, respectively,
for the largest cells (216 and 256 atoms). This confirms the
observation of many previous studies that calculations at the

 point should be considered with caution. Furthermore, we
note that the convergence with the number of atoms of both
the DFT energies and the corrections is not monotonic but
shows some residual fluctuations. This might be expected since
the cell shape, simple cubic for 64 and 216 atoms, but fcc
for 128 atoms, influences the electronic dispersion, the long-
range electrostatic, as well as elastic interactions between the
defects [63,66]. For the present case, the k-point converged
RPA formation energies vary by at most 100 meV between
different super cells.

We start with a comparison with the most accurate the-
oretical values presently available, DMC data. Our results
yield consistently lower formation energies than all DMC
calculations, although the agreement with the latest DMC data
is overall very good, in particular, for relative energies. Parker
et al. predicted values of 4.4(1), 5.1(1), and 4.7(1) for X,
T, and H using DMC [67], compared to our values of 4.20,
4.93, and 4.33 (largest supercell). We tend to believe that the
residual underestimation by 200 meV is an error of the RPA
since the DMC values are so consistently higher in energy
[58,67,68]. However, one should also keep in mind that most
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DMC calculations were performed with fairly small 16-atom
supercells [58] with extrapolation to the dilute limit based on
DFT energies. Likewise, the k-point sampling in the DMC
calculations was always limited to a single k point, which
might affect the predicted energies. In most DMC calculations,
however, many-electron k-point errors due to the discretization
of the momentum transfer between two k points are estimated
using the structure factor method, a method we could but
have not applied in our RPA calculations [67,69]. This implies
that the k-point errors that we observe in the RPA are not
transferable to well-extrapolated DMC calculations, where
many electron k-point errors are expected to be much smaller.

The present formation energies are also very well within
the range of experimental values and, furthermore, agree
reasonably well with the HSE calculations of Gao et al. [64],
and to a lesser extent with the HSE + vdW calculations by
the same authors. Specifically, the most stable structure is
the dumbbell configuration X, followed by the interstitial in
the hexagonal hole H, which is about 100 meV higher in
energy, in excellent agreement with HSE calculations. The
main discrepancy to the results of Gao is our instability of the
tetragonal site [64]. In our calculations, this site is 600 meV
above the dumbbell configuration X (in agreement with DMC
data). In HSE, the difference is only 300 meV, and in HSE +
vdW it is just 100 meV. In vdW-DFT this configuration is
lowered compared to HSE by an increase of the polarization at
the four nearest-neighbor sites in the HSE + vdW calculations.
In agreement with this observation, our negative correlation
energy is largest for this metallic configuration, almost 2 eV
lower than for the other interstitial sites. However, the unfa-
vorable EXX energy of this configuration more than makes up
for this increase in the correlation energy. The origin for the
unfavorable EXX energy is the “metal-like” behavior of this
specific configuration with three degenerate partially occupied
p orbitals at the Fermi level: As for any metallic configuration,
exact exchange penalizes this configuration, here by more
than 2 eV. This is also the reason why this configuration
is less favorable in hybrid functionals. We believe that the
present seamless approach should give a better description
than an introduction of vdW corrections on top of a hybrid
functional with an ad hoc mixture between exact exchange and
semilocal exchange. After all, vdW-DFT is derived from the
RPA correlation energy expression considering the interaction
between two coupled quantum harmonic oscillators [22].
However, one also needs to concede that the accuracy of the
RPA for configurations with symmetry-degenerate states at the
Fermi level is certainly not yet fully established and this issue
might require further studies. Before continuing, we finally
note that the RPA does predict the hexagonal hole to be lower
in energy than the symmetry-broken C3v configuration. This is
consistently observed for all supercell sizes. In this case, RPA
clearly does not favor a symmetry-broken solution, whereas
PBE does.

3. Diffusion barrier of interstitial

The final quantity we consider is the diffusion barrier of the
interstitial Si atom. In all recent publications, including range-
separated RPA and vdW corrected HSE, it was agreed that the
lowest activation barrier for diffusion is encountered for the

diffusion of one atom from the dumbbell configuration X to the
hexagonal hole H [64,65]. We first tested this conjecture by
performing finite-temperature molecular dynamics at 800 K
for the 64-atom cell, the PBE functional, and a 3 × 3 × 3
k-point mesh. Indeed, Si diffuses fairly rapidly with all
diffusion events occurring from the dumbbell configuration X
to the hollow site H, followed by a rapid jump from H to another
site X′. In the RPA calculations, the estimated activation
enthalpy for interstitial diffusion is 4.62 eV (64-atom cell),
in very good agreement with estimates of 4.69 eV [70], but
smaller than the estimates of Bracht et al. (4.95±0.03 eV) [71].
The diffusion barrier from X to H is calculated to be 350 meV,
only slightly larger than the recent value predicted from HSE
+ vdW (290 meV) [64]. Both values are in reasonable, but
certainly not great, agreement with the best experimental
estimates of 200 meV measured at cryogenic temperatures
(−273 ◦C to −150 ◦C) [72]. The remaining difference between
RPA and HSE + vdW could be related to the fact that we
have used PBE geometries throughout this work, whereas Gao
et al. performed the calculations consistently using geometries
determined by HSE + vdW.

Our present estimate for the diffusion barrier differs from
the value of 490 meV obtained using range-separated RPA
(rsRPA) by Bruneval [65]. Furthermore, whereas the vacancy
formation energy of 4.33 eV is identical to rsRPA, our
interstitial formation energies are about 200–300 meV lower
than those predicted using rsRPA [65]. Since the technical
parameters of the calculations of Bruneval are similar to our
setups, this is either a consequence of different pseudopo-
tentials or range separation. Although range separation is an
approach that allows us to reduce the number of occupied
orbitals with little impact on accuracy, the results, to some
extent, always depend on the range-separation parameter, and
the optimal choice varies between systems with small lattice
constants (large Fermi vector) and systems with large lattice
constants (small Fermi vector). Also, range separation spoils
the basis-set extrapolation: for standard RPA the extrapolation
with the basis-set size of the response function strictly follows
a one over basis-set size behavior for all systems we have yet
considered. This is not the case, when range separation is used,
so that residual errors are difficult to control and estimate. In
general, we hence prefer, whenever computable, the standard
RPA to an approximate method.

4. Small unit cells

Finally, we would like to comment on the smallest 16-
atom unit cell since most high-level DMC calculations are
performed for such a small unit cell. Except for the tetragonal
site and vacancy, the results are in reasonable agreement
with the larger unit cells, both on the level of the PBE, as
well as, on the level of the RPA. Furthermore, the calculated
energy correction PBE-RPA are accurate to about 50 meV,
except again for the vacancy and tetragonal site. We recall that
these are the two configurations resulting in partially filled
states. Obviously, aggregation of such defects reduces their
formation energy. This effect is most pronounced and only
relevant for the vacancy, which is predicted to be much more
stable in the 16-atom unit cell than in the larger unit cells. In
fact, our results imply that, configuration entropy disregarded,
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MERZUK KALTAK, JIŘÍ KLIMEŠ, AND GEORG KRESSE PHYSICAL REVIEW B 90, 054115 (2014)

vacancies should cluster. This is in agreement with Ref. [73],
where diffusion of vacancies in Si has been investigated.

V. DISCUSSION AND CONCLUSIONS

In this work, we have discussed a cubic scaling algorithm
for the calculation of the RPA correlation energy and have
shown practical applications of the algorithm to supercells
containing up to 256 atoms.

The main strategy of the cubic scaling algorithm is to
determine the Green’s function for positive and negative
imaginary time and, concomitantly, occupied and unoccupied
states. This step scales like Norbitals × Nb × Nb, where Nb

specifies the basis-set size for the orbitals [see Eq. (45)].
The independent-particle polarizability is then trivially

given by the pointwise contraction in real space of these
two Green’s functions at any considered time point [cf.
Eq. (29)]. The contraction is formally only a step scaling
like Nreal × Nreal, where Nreal is the number of grid points
in real space. In practice, this step is fairly involved in the
PAW method, so that the computational time of this step is
often similar to the calculation of the Green’s functions itself
[see Eq. (46) in Sec. II C].

The final step is the Fourier transformation from imaginary
time to imaginary frequency. This step is discussed in more
detail in another publication also elaborating on the issue
of optimal time and frequency grids and their duality in
detail. We, however, stress here that an accuracy of few
μeV/atom can be attained using about 16 imaginary time
and frequency points. After the Fourier transformation to
imaginary frequency, the calculations proceed in the same
manner as standard RPA calculations, by diagonalization of
the polarizability using the plasmon formula for the correlation
energy [cf. Eq. (1)].

As demonstrated here, calculations for 64 Si atoms and
3 × 3 × 3 k points can be performed in about 5 h on 128 cores.
About the same time is required for 216 Si atoms and 2
k points. Because the polarizability is real valued at the

 point, the 
-point only calculations are much cheaper,
requiring about 6 min for 64 atoms on 64 cores, or 1 h
for 216 atoms on 224 cores. To put the effort for all the
RPA calculations into perspective: the computation time for
calculating all occupied and unoccupied orbitals spanned by
the basis set using an efficient parallel SCALAPACK routine,
a prerequisite for RPA calculations, requires about one third

to one half of the computational time of the final RPA step.
We hope that this high efficiency makes RPA calculations
sufficiently cheap, to perform them routinely a posteriori for
any system of interest.

The main physical objective of this work was a study of
the Si interstitial and Si monovacancy energies at the level of
the RPA. The most stable interstitial defect is the dumbbell
configuration with a formation energy of 4.20 eV. The activa-
tion energy for diffusion from the dumbbell configuration to
the hollow site is predicted to be 350 meV. These values are
in reasonable agreement with very recent HSE calculations
including semiempirical van der Waals corrections (dumbbell
energy 4.41 eV and migration barrier 290 meV, respectively).
The vacancy formation energy is calculated to be 4.38 eV,
also in excellent agreement with the HSE + vdW calculations
(4.41 eV). We, however, observe that metallic configurations
such as the tetragonal interstitial site are significantly higher
in energy than predicted with HSE and HSE + vdW, and
generally the energy landscape is not as “washed” out and
featureless as in the HSE + vdW prescription. All in all, our
results are closer to the straight HSE calculations than the
HSE + vdW results, except for the diffusion barrier agreeing
well with the HSE + vdW results.

Comparison of the present values with, in principle, highly
accurate DMC values is also very gratifying. In general, all
predicted interstitial energies are roughly 0.2 eV lower than
in DMC. The origin of this small shift might be related to
cell-size issues in the DMC or an error of the RPA. Finally, we
have reported that the RPA yields a very good prediction for
the transition pressure between diamond Si and β-Si of about
12 GPa (when 2s and 2p electrons are included in the valence).
Compared to experiment (10–12 GPa), this is slightly better
than the best DMC estimates of about 14 GPa. In general,
this work again confirms that the RPA is a promising and
quite accurate method to estimate correlation energies. With
the present cubically scaling algorithm, defect calculations
and the calculation of adsorption energies on surfaces should
become a routine task.
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[37] J. Klimeš and G. Kresse, J. Chem. Phys. 140, 054516 (2014).
[38] A. M. Burow, J. E. Bates, F. Furche, and H. Eshuis, J. Chem.

Theory Comput. 10, 180 (2014).
[39] J. Rekkedal, S. Coriani, M. F. Iozzi, A. M. Teale, T. Helgaker,

and T. B. Pedersen, J. Chem. Phys. 139, 081101 (2013).
[40] H. N. Rojas, R. W. Godby, and R. J. Needs, Phys. Rev. Lett. 74,

1827 (1995).
[41] L. Steinbeck, A. Rubio, L. Reining, M. Torrent, I. White, and

R. Godby, Comput. Phys. Commun. 125, 105 (2000).

[42] S. L. Adler, Phys. Rev. 126, 413 (1962).
[43] N. Wiser, Phys. Rev. 129, 62 (1963).
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