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Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides
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Intrinsic electron- and hole-phonon interactions are investigated in monolayer transition-metal dichalcogenides
MX2 (M=Mo, W; X=S, Se) based on a density functional theory formalism. Due to their structural similarities,
all four materials exhibit qualitatively comparable scattering characteristics with the acoustic phonons playing a
dominant role near the conduction and valence band extrema at the K point. However, substantial differences are
observed quantitatively leading to disparate results in the transport properties. Of those considered, WS2 provides
the best performance for both electrons and holes with high mobilities and saturation velocities in the full-band
Monte Carlo analysis of the Boltzmann transport equation. It is also found that monolayer MX2 crystals with an
exception of MoSe2 generally show hole mobilities comparable to or even larger than the value for bulk silicon
at room temperature, suggesting a potential opportunity in p-type devices. The analysis is extended to estimate
the effective deformation potential constants for a simplified treatment as well.
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I. INTRODUCTION

Beyond graphene, two-dimensional (2D) materials have
shown fascinating electrical, mechanical, optical, and spin-
tronic properties [1]. Particularly, transition-metal dichalco-
genides (TMDs) have recently become a focus of major
research efforts. Unlike graphene with all of the atoms on the
same plane, each monolayer of TMDs comprises one plane
of transition-metal atoms sandwiched between two chalcogen
planes via the covalent bonding that is arranged in a trigonal
prismatic network [1,2]. On the other hand, the interlayer
coupling is by the weak van der Waals force that can be broken
easily layer by layer as in graphene. The transition-metal atoms
usually consist of Mo or W, while S, Se, or Te is selected
for the chalcogen. These materials exhibit nonzero energy
gaps, consistent with the diatomic nature [3–5], making them
potential alternatives to conventional 3D semiconductors in
the highly scaled applications [6].

A detailed investigation of charge transport, especially the
intrinsic properties, is crucial for assessing the technological
significance of the material as well as for fundamental physical
understanding. The mechanism that determines the intrinsic
transport is the carrier interaction with the lattice vibrations,
i.e., phonons. Unfortunately, most of the experimental studies
in the literature have been carried out under a broad range
of conditions (such as different TMD layer thicknesses,
impurity concentrations/sample qualities, and substrates)
[6–12]. In particular, the characteristics extracted from tran-
sistor current-voltage (I-V) measurements are indirect and can
be strongly affected by extrinsic factors as well as estimation
inaccuracies [13,14]. As such, the reported results vary widely
even for a specific material and have so far provided only
an incomplete picture of carrier-phonon scattering processes.
Theoretical accounts of the subject without resorting to empir-
ical estimates have been more limited—confined essentially
to the conduction band electrons in MoS2 [15,16].

In this work, we extend the theoretical analysis to ex-
amine intrinsic transport of both electrons and holes in four
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technologically relevant monolayer TMDs (MX2; M=Mo, W;
X=S, Se) from first principles. The density functional theory
(DFT) formalism is applied to determine the electronic band
structure as well as the phonon spectra and carrier-phonon
coupling matrix elements for all phonon branches [17,18].
The obtained scattering rates are subsequently used in the
Boltzmann transport equation to evaluate the intrinsic velocity-
field characteristics with a full-band Monte Carlo treatment.
Comparison between the considered TMDs clearly elucidates
the key factors affecting carrier transport in this material
system along with the potential applications. Finally, the
effective deformation potential constants are extracted for the
relevant intrinsic carrier-phonon interaction processes.

II. THEORETICAL MODEL

In the scattering calculations, each phonon is treated as a
perturbation of the self-consistent potential within the linear
response—in other words, via density functional perturbation
theory (DFPT) [17]. Then the elements of the electron-phonon
interaction matrix can be written as

g
(i,j )ν
q,k =

√
�

2Mων,q
〈j,k + q|�V ν

q,SCF|i,k〉, (1)

where |i,k〉 denotes the Bloch eigenstate with wave vector
k, band index i, and energy Ei

k; �V ν
q,SCF is the derivative

of the self-consistent Kohn-Sham potential with respect to
the atomic displacement of a phonon from branch ν with
wave vector q and frequency ων,q; and M symbolically
represents a quantity corresponding to the atomic mass. More
specifically, the mass term M depends on the detailed crystal
structure and phonon polarization, and is determined within
the DFPT treatment for each ν,q. As mentioned earlier, the
desired scattering matrix elements can be evaluated from the
DFT/DFPT framework along with the electronic and phononic
dispersion relations. The actual computation is performed with
the QUANTUM ESPRESSO package using the norm-conserving
pseudopotentials and the local density approximation for the
exchange-correlation functional [19]. When the multilayer
structures are examined (vs the monolayer cases of the present
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calculation), a correction for the van der Waals force beyond
the local density approximation may be necessary for a more
accurate description of the interlayer interactions [20]. For the
k-point sampling, a 18×18×1 Monkhorst-Pack grid is used
with the energy cutoff of 60 Ry in the plane-wave expansion.

With the matrix elements obtained in the first Brillouin zone
(FBZ), the scattering rates can be calculated by using Fermi’s
golden rule:

1

τ i
k

= 2π

�

∑
q,ν,±

∣∣gi,ν
q,k

∣∣2
(

Nν,q + 1

2
± 1

2

)
δ
(
Ei

k∓q ± �ων,q − Ei
k

)
,

(2)
where ± represents phonon emission and absorption, respec-
tively, and Nν,q is the phonon occupation number following the
Bose-Einstein statistics. Index j is dropped hereinafter as the
interband transitions are not considered. Further, the present
analysis concerns only the lowest conduction band (i = c) and
the highest valence band (i = v) for the electrons and holes,
respectively, with the assumption of nondegeneracy (i.e., no
dependence on the Fermi level). In the case of holes, a slight
modification is needed in Eq. (2) since the scattering matrix
elements are formulated from the view point of electrons. In
other words, the computed matrix element for the k to k′
transition actually corresponds to the −k′ to −k scattering for
holes in the valence band; note that the hole state momentum
is, by convention, defined with the opposite polarity to that
of the corresponding electronic state. The DFT/DFPT results
provide the physical details necessary to solve the Boltzmann
transport equation for transport characteristics with the Monte
Carlo technique [16,18].

III. RESULTS AND DISCUSSION

A. Electronic and phononic dispersion

The DFT calculation of monolayer MX2 shows direct
band gaps with the conduction and valence band extrema
at the K point in the momentum space for all combinations
of M and X under consideration. This result is consistent
with other theoretical calculations as well as experimental
measurements (see, for example, Ref. [21]). For the lowest
conduction band, a satellite energy minimum is also observed
along the K-� axis at nearly the half-way point that is
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FIG. 1. (Color online) (a) Electronic and (b) phononic dispersion
of monolayer WS2 in the FBZ. In (a), the conduction band minimum
at the K point serves as the reference of energy scale (i.e., the point
of zero energy).

TABLE I. Lattice constant, Q-K energy separation, and �-K
energy separation of TMDs along with the effective masses at the
relevant energy valleys/peaks. Symbols c and v denote the conduction
and valence bands, respectively. The effective masses are given in
units of electron rest mass m0.

Lattice Ec
QK Ev

�K mc
K mc

Q mv
K mv

�

constant (Å) (meV) (meV) (m0) (m0) (m0) (m0)

MoS2 3.14 81 148 0.51 0.76 0.58 4.05
MoSe2 3.27 28 374 0.64 0.80 0.71 7.76
WS2 3.10 67 173 0.31 0.60 0.42 4.07
WSe2 3.25 16 427 0.39 0.64 0.51 7.77

often called the Q valley [see Fig. 1(a)]. On the other hand,
the secondary peak for the valence band is located at the
Brillouin zone center (i.e., the � point). Table I summaries
the optimized lattice constants, Q-K and �-K separation
energies for the conduction (Ec

QK) and valence bands (Ev
�K),

respectively, as well as the corresponding effective masses.
Notably, the estimates for Ec

QK (�80 meV) are in the range that
could significantly affect electron transport via the intervalley
scattering even under low bias conditions, whereas those of
Ev

�K are generally sizable (�150 meV). Comparison with
similar calculations in the literature [15,21] suggests that the
intervalley separation energies are sensitive to the details of
the first-principles approach including the pseudopotentials.
In particular, application of the local density approximation
tends to predict smaller values, requiring further clarification
via, perhaps, accurate experimental determination. As for
the effective masses, both the longitudinal and transverse
components are needed for the Q valleys due to the anisotropic
nature. Those listed on the table represent the geometric mean
(corresponding to the density-of-states effective mass except
the degeneracy factor), which happens to be very close to the
conductivity effective masses as well.

With three atoms in a unit cell, monolayer MX2 has
the symmetry of the point group D3h and nine phonon
branches. The irreducible representations of each phonon
mode, along with the polarization, identify the different
vibrational dynamics as in Fig. 1(b), where WS2 is considered
a prototypical example. For instance, the lowest three are
the longitudinal acoustic (LA), transverse acoustic (TA), and
out-of-plane acoustic (ZA) modes. Both the LA and TA
modes show linear dispersion in the long wavelength limit,
while the ZA phonons deviate with an approximate quadratic
dependence. The estimated longitudinal sound velocity (i.e.,
slope) is 4.3×105 cm/s for monolayer WS2. The next two are
the in-plane optical E′′ modes, with two S atoms vibrating out
of phase and the W atomic static. Then, the E′ branches are
polar LO and TO modes, with all three atoms moving out of
phase in the plane. The polar LO-TO splitting at the � point
is too small to be visible. The highest A′′

2 and A1 phonons are
out-of-plane optical vibrations. More specifically, the A1 mode
has the W atom static while the S atoms moving in the opposite
directions. All three atoms oscillate out of the plane and out
of phase in the case of A′′

2 phonons. The phonon energies
at different symmetry points are summarized in Table II for
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TABLE II. Frequencies (in units of meV) of the phonon modes relevant to the carrier-phonon interaction at the high-symmetry points in
the FBZ for monolayer MoSe2, WS2, and WSe2. The corresponding information for MoS2 can be found in Ref. [16]. In addition, the estimated
sound velocities (vLA, in particular) are 6.6×105 cm/s, 4.1×105 cm/s, 4.3×105 cm/s, and 3.3×105 cm/s for MoS2, MoSe2, WS2, and WSe2,
respectively.

MoSe2 WS2 WSe2

Mode � K M Q � K M Q � K M Q

TA 0 16.6 16.4 13.3 0 17.4 16.5 15.9 0 15.6 15.3 11.6
LA 0 19.9 19.7 16.9 0 23.6 22.7 19.5 0 18.0 16.3 14.3
TO(E′) 36.1 35.5 35.8 36.4 44.4 43.8 45.3 45.3 30.5 26.7 28.4 27.3
LO(E′) 36.6 37.4 37.9 37.5 44.2 43.2 42.3 42.3 30.8 31.5 31.8 32.5
A1 30.3 25.6 27.3 27.1 51.8 48.0 49.8 50.0 30.8 31.0 29.8 30.4

MoSe2, WS2, and WSe2; the corresponding information for
MoS2 can be found in Ref. [16].

B. Scattering rates and transport properties

While the carrier-phonon interactions in the present study
are limited to the intraband events within the lowest conduction
and the highest valence bands, respectively, a number of
transition possibilities exist due to the multivalley nature of the
band structure. Figure 2 schematically illustrate the available
final states via the intervalley scattering for the conduction
electrons and the valence holes. Electrons in the K minimum
can scatter to the nearby K′, Q, and Q′ valleys, the latter two
with threefold degeneracy [Fig. 2(a)]. Similarly, those from a
Q minimum can transfer to other Q and K/K′ valleys but with
lower symmetry [Fig. 2(b)]. In the case of holes, the picture is
simpler as the satellite peak (or the valley from the hole point
of view) at � does not have any equivalent point in the FBZ
[Figs. 2(c) and 2(d)].

The carrier-phonon scattering rates are calculated as a
function of electron/hole energy following Fermi’s golden rule.
Again using monolayer WS2 as an example, Figs. 3(a) and 3(b)
illustrate the characteristic phonon emission and absorption

Q Q’
K’

Γ

K’

K’

K

0.0

0.4

0.8

1.2
eV

(a)

(d)(c)

0.0

0.4

0.8
eV

K

K’(b)

K
Q1

K
Γ

Q2 Q3

Q4

Q5
Q6

M1

M6

Γ

M2

M3

M4

M5

FIG. 2. (Color online) Schematic illustration of intervalley scat-
tering processes for (a) electrons in the K valley, (b) electrons in
the Q valley, (c) holes in the K valley/peak, and (d) holes in the
� valley/peak. The vertical color bar denotes the carrier energy with
respect to the reference, i.e., zero at the bottom (top) of the conduction
(valence) band for electrons (holes) at the K point.

rates for electrons in the K valleys at room temperature, while
the corresponding results for holes are given in Figs. 3(c)
and 3(d). For both types of carriers, the wave vector k of the
initial state is chosen along the K-� axis. The pronounced
abrupt jumps in the scattering rates indicate the onset of
intervalley transitions, which appears at higher energies in
the valence band consistent with the obtained band structure
(i.e., Ev

�K > Ec
QK). It is also clear from the figure that the

acoustic phonons provide the dominant scattering mechanism
for electrons as well as holes. One difference is that the LA
mode is the largest in the conduction band, whereas it is the
TA vibration for the valence band. The role of optical phonons

(c) (d)

(a) (b)

Carrier energy (eV)

FIG. 3. (Color online) Intrinsic scattering rates of (a), (b) K-
valley electrons and (c), (d) K-valley/peak holes in monolayer WS2

via different phonon modes at room temperature. (a) and (c) illustrate
phonon emission, while (b) and (d) are for phonon absorption. The
electron/hole wave vector k is assumed to be along the K-� axis as
the carrier energy increases.
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(c) (d)

(a) (b)

Carrier energy (eV)

FIG. 4. (Color online) Total intrinsic scattering rates of (a), (b)
K-valley electrons and (c), (d) K-valley/peak holes in four monolayer
TMDs at room temperature. (a) and (c) are for phonon emission,
while (b) and (d) correspond to phonon absorption. The electron/hole
wave vector k is assumed to be along the K-� axis as the carrier
energy increases.

is relatively minor particularly at low carrier energies. Of nine
phonon branches, only LA, TA, E′ (LO and TO), and A1 modes
are relevant to the scattering with electrons or holes. The
influence of the remaining four branches is negligible due to the
weak coupling [16]. The qualitative features of mode-specific
carrier-phonon interactions are essentially similar in all four
TMDs under consideration.

For a more quantitative comparison between the TMDs,
the contributions of the five branches are summed and the
resulting total emission and absorption rates are plotted in
Fig. 4. Two points are apparent from the analysis. In the choice
of transition-metal elements, the Mo compounds (MoX2) may
be electrically more resistive than those of W (WX2) with
generally higher scattering rates for both electrons and holes.
Between the two chalcogens (i.e., MS2 vs MSe2), it is Se that
appears to scatter the carriers more strongly via the interaction
with the phonons. The latter observation concerning Se may
be attributed in part to the small Q-K separation Ec

QK in
the conduction band compared to that of S cases that is
evident from to the low onset energies of intervalley scattering.
At higher energies where phonon emission dominates, the
differences in the electron scattering rates are much less
pronounced. In contrast, the hole scattering rates in MSe2 is
consistently higher even with the larger �-K separation Ev

�K.
Overall, MoSe2 shows the highest scattering rates for both
electrons and holes, while WS2 provides the opposite.

Utilizing the scattering rates, the velocity versus field
relation is obtained by a full-band Monte Carlo simulation

(a)

(b)

(          )

FIG. 5. (Color online) (a) Electron and (b) hole drift velocity
versus electric field in monolayer WS2 obtained by a full-band
Monte Carlo simulation at different temperatures. When electron
transfer to the Q valleys is not considered, the mobility increases
to approximately 690 cm2/V s at 300 K [represented by the dashed
line in (a)].

at different temperatures. Figure 5 presents the results for
WS2. Needless to say, the low-field mobility and the saturation
velocity show strong temperature dependence that is character-
istic of a phonon-limited process. One potentially interesting
observation is that valence hole transport could be comparable,
if not superior, to the properties of conduction electrons. For
instance, the estimated intrinsic mobility is approximately
320 cm2/V s and 540 cm2/V s for electrons (μc) and holes
(μv), respectively; the saturation velocity at 100 kV/cm shows
a similar trend with 3.7×106 cm/s (electrons) and 4.1×
106 cm/s (holes). Since the conduction and valence band
effective masses in WS2 are fairly alike at the K point (actually,
mc

K < mv
K according to Table I), the advantage of hole transport

can be understood by the low scattering rates. As can be
seen from Fig. 3, holes experience generally less scattering
with phonons throughout the presented energy range. One
point to bear in mind is the possibility that our DFT band
calculation may have underestimated Ec

QK. When the impact
of K-Q intervalley scattering is removed (corresponding to a
large separation energy), the intrinsic mobility for the K-valley
electrons (μc,K) increases to about 690 cm2/V s. Nonetheless,
it is fair to say that hole transport shows a comparative
advantage in WS2 as electrons have traditionally been the
faster carrier in conventional semiconductors.

Table III summarizes the calculated transport properties
of the considered TMDs. Note that two values are provided
for the electron saturation velocity vc

sat . The smaller number
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TABLE III. Calculated intrinsic mobilities and saturation veloc-
ities of TMDs at room temperature. Symbols c and v denote the
conduction and valence bands, respectively, while μc,K provides the
K-valley dominated electron mobility. For vc

sat , two values are given,
one evaluated at 100 kV/cm (smaller) and the other extrapolated
to higher fields for velocity saturation (larger). In the case of
vv

sat , the drift velocity reaches the plateau earlier at approximately
50 ∼ 60 kV/cm.

μc μc,K μv vc
sat vv

sat

(cm2/V s) (cm2/V s) (cm2/V s) (106 cm/s) (106 cm/s)

MoS2 130a 320a 270 3.4a/4.8 3.8
MoSe2 25 180 90 1.9/3.6 3.5
WS2 320 690 540 3.7/5.1 4.1
WSe2 30 250 270 2.2/4.0 3.5

aReference [16].

provides the drift velocity obtained at 100 kV/cm, while
the other represents an extrapolation to higher fields for the
saturation behavior. As indicated in Fig. 5, the velocity-field
curves for the conduction band electrons show an upward
slope even at 100 kV/cm. In comparison, the hole drift
velocities reach the plateau vv

sat earlier at approximately
50∼60 kV/cm. Comparison between the TMDs indicates the
trend that is consistent with the observation on the scattering
rates. Namely, WS2 and MoSe2 provide the most and the least
promising performances, respectively, while MoS2 and WSe2

are in between with comparable characteristics except μc.
WS2, in particular, also takes advantage of lighter effective
masses mc

K, mv
K. In fact, the conventional criterion based

on the ratio of phonon energy over the effective mass (i.e.,
ω/m

c,v
K ) appears to hold in explaining the qualitative ordering

of saturation velocities; WS2 > MoS2 > WSe2 > MoSe2. All
of the materials (with a possible exception of MoSe2) offer
competitive transport performances of holes and could be
promising alternatives to the conventional semiconductors
in the p-channel applications. By contrast, the intrinsic hole
mobility of bulk Si is around 450 cm2/V s at room temperature.

With the recent flurry of activities focused on the fabrication
of TMD-based field effect transistors, it is interesting to

compare our estimates of intrinsic mobility with the exper-
imentally deduced values even though the channel mobility
extracted from the I-V curves is not a direct measurement as
discussed above. Thus far, the most studied materials appear to
be n-type MoS2 and p-/n-type WSe2. As for n-type monolayer
MoS2, the electron channel mobility as high as approximately
60 cm2/V s at room temperature has been reported in the
literature [12]. This number is consistent with our prediction of
the intrinsic upper bound in Table III (i.e., μc = 130 cm2/V s,
μc,K = 320 cm2/V s). Similarly, the case of p-type monolayer
WSe2 shows the best hole mobility around 250 cm2/V s that
is comparable to the theoretical estimate of 270 cm2/V s at
300 K. On the other hand, values over 100 cm2/V s have
been observed in the WSe2 n-channels [11], which is actually
higher than μc = 30 cm2/V s (but still lower than μc,K =
250 cm2/V s). This anomaly (i.e., an experimental mobility
larger than μc) strongly suggests that our DFT calculation may
have indeed underestimated the intervalley separation Ec

QK,
leading to substantial overestimation of intervalley scattering
via the low onset energy. Once the overly strong K-Q electron
transfer is discounted, the resulting K-valley dominated mo-
bility μc,K is certainly more consistent with the experimentally
extracted. Considering the uncertainties in accurate evaluation
of Ec

QK in TMDs mentioned previously, μc,K appears to
provide a more reliable estimate than μc for the theoretical
upper bound of the electron mobility. When comparison
is made with the cases employing non-monolayers, extra
caution is required as both the conduction band and valence
band valleys/peaks undergo changes in energy (e.g., the
minimum/maximum points shifting in the momentum space).

An additional note before moving to the next discussion
is that our DFT/DFPT results described thus far have been
obtained with a nonrelativistic pseudopotential that does not
consider the effect of spin-orbit coupling. However, it is known
that this interaction can be strong in TMDs with a sizable
band splitting, particularly in the valence band, through the
lifted spin degeneracy [22]. For instance, WS2 may experience
valence band splitting of approximately 450 meV at the K
point while the corresponding number for the conduction band
is only about 30 meV. We examine the impact of spin-orbit
coupling on the carrier-phonon scattering by adopting both
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FIG. 6. (Color online) Squared carrier-phonon interaction matrix elements |gv
q,k|2 (in units of eV2) in WS2 as a function of phonon wave

vector q for the initial electron state k at the valence-band maximum K point. In the DFT/DFPT calculation, (a) full relativistic and (b)
nonrelativistic pseudopotentials are used with and without the effect of spin-orbit coupling, respectively. For (a), the plot shows the averaged
|gv

q,k|2 (∝ 1/τ ) between the two spin split bands present at the same k state. Only the phonon branches with significant contribution are shown.
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TABLE IV. Estimated deformation potential constants for electron-phonon interaction in the lowest conduction band of monolayer MX2.
Symbols ac and op denote the acoustic and optical phonons, respectively. The values given in units of eV are the first-order deformation
potential D1, while those in eV/cm correspond to the zeroth-order D0. See also Fig. 2 for a detailed notation of the symmetry points in
the FBZ.

Electron transition Phonon mode & momentum MoS2
a MoSe2 WS2 WSe2 Units

K → K ac, � 4.5 3.4 3.2 3.2 eV
op, � 5.8 5.2 3.1 2.3 108 eV/cm

K → K′ ac, K′ 1.4 1.8 1.2 1.3 108 eV/cm
op, K′ 2.0 2.1 1.1 0.8 108 eV/cm

K → Q ac, Q′ 9.3 9.1 7.3 8.2 108 eV/cm
op, Q′ 1.9 1.7 0.9 0.8 108 eV/cm

K → Q′ ac, M 4.4 4.5 3.4 5.7 108 eV/cm
op, M 5.6 5.3 2.7 3.2 108 eV/cm

Q1 → Q1 ac, � 2.8 3.1 1.8 1.9 eV
op, � 7.1 7.8 3.4 2.7 108 eV/cm

Q1 → Q2(Q6) ac, Q3(Q5) 2.1 2.2 1.7 2.7 108 eV/cm
op, Q3(Q5) 4.8 4.3 2.3 1.9 108 eV/cm

Q1 → Q3(Q5) ac, M3(M4) 2.0 2.2 1.5 1.8 108 eV/cm
op, M3(M4) 4.0 5.9 1.9 1.6 108 eV/cm

Q1 → Q4 ac, K′ 4.8 4.1 3.7 4.2 108 eV/cm
op, K′ 6.5 4.7 3.1 2.5 108 eV/cm

Q1 → K ac, Q1 1.5 1.5 1.4 1.6 108 eV/cm
op, Q1 2.4 3.0 1.3 1.0 108 eV/cm

Q1 → K′ ac, M2(M5) 4.4 4.9 4.0 4.1 108 eV/cm
op, M2(M5) 6.6 8.3 4.6 2.8 108 eV/cm

aReference [16].

the nonrelativistic and relativistic pseudopotential. The DFPT
calculation shows that the scattering matrix elements remain
largely unchanged as illustrated in Fig. 6; the effect of spin-
split bands is essentially through the modified density of final
states that can be accommodated by properly conducting the
sum/integral in Eq. (2). With the consideration that the spin-
flipping events are not the primary scattering process near the
band extrema, use of a nonrelativistic pseudopotential appears
adequate in the current study of electrical properties.

C. Deformation potential approximation

For practical applications, it would be convenient if the first-
principles results can be approximated by a simple analytical
model. Particularly useful in the carrier-phonon interaction is
the deformation potential approximation. Under this treatment,
the scattering potential �V ν

q,SCF can be simplified by the
expressions in the zeroth order (D0) or the first order (D1q) of
phonon momentum q [23]. The first-order deformation poten-
tial constant (D1) is adopted to represent the coupling matrices
for the acoustic phonon modes in the long-wavelength limit
(i.e., intravalley scattering). In comparison, those involving the
near-zone-edge acoustic phonons (i.e., intervalley scattering)
are treated by using the zeroth-order deformation potential
(D0) in a manner analogous to the optical modes. In the latter
case (D0), the phonon energy is assumed independent of the
momentum for simplicity. The obtained analytical expressions
of the scattering rates (that also utilize the effective masses)
are then matched to the first-principles results by fitting the
effective deformation potential constants [16].

In the case of intravalley acoustic phonon scattering,
the final expression for the combined TA/LA contribution

gives

1

τ
i,n
k

= mi
nD

2
1kBT

�3ρv2
s

, (3)

where i denotes the band index as before (c,v), n the specific
valley/peak (e.g., K, Q, �), mi

n the density-of-states effective
mass in the corresponding valley/peak, ρ the 2D mass density,
and vs the sound velocity (for which the estimate for the
LA phonon vLA is used for convenience). The deformation
potential constant D1 must also have indices i,n while not
shown explicitly. On the other hand, the optical or intervalley
acoustic phonon scattering rates reduce to

1

τ
i,m,n
k,ν

= gi
nm

i
nD

2
0

2�2ρων

[Nν�1 + (Nν + 1)�2]. (4)

Here, indices i,m,n specify the conduction or valence band,
the initial valley/peak, and the final valley/peak, respectively,
gi

n is the (i,n)-valley degeneracy, and Nν denotes the Bose-
Einstein distribution of phonon mode ν. In addition, �1 and
�2 formally represent the appropriate Heaviside step functions
for absorption and emission processes whose onset energies
account for the associated intervalley separation. The effect
of weak Fröhlich scattering by the LO(E′) mode is implicitly
added to the deformation potential interaction [i.e., Eq. (4)]
even though the two mechanisms are of different origin.

The extracted deformation potential values are listed in
Tables IV and V for the electron and hole scattering, classified
also by the initial/final states and the involved phonon
momentum (including its location in the FBZ). For simplicity,
the actual value used in the analytical calculation for ων [see
Eq. (4)] is approximated by an average of the relevant phonon
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TABLE V. Estimated deformation potential constants for hole-phonon interaction in the highest valence band of monolayer MX2. The
notations are the same as in Table IV.

Electron transition Phonon mode & momentum MoS2 MoSe2 WS2 WSe2 units

K → K ac, � 2.5 2.8 1.7 2.1 eV
op, � 4.6 4.9 2.3 3.1 108 eV/cm

K → K′ ac, K′ 1.2 0.9 0.8 1.1 108 eV/cm
op, K′ 3.1 2.6 1.4 2.0 108 eV/cm

K → � ac, K′ 1.2 1.5 1.4 1.7 108 eV/cm
op, K′ 1.9 1.5 1.9 1.8 108 eV/cm

� → � ac, � 2.7 1.5 1.9 1.8 eV
op, � 3.5 3.8 1.5 2.2 108 eV/cm

� → K ac, K 4.2 3.2 3.3 4.4 108 eV/cm
op, K 6.1 5.1 2.9 5.1 108 eV/cm

modes. Specifically, the acoustic phonon energy is obtained as
the mean value of LA and TA modes at the respective symmetry
points, whereas the optical phonon frequency is constructed
from TO(E′), LO(E′), and A1 branches (see Table II). Further
simplification of the model can be attempted by combining
multiple contributions into one effective process. The deduced
deformation potential constants allow straightforward recalcu-
lation of the scattering rates as well when the band parameters
(e.g., Ec

QK or Ev
�K) require adjustments.

IV. SUMMARY

A first-principles calculation of carrier-phonon interaction
combined with the full-band Boltzmann equation is used to
analyze the intrinsic transport properties of electrons and holes
in TMDs. Of the four materials under investigation, WS2 and
MoSe2 appear to provide the most and the least promising

performances, respectively, while MoS2 and WSe2 are in
between with comparable characteristics. More specifically,
the W compounds may be electrically less resistive than those
of Mo with generally lower scattering rates for both electrons
and holes. Between the two chalcogens, it is S that appears
to scatter the carriers less strongly via the interaction with
the phonons. All of the materials (with a possible exception
of MoSe2) are predicted with competitive hole transport
properties compared to bulk silicon (e.g., 540 cm2/V s in
WS2 vs 450 cm2/V s in Si), offering attractive alternatives
to conventional semiconductors in the electronic applications
with ultrasmall dimensions.
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