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Spherical objects, such as clusters, nanoparticles, or aerosol particles, are sputtered when exposed to energetic
irradiation. We use Monte Carlo (MC) and molecular dynamics (MD) computer simulation to study this process,
with 20 keV Ar impact on a-Si clusters as a prototypical example. The sputter yield is quantified as being
influenced by oblique incidence and target curvature. Cluster radii R are scaled to the energy deposition depth,
a. For large R (R/a > 5) sphere sputtering follows closely the sputtering of planar targets, if the variation of
the incidence angle on the sphere surface is taken into account. For smaller radii, the yield increases due to the
influence of curvature. For radii R/a � 1 pronounced forward sputtering leads to a maximum in the sputter yield.
For smaller R, sputter emission becomes isotropic, but decreases in magnitude since not all the projectile energy
is deposited in the sphere. However, for all spheres studied (R � 0.05a) the average sputter yield is larger than for
infinitely large spheres (R → ∞). A simple model based on linear collision cascade theory and assuming that the
energy deposition profile is independent of the sphere size predicts sputtering for large spheres well, but fails for
small spheres where it strongly underestimates sputtering. The MC data for the smaller spheres are supplemented
by MD calculations, which indicate a significant additional contribution caused by spike sputtering.
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I. INTRODUCTION

If nanoparticles are exposed to an energetic particle flux,
they may be sputtered. Such processes occur for example
for dust particles in space [1,2] or in a plasma environment
[3] and also for aerosols [4]. In other applications, ion
irradiation is used to modify supported nanoparticles [5,6].
Sputtering of spherical objects is also of interest in more exotic
environments, such as the sputtering of planetary atmospheres
by magnetospheric plasmas or the solar wind [7].

Sputtering of spheres has been considered previously by
molecular dynamics (MD) computer simulation for exemplary
cases [8–11]. Järvi et al. [12,13] analyzed the sputtering of
Au nanoparticles with radii up to 8 nm by 25 keV Ga ions
using MD computer simulation; they also provide a theoretical
evaluation, which results in a double integral that can only be
evaluated numerically for specific cases. These authors also
show that sputtering has a maximum as a function of sphere
size. Monte Carlo (MC) simulations have been more rare; in
their early work Jurac et al. showed that sputter yields increase
when sphere size is reduced down to the projectile penetration
depth [14].

Furthermore, the sputtering of nanostructures on surfaces
such as nanodots or hillocks can be approximated by the
sputtering of a spherical structure. Such nanostructures may
be created by ion irradiation itself; it is known that prolonged
ion irradiation may lead to the formation of nanopatterns such
as ripples and dot structures [15,16].

Ion irradiation of nanowires and the effect of structure size
on sputtering has been explored in several papers recently.
Xue-Qing et al. [17] studied damage formation and sputter-
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ing from Cu nanowires under low-keV irradiation. Greaves
et al. [18] present experiments and accompanying computer
simulations for the sputter yield enhancement during the
bombardment of Au nanorods under 80 keV Xe irradiation.
Nietiadi et al. [19] present MD simulations and an analytical
model for the sputtering of Si nanowires under low-keV ion
impact.

While the effect of the surface tilt on the sputter yield has
long been known [20,21], recently also the effect of the surface
curvature on sputtering has been discussed, but only for central
impacts [19]. This effect has now also been incorporated into
the theory of pattern formation by irradiation [22].

Here we use MC simulation in the binary collision approx-
imation to systematically study the deviations of sputtering
between a planar surface and spheres of various radii. For
relatively large sphere radii, the deviations from the well-
understood sputtering of a planar surface can be easily
interpreted and quantified. These deviations are due to oblique
ion impact and target curvature. For smaller radii, the sputter
yield passes through a maximum and then decreases again
when R → 0. For smaller spheres we use MD to corroborate
our findings.

II. METHOD

MC simulation is an established method to study sput-
tering in the collision-cascade regime [23,24]. The presently
employed code TRI3DST makes use of collisional algorithms,
which are taken from the sputter version TRIM.SP [25] of the
widely used TRIM code [26,27], with several modifications as
described in a recent paper on three-dimensional (3D) dynamic
simulations [28]. Basically, the propagation of incident pro-
jectiles and generated recoils in an amorphous medium (thus
being appropriate for an a-Si target) is traced as a sequence of
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NIETIADI, SANDOVAL, URBASSEK, AND MÖLLER PHYSICAL REVIEW B 90, 045417 (2014)

binary collisions in a repulsive screened Coulomb potential
with the Kr-C parametrization [29]. Electronic stopping is
included as an equipartition of nonlocal (according to Lindhard
and Scharff [30]) and local (according to Oen and Robinson
[31]) energy losses. TRI3DST is applicable to homogeneous
three-dimensional multicomponent bodies, the surface of
which can be described by an analytical function. For the
transmission of sputtered atoms through the surface, a local
planar surface barrier is assumed with the local surface normal
being deduced from the analytical contour function. Thereby,
any dependence of the surface binding energy on the local
curvature is not taken into account. The surface binding is set
to U = 4.7 eV in accordance with the enthalpy of sublimation
of Si.

Specifically, we model the sputtering of a planar a-Si target
and of a-Si spheres of various radii R by 20 keV Ar ions.
Data are based on 105 impacts for each combination of cluster
radius and impact parameter (impact angle).

In addition, we perform MD simulations for small clusters,
R � 3.5 nm, and only for central impact. In short, spherical
clusters are cut out of an a-Si target that was prepared according
to the recipe of Luedtke and Landman [32]. Silicon atoms
interact via the Stillinger-Weber potential [33]. For small
interaction distances the potential is fitted to the Ziegler-
Biersack-Littmark (ZBL) potential [34]. Ar and Si atoms
interact via the ZBL potential. In each case 1000 impacts have
been simulated for a time of 3 ps. The impacts differed in that
in each case a different impact point was chosen at random
on the sphere, for normal impact angle. All atoms that are a
distance of > 7.54 Å from the original sphere surface (that is
twice the cutoff radius of the Stillinger-Weber potential) are
considered as sputtered. Analogous MD simulations have also
been performed for a flat target at normal incidence. Here the
target consists of 35152 atoms, has a depth of 70 Å and a
lateral extension of 100 × 100 Å2.

III. RESULTS

In the following we first present and discuss the information
obtained from the MC calculations; the comparison with MD
data is given in Sec. III E.

The MC simulations give us basic information on the energy
deposition profile in a planar target for normal incidence. In
the usual ellipsoidal approximation [21] it is described by a
Gaussian with center at the mean depth a below the surface and
longitudinal and lateral RMS widths α and β, respectively, see
Fig. 1. We obtain from the flat-target simulations a = 208.9 Å,
and α = 123.0 Å, β = 79.7 Å from the respective second
central moments of the generated spatial distributions. This
is in close agreement with the estimates obtained from the
range distribution data provided by the SRIM software [27,35]
and corrected by the factors given in Ref. [36]: a = 213 Å,
α = 106 Å, β = 70 Å. In the following we shall use the data
obtained by our code.

A. Flat target: Infinitely large spheres

Figure 2 demonstrates that the position of impact on a
sphere of radius R can be identified using the impact parameter
b or alternatively the incidence angle ϑ (measured with respect

FIG. 1. (Color online) Sketch of the spherical cluster of radius
R and the energy deposition profile, defining the parameters a, α,
and β.

to the local surface normal). In the following it will be useful to
introduce the reduced impact parameter x = b/R. It is related
to ϑ via

x = sin ϑ. (1)

We shall denote the sputter yield of a sphere of radius R by
YR; an infinitely large sphere has a sputter yield of Y∞.

For large spheres, R � a, the sphere can be considered
locally flat, such that only the angle of incidence influences
the sputter yield. Figure 3(a) displays the sputter yield of a flat
target as a function of incidence angle, and Fig. 3(b) converts
these data by Eq. (1) to a function of the impact parameter of a
sphere. While the sputter yield for normal incidence is Y∞(x =
0) = 1.381, sputtering is maximum at incidence angles of 80◦
where it reaches Y∞(80◦) = 11.26. Such impacts correspond
to glancing impact parameters of x = 0.985. The general shape
of the angular dependence displayed in Fig. 3(a) is typical,
while details such as the exact position of the maximum and
the height of the maximum vary with ion-target combination
and impact energy [24].

It is useful to introduce an average sputter yield of a sphere
as

〈YR〉 = 1

πR2

∫ R

0
YR(b)2πb db =

∫ 1

0
2x dxYR(x). (2)

This average has the meaning that a unidirectional flux � of
projectile ions sputters a number of πR2�〈YR〉 atoms from
the sphere.

FIG. 2. (Color online) Impact of an ion on a sphere of radius R.
The ion impinges at an impact parameter b and has a local incidence
angle of ϑ .
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FIG. 3. (Color online) (a) Dependence of the sputter yield of a
planar surface on the angle of incidence ϑ . (b) The same data
interpreted as the sputter yield of a large sphere, radius R → ∞,
as a function of the reduced impact parameter x = b/R.

For the infinitely large sphere we obtain 〈Y∞〉 = 4.385; this
is a factor of 3.2 larger than the value at central impact. This
is due to the large sputter yield increase at peripheral impact
caused by the oblique incidence angle.

B. Effect of curvature

Figure 4(a) describes how the sputter yield of a sphere of
radius R differs from an infinitely large sphere. To this end
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FIG. 4. (Color online) (a) Ratio of the sputter yield of a sphere
of radius R, YR , to the sputter yield of an infinite sphere, Y∞, as a
function of the reduced impact parameter x = b/R. (b) Sputter yields
for central impact, impact parameter b = 0, as a function of the inverse
sphere radius, a/R. Data are normalized to the sputter yield of a flat
target at normal incidence, Y∞(b = 0). The theory curve, Eq. (A3),
implements the result of a theoretical model presented in Appendix A
and also the linearized result, Eq. (A7), is included. Data for large
spheres, R/a � 2.

we plot the ratio YR(x)/Y∞(x) as a function of the reduced
impact parameter x = b/R. For large spheres, R/a = 20 and
10, YR(x) grows above the values of Y∞ homogeneously for
all impact parameters; the changes increase with decreasing
radius R.

This overall increase is connected to the curvature of the
sphere. The surface is curved in a convex way around the
ion impact point; this leads to a larger energy deposition at
the surface, increasing sputtering. The curvature dependence
of the sputter yield has been analyzed recently for central
impacts, b = 0 [19]. Sputtering has been found to be increased
in comparison to a flat target. In first approximation, the
enhancement depends only on one appropriately defined
dimension-free curvature parameter κ , which depends on the
geometry of the deposited energy distribution as

κ = a

R

(
β

α

)2

. (3)

With the parameters given above, κ = 0.42a/R.
In Appendix A, we describe a simple model to calculate

the sputtering yield of a sphere. It is based on linear collision
cascade theory. Its basic assumption is that the energy
deposition profile that is valid for a planar target also applies
in the sphere. The sputter yield is then calculated as being
proportional to the energy deposition integrated over the sphere
surface.

Figure 4(b) compares the MC data for central impact with
the prediction of the model, Eq. (A3), for sphere radii above
R/a � 2. In this range the linear approximation, Eq. (A7),
holds well. We see that up to R/a ∼= 4, the linear increase
describes the data reasonably well.

C. Effect of forward and lateral sputtering

Figure 5 demonstrates that for small spheres sputtering
strongly deviates from Y∞. The impact-parameter dependence
of Fig. 5(a) demonstrates two effects. (i) For moderate sphere
radii R/a ∼= 2–5, sputtering disproportionately increases at
large impact parameters, x ∼= 0.7–0.8. (ii) For even smaller
spheres, sputtering becomes maximum for central impacts.

The reason for the sputter maximum at peripheral impacts,
R/a = 2 − 5, becomes evident when studying the emission-
site distributions of Fig. 6. Here, two events are shown
which lead to maximum sputter enhancement compared to
Y∞: x = 0.8 for R/a = 4.77 and x = 0.7 for R/a = 1.91. In
both cases, sputter emission is not centered around the impact
point, but considerable lateral and forward sputtering occurs.
This is outside of the simple curvature effect described above:
while the curvature is isotropic for a sphere, sputter emission
is strongly anisotropic. The center of the deposited-energy
distribution is below the impact point and comes into close
vicinity of the lateral sphere surface.

Even for central impacts, the effect of curvature alone
is not sufficient to describe sputtering. Figure 5(b) shows
that sputtering follows well the simple model described in
Appendix A up to around the sputter maximum. Sputtering
reaches a maximum for R ∼= 0.5a for central impacts and then
decreases again; in the model the maximum occurs slightly
later, at R ∼= 0.7a. Here the effect of forward sputtering is again
responsible. Beyond the maximum—for small spheres—the
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FIG. 5. (Color online) Same as Fig. 4, but for all spheres. The
theory curve, Eq. (A3), in (b) implements the result of a theoretical
model presented in Appendix A. The theory cannot describe sputter-
ing of small spheres.

simple model completely fails and severely underestimates
the sputtering. This failure is due to the basic assumption
underlying the model: that the energy deposition profile is
independent of the sphere radius.

Figure 7 shows how forward sputtering develops with
decreasing sphere radius. For R/a = 4.77, no particles are
emitted in forward direction, and Eq. (A3) gives a fair
approximation of the sputter yield enhancement. Already for

FIG. 6. (Color online) Emission-site distributions for oblique im-
pact, (a) R/a = 4.77, b/R = 0.8 and (b) R/a = 1.91, b/R = 0.7.
Direction of ion incidence and impact points are indicated by the
red lines. The distributions have been obtained with 1000 incident
projectiles.

FIG. 7. (Color online) Emission-site distributions for central im-
pact, b = 0: (a) R/a = 4.77, (b) R/a = 1.91, (c) R/a = 0.95, (d)
R/a = 0.19. See Fig. 6 for further explanation.

R/a = 1.91 sputtering occurs from the forward hemisphere,
and this effect becomes pronounced for R/a = 0.95; note
that in that latter case forward sputtering is more important
than sideways sputtering. This is due to the fact that the
deposited-energy distribution is not spherical but elongated
along the ion-impact direction, see Fig. 1. Only for the smallest
sphere radius, R/a = 0.19, sputtering becomes isotropic,
since here the sphere is filled more or less homogeneously with
the deposited-energy profile. These results are in qualitative
agreement with the theoretical model evaluated in Appendix A,
Fig. 11.

D. Average sputter yield

Figure 8 displays the average sputter yield, Eq. (2). The
main result here is that—in contrast to the yields for central
impact—the average sputter yield enhancement is moderate,
being smaller than a factor of 2.5. As evidenced by the impact-
parameter resolved sputter data in Fig. 5(a), for spheres with
radii R � a sputtering is indeed maximum for central impact,
but decreases monotonically for peripheral impacts. Since
peripheral impacts are weighted strongly when averaging the
sputter yield, Eq. (2), this explains why 〈YR〉 shows little
enhancement while Y (b = 0) increases strongly.

For large spheres, R � a, 〈YR〉 increases roughly linearly
with a/R as

〈YR〉 = 〈Y∞〉
(

1 + f
a

R

)
, (4)

with a slope of f = 1.25. This is around a factor of 3 larger than
the yield increase by the curvature effect; the extra increase is
due to the forward sputtering described above.
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FIG. 8. (Color online) Average sputter yield, 〈YR〉, of a sphere of
radius R, as a function of the inverse sphere radius, a/R.

The yield has a maximum at R ∼= a; here the deposited
energy fills out the sphere, maximizing sputtering. Note that
for central impacts, b = 0, the yield becomes maximum only
for smaller spheres R = 0.5a, see Fig. 5(b). This is due to the
fact that forward sputtering is easier for peripheral impacts,
which are counted with high weight in calculating the average
sputter yield.

Finally, for R < a the average sputter yield decreases again.
In the literature two models for this decrease have been
discussed.

(i) Järvi et al. [12] assume that the energy density in the
sphere is the same as that close to the surface of a flat semi-
infinite target. Since the sphere volume is ∝R3, the energy
deposited inside the sphere decreases ∝(ER3) with shrinking
sphere radius R. This reasoning is analogous to the model
outlined in Appendix A, Eq. (A9), and leads to

〈YR〉 ∝ R2. (5)

(ii) In a later paper, [13], the authors assume that the energy
deposited in the sphere varies linearly with R, since the nuclear
stopping power can be assumed constant for small path lengths.
This leads to

〈YR〉 = const, (R → 0). (6)

Figure 5(b) demonstrates that for small spheres, model (i) as
quantified by Eq. (A3) clearly fails. In addition, for the smallest
cluster sizes, R/a � 1 the impact-parameter dependence of the
sputter yield, Fig. 5(a) looks roughly like ∝√

1 − x2, and is
thus proportional to the length of a straight projectile trajectory
in the cluster. This speaks in favor of (ii) above and would lead
to a constant average sputter yield for R → 0. However, in
this limit the number of atoms in the sphere also goes to 0, and
thus the sputter yield becomes ill defined.

The MC data of the average sputter yield (see Fig. 8) show
that indeed the sputter yield continuously decreases when the
sphere radius is decreased below R � a. For spheres as small
as R ∼= 0.2a, the average sputter yield is still higher than for the
infinite target. For even smaller spheres it steadily decreases.

E. MD results for small spheres: Importance of collision spikes

For the smallest spheres studied we might exceed the
validity range of the MC model, and more realistic MD
simulations should be performed. Collision spikes [37–39]
may lead to abundant sputtering. In addition, at such highly
curved surfaces the surface binding energy of atoms may be
lowered; finally, the cluster may be totally fragmented if a high
energy happens to be deposited due to a near-central collision
of the projectile with a cluster atom. These effects are naturally
included in MD.

We compare our MD data for spheres of radius R =
1–3.5 nm with the MC data in Fig. 9; only central collisions
are simulated. Note that the smallest sphere only contains
202 atoms. The MD data yield consistently larger yields
than the MC data. Let us first discuss the sputter yields of a
flat surface (at normal incidence). MD obtains 1.672 ± 0.067
when MC yields 1.381, a difference of 21 %. Here, it has to
be noted that the Stillinger-Weber potential employed in MD
produces a surface binding energy or 4.34 eV, being smaller
than the value adopted in MC (4.7 eV). Further, the present
MD simulations neglect energy dissipation due to interaction
with the target electrons. Correspondingly, modified MC
simulations have been performed (see Fig. 9) in which the
surface binding energy was adjusted to the MD value, and
electronic energy loss was suppressed. These data have been
included in Fig. 9. For the flat target, the sputter yield increases
to 1.904, even above the MD data. We note that we also
performed an additional set of MC simulations in which the
ZBL potential—as used in the MD simulations—was adopted
rather than the Kr-C potential routinely used in our MC code.
The deviations were below 5% for all sphere radii. In the
MC simulations, systematic uncertainties arise from the choice
of the interaction potential and the bulk binding energy (see
Ref. [25]), and the questionable validity of the binary collision
approximation [40] towards low kinetic energies of cascade
atoms, which dominate sputtering. From this, an accuracy of
better than about 20% can hardly be expected. In this light, the
agreement of the flat target yields obtained by MD and MC
must be considered as excellent.

For the spheres, however, larger systematic deviations are
evident from Fig. 9. The data do not suggest a major influence
of the surface binding energy, which might decrease with
curvature, as this would increase the MC results in particular at
small radii. Thus, we attribute the difference to the occurrence
of collision spikes in the irradiated spheres; these are highly
energized regions in the target where the basic assumptions
of the MC simulation—viz. that atoms collide only with
nonmoving atoms—are no longer satisfied. In regions of high
local energy density (temperature) abundant sputtering can be
induced. For small spheres, energy confinement arising from
inner reflection of recoils, which hit the walls at glancing
incidence, is expected to be more efficient than for the flat
surface, as it occurs in all directions. This might assist the
formation of spikes. Due to the high surface/volume ratio, the
effect of spikes will be increased in small spheres. Indeed,
from the MC simulations we calculate that the energy density
deposited in the sphere assumes values of 0.1 eV/atom for the
4-nm spheres but increases to almost 0.2 eV/atom for the 1-nm
sphere. These values emphasize that with decreasing sphere

045417-5
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FIG. 9. (Color online) Absolute sputter yields for central impact,
impact parameter b = 0, as a function of the inverse sphere radius,
a/R. The MC data are supplemented by MD calculations. The MC
modified data set has been obtained with an adjusted surface binding
energy of 4.34 eV and under suppression of electronic interaction.
See discussion in text.

size a stronger spike contribution to sputtering is expected. We
give further evidence of the appearance of spike sputtering in
Appendix B, where we compare the sputter yield distributions
for the flat target and the spheres and emphasize the agreements
and differences between the MC and MD data.

In order to demonstrate the action of spikes, Fig. 10
illustrates the sputter process in the MD simulation by giving
a number of snapshots of the clusters at 3 ps after ion
impact. The top row shows representative events in which
the average number of atoms has been sputtered; the bottom
row shows particularly abundant sputter events. We see that
for the small spheres even for average energy deposition in
the sphere, temperatures at and above the melting temperature
of Si, 1687 K, are reached. For extreme energy depositions,
and consequently extremely abundant sputtering, however,
temperatures up to 5000 K are attained, which will at later
times further fragment the clusters leading to later evaporation
events. This series of snapshots explains the high sputter
yields reached for small clusters. It demonstrates how the
high-energy deposition leads to strong collision spikes that
increase the sputter yields systematically beyond those of the
MC calculations.

Strong yield enhancements in nanosized objects have
been observed previously in simulations. Greaves et al.
[18] describe a similar sputter yield enhancement during
the bombardment of Au nanorods. Our series of snapshots
demonstrates the high sputter yields reached for small clusters
particularly in events with energy deposition largely above
the average. Note, however, that the effect of spikes to the
average sputter yield is moderate and amounts to a factor of
less than 2.

FIG. 10. (Color online) Cross-sectional view through the sputtered spheres at 3 ps after ion impact. Atoms are colored according to local
temperature. (a) Representative events where impact leads to the average sputter yield. (b) Events with abundant sputtering. Note the change
in color code between (a) and (b).
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IV. CONCLUSIONS

We performed a dedicated MC study of sputtering of a-Si
spheres of various radii R by 20 keV Ar impact. The radius
R needs be set in proportion to the depth of energy deposition
in the target, a. We expect that within the limits of collision-
cascade theory our results can be qualitatively generalized to
other irradiation conditions provided the ratio R/a is the same.
Our study allows the following conclusions.

(i) For large radii R � a, the sputtering of a sphere can
be quantitatively described by using data for the sputtering of
a planar target, if the varying angle of incidence is taken into
account. The average sputter yield of a sphere is always larger
than that of a planar surface at normal incidence, since oblique
incidence angles, which occur when a sphere is sputtered at
peripheral impact parameters, lead to larger sputtering yields
than normal impact.

(ii) For smaller radii, the curved surface increases the
sputter yield, since the cluster surface comes closer to the
deposited energy profile. For moderate curvatures, this effect
is well modeled by a recent theory of curvature-dependent
sputtering.

(iii) At still smaller radii, R/a � 2 lateral and forward
sputtering increasingly contribute to the yield; this occurs at
first at peripheral impacts, but at R/a ∼= 1 extends also to
central impacts.

(iv) At R/a ∼= 1 the average sputter yield is maximum.
Here the collision cascade fills the entire cluster and thus the
energy deposition throughout the sphere surface is maximum.

(v) For even smaller clusters, R/a < 1 sputtering becomes
isotropically distributed throughout the sphere surface. Yet
the average sputter yield decreases again since not all the
projectile energy is deposited in the sphere and furthermore
the sputter surface decreases. However, even for the small
spheres, R = 0.2a, the average sputter yield is still above that
of an infinitely large sphere.

(vi) A simple model based on linear collision cascade
theory and assuming that the energy deposition profile is
independent of the sphere size predicts sputtering for large
spheres well, but fails for small spheres where it strongly
underestimates sputtering.

(vii) The average sputter yield of a sphere is less sensitive
to the sphere radius than the sputter yield for central impacts.
This is due to the compensation of two effects: For small
spheres, the sputter yield increases at central impact but
decreases for peripheral impacts.

(viii) Our MD simulations, performed for small spheres,
corroborate the trend that the sputter yield saturates for small
sphere radii. Compared to the MC data, the MD yields are
systematically larger, indicating a contribution from collision
spikes to sputtering.
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APPENDIX A: THEORETICAL MODEL

In this Appendix we provide a theoretical description of
sputtering from a sphere, based on linear-sputtering theory

[21]. We focus on central impacts, b = 0, such that the problem
is axially symmetric. Assume the origin of a cylindrical
coordinate system to be situated at the ion impact point; z

denotes the axial coordinate measuring the depth into the
sphere, and r the radial coordinate. The surface of the sphere
is then described by

z = h(r) = R ±
√

R2 − r2, (A1)

such that “–” denotes the upper and “+” the lower hemisphere.
The energy deposited in low-energy recoil motion in the target
at a point r is denoted as the deposited-energy profile FD(r). It
is commonly approximated by a Gaussian function [21,36,41]

FD(z,r) = E

(2π )3/2αβ2
e−(z−a)2/(2α2)−r2/(2β2). (A2)

The parameters a, α, and β were already introduced in Sec. III
above, see also Fig. 1. Linear sputter theory assumes the sputter
yield to depend on the deposited energy in the sphere as [41]

YR = �

∫ R

0
FD[z = h(r),r]

√
1 + h′2(r) 2πr dr, (A3)

where � is a material parameter. Here h′(r) denotes the
slope of the surface and the term

√
1 + h′2 represents the

relative increase of the sphere surface with respect to the
projected area 2πrdr . For the sphere, the sputter yield can be
decomposed into a contribution from the upper hemisphere
[+ sign in h(z), Eq. (A1)] denoting backward sputtering,
and the analogous forward sputtering contribution. We found
no way to solve the integral in Eq. (A3) analytically and
therefore calculate it numerically. The sphere sputter yields
are shown in Fig. 11 for the parameters pertinent to the
present problem (a = 208.9 Å, α = 123.0 Å, β = 79.7 Å),
along with their decomposition into forward and backward
sputtering. We see that for large spheres only back sputtering
is relevant; forward sputtering sets in at a/R ∼= 0.63, where
YR(b = 0)/Y∞(b = 0) reaches values >0.01. For smaller
sphere radii, forward sputtering becomes more important than
backward sputtering; this appears natural as the projectile

FIG. 11. (Color online) Result of a theoretical model, Eq. (A3),
for the sputter yield for central impact, impact parameter b = 0, as
a function of the inverse sphere radius, a/R. Data are normalized to
the sputter yield of a flat target at normal incidence, Y∞(b = 0). A
linear approximation, Eq. (A7), valid for large spheres, a/R � 1, is
added. In addition, the sphere yield is separated into its forward and
backward sputtering contributions.
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momentum is forward directed and can eject atoms more
easily in the forward direction. The maximum of the sputter
yield occurs at a/R = 1.5, close to the radius where forward
sputtering is maximum.

The limit of large spheres, a/R → 0, has been treated pre-
viously by approximating the sphere surface by a paraboloid
[19]. In that paper, the term

√
1 + h′2 was omitted in

calculating the sputter yield, Eq. (A3). When including it,
no general analytical solution appears possible. However, the
solution for large R/a—obtained as the first term of a series
expansion in a/R—remains valid, as we shall now show. For
large radii, only the upper hemisphere sputters, and Eq. (A1)
can be approximated as a paraboloid

h(r) = r2

2R
. (A4)

Equation (A3) then gives

YR = Y∞
1

β2

∫ ∞

0

√
1 +

( r

R

)2
exp

{
− r2

2β2

}

× exp

{
− 1

2α2

[(
r2

2R

)2

− ar2

R

]}
r dr, (A5)

where we have increased the upper integration limit to ∞,
which is fine for R � β. Expanding the integrand in a/R and
keeping only linear terms we arrive at

YR = Y∞
1

β2

∫ ∞

0
e−r2/(2β2)

(
1 + a

R

r2

2α2

)
r dr. (A6)

In summary,

YR(b = 0) = (1 + κ) · Y∞, R → ∞, (A7)

where κ is a dimensionless curvature parameter,

κ = a

R

(
β

α

)2

. (A8)

We include this linear approximation in Fig. 11. It describes
the sphere well up to a/R = 0.35; then the sphere sputter yield
increases more strongly than predicted by the linear result. In
the limit of small spheres, Eq. (A3) gives

Y ∼= Y∞(b = 0) · 2

(
R

β

)2

, R → 0. (A9)

The dependence on α is absorbed in Y∞(b = 0). However, the
use of the model in this limit is not realistic. Note that the
essential assumption underlying this model consists in the use
of Eq. (A3) also for nanometric sputter targets, when the target
size becomes of the order or even smaller than the radius of the
energy deposition zone, a. The model assumes here that the
energy deposition profile remains unchanged from that of an
extended solid, as given by Eq. (A2). As we show in the main
text, our MC and MD simulations give good agreement with
the theory results for large spheres, but show strong deviations
for small spheres; these show that the model presented here
loses its validity in the latter case.

FIG. 12. (Color online) Comparison of the sputter statistics of
MC and MD data obtained for the (a) flat target and (b) for the sphere
with 3.5 nm radius. The average values are marked by arrows.

APPENDIX B: SPUTTER STATISTICS

The sputter yield is a stochastic quantity in the sense that
it may assume a different value for each individual impact
event. Let us denote by y the individual sputter yield and
its average by 〈y〉 = Y as in the main part of the text. The
distribution function f (y) gives the probability with which
a particular sputter yield y is observed in an individual
event. This function is displayed in Fig. 12 for the MC and
the MD data for two targets: the flat target and the sphere
with 3.5 nm radius. The relevance of sputter statistics has
been discussed previously in the literature, preferably for MC
simulations [42–44].

For the flat target, Fig. 12(a), MC and MD are in fair
agreement with each other. Most often, no particle is emitted,
since the projectile deposits its energy deep in the target.
If particles are emitted, the probabilities of emitting exactly
y particles decrease quickly with increasing y. Note that
the MD data show a slightly higher peak at y = 0 and
decay faster with increasing y; this may appear astonishing
since MD shows a slightly larger average yield (1.672 in
MD, 1.381 in MC). But the long tail observed for the MD
sputter distribution—the largest sputter yield observed was
34—increases the average yield. Such large-emission events
are typical of spike sputtering. Overall however, we conclude
that the fact that the two statistical distributions are quite
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similar is an indication that also the physics of individual
events is treated similarly in MC and MD.

Differences between the MC and MD distributions become
stronger in the case of sputtering of small spheres, Fig. 12(b).
In the case considered here, the average sputter yield was
7.017 for MC and 12.77 for MD. Let us first discuss the MC
statistics. Here the distribution has considerably broadened
with respect to the flat target. Such a behavior is to be expected
since the average sputter yield increases, and the width of the
sputter distribution is (roughly) of the same size as the average
[42–44]. The physics reason both for the increased average
yield and the increased width is that the sphere radius is already
quite small in comparison to the deposited energy profile
(a ∼= 5.969R), such that ions as a rule penetrate the sphere

leading to abundant emission on all locations of the sphere
surface.

The MD distribution shows less broadening for the small
yields; the probability that less than y � 15 particles are
sputtered is smaller than in MC (with the exception of
the probability that no atom is sputtered, y = 0). However,
this relative lack of moderate sputter events is more than
compensated by an increase of abundant sputter events; the
largest sputter yield observed was 311. As shown in Fig. 10,
these abundant sputter events are due to spike sputtering.

In summary, this comparison of sputter distributions cor-
roborates the view that spike sputter events, with their abundant
sputter yields, are responsible for the yield enhancement
observed for small spheres in MD.
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