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Bulk effects on topological conduction in three-dimensional topological insulators
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The surface states of a topological insulator in a fine-tuned magnetic field are ideal candidates for realizing a
topological metal which is protected against disorder. Its signatures are (i) a conductance plateau in long wires
in a finely tuned longitudinal magnetic field and (ii) a conductivity which always increases with sample size, and
both are independent of disorder strength. We numerically study how these experimental transport signatures are
affected by bulk physics in the interior of the topological insulator sample. We show that both signatures of the
topological metal are robust against bulk effects. However the bulk does substantially accelerate the metal’s decay
in a magnetic field and alter its response to surface disorder. When the disorder strength is tuned to resonance with
the bulk band the conductivity follows the predictions of scaling theory, indicating that conduction is diffusive.
At other disorder strengths the bulk reduces the effects of surface disorder and scaling theory is systematically
violated, signaling that conduction is not fully diffusive. These effects will change the magnitude of the surface
conductivity and the magnetoconductivity.
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I. INTRODUCTION

The Dirac fermions residing on the surface of strong topo-
logical insulators (TIs) provide a new opportunity for realizing
a topological metal which remains conducting regardless of
disorder strength or sample size [1–7]. This metal should
be general to any single species of Dirac fermions which
breaks spin symmetry but retains time-reversal symmetry.
When the Fermi level is tuned inside the TI’s bulk band gap,
all states inside the TI bulk are localized. Conduction can
occur only on the TI surface, which hosts a single species of
two-dimensional (2D) Dirac fermions.1 These are predicted
to remain always conducting regardless of disorder strength,
forming a topological metal.

Many beautiful TI experiments have visualized the Dirac
cone, spin-momentum locking, Landau levels with

√
n spac-

ing, and SdH oscillations [8,9]. These signals are visible
only when either momentum or the Landau level index are
approximately conserved; they disappear when disorder is
strong. In contrast, the topological metal’s hallmark is robust
surface conduction at any disorder strength and in large
samples, even when disorder destroys the Dirac cone. In
this article we will focus on experimental signatures of this
protection against disorder.

We will show that bulk physics in the TI’s interior
substantially modifies the topological metal. Even though it is a
surface state, in response to disorder it may explore the TI bulk
or even tunnel between surfaces. We used several months on a
large parallel supercomputer to perform extensive calculations
of conduction, including both bulk and surface physics.

*vincent@sacksteder.com
1More generally, any odd number of fermions is possible.

Two experimental signatures are available for proving
incontrovertibly that a topological metal is indeed robust
against disorder. The first is a quantized conductance in
long wires. In ordinary wires the conductance G decreases
with wire length until only one channel remains open, i.e.
G = e2

h
and then transits into a localized phase where the

last channel decays exponentially. In contrast the topological
metal exhibits one perfectly conducting channel (PCC) which
remains forever topologically protected, so in long wires the
conductance is quantized at G = e2

h
[10–17]. The PCC can

be realized only when there is no gap in the surface states’
Dirac cone. In TI wires locking between spin and momentum
creates a gap, but a specially tuned longitudinal magnetic field
B can be used to close the gap and realize the PCC’s quantized
conductance. In this fine-tuned scenario B breaks time-reversal
symmetry and causes the PCC to eventually decay. Our results
will confirm the PCC’s robustness against bulk effects, and
show that both the optimal value of B and the PCC’s optimal
decay length are altered by bulk physics. These results, and
the PCC’s response to sample dimensions, magnetic fields,
and disorder, will be useful to experimental PCC hunters.

The second key signature of the topological metal concerns
the diffusive regime, where the sample aspect ratio L/W is
small enough that several conducting channels remain open,
but the sample is still bigger than the scattering length. (W and
L are the sample width and length.)

In this regime, regardless of disorder strength, a topological
metal’s conductivity σ = GL/W always increases when the
length L and width W are increased in proportion to each
other [18–26]. This signature contrasts with nontopological
materials where the conductivity can always be forced to
decrease by making the disorder large enough [19,27]. In both
cases the increasing conductivity—called weak antilocaliza-
tion (WAL)—can be removed by introducing a weak magnetic
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field; experimental studies of the TI magnetoconductivity are
extremely popular. In the diffusive regime both the conduc-
tivity and the magnetoconductivity are expected to follow
universal curves prescribed by scaling theory, independent of
sample details.

Here we will confirm that the always-increasing conduc-
tivity is robust against both bulk effects and very strong
disorder. We will also show that the bulk reduces scattering
and causes violation of the universality predicted by scaling
theory, which suggests that the topological metal’s conduction
is not purely diffusive. This has immediate consequences for
experiments: we expect that magnetoconductivity measure-
ments are sensitive to bulk physics, and that the magnitude of
the observed signal will vary systematically with the Fermi
level and disorder strength.

Lastly, we find that the bulk reduces the effects of scatterers
residing on the TI surface. The topological metal is free to
reroute around scatterers, into the TI bulk. This is a second
level of topological protection, in addition to the well-known
suppression of backscattering. It should change the surface
conductivity and increase the topological metal’s robustness
against issues of sample purity, substrates, gating, etc.

II. MODEL

The topological metal is independent of any short-scale
variation in the TI sample, including any microscopic details
of the Hamiltonian. Its two signatures are regulated by only
two parameters: the scattering length and localization length.
Because we are concerned with Fermi energies inside the bulk
band gap, bulk effects on the topological metal can depend on
only a small number of parameters—the Fermi level, the Fermi
velocity, the penetration depth, the bulk band gap, and the bulk
spectral width. Therefore we study a computationally efficient
minimal tight-binding model of a strong TI implemented on a
cubic lattice with dimensions H,W , and L. With four orbitals
per site, the model’s momentum representation is

H(�k) = 2�1 − 1

2

3∑

i=1

(�1 − ı�i+1)e−ıkia + H.c. (1)

�i are the Dirac matrices 1 ⊗ σz,−σy ⊗ σx,σx ⊗ σx,−1 ⊗ σy ,
a = 1 is the lattice spacing, and the penetration depth is d ∝ a

[28]. We include a magnetic field oriented longitudinally along
the axis of conduction by multiplying the hopping terms by
Peierls phases.2 This noninteracting model exhibits a spectral
width �E = 10, a bulk band gap in the interval E = [−1,1], a
single Dirac cone in the bulk gap, and Fermi velocity vF = 2.
To this model we add uncorrelated white noise disorder u(x).
On each individual site the disorder is proportional to the
identity and its strength is chosen randomly from the interval
[−U/2, U/2], where U is the disorder strength. We attach two
clean semi-infinite leads that have W × H cross-sections equal
to that of the sample itself and evaluate the conductance using
the Caroli formula [29,30] G = − e2

h
Tr((�r

L − �a
L)Gr

LR(�r
R −

2We neglect the Zeeman term. This term will be small and
proportional to 1/W 2 because the PCC conductance plateau occurs
at a value of B, which is proportional to 1/W 2.

�a
R)Ga

RL). Ga,Gr = (EF − H − u ∓ ıε)−1 are the advanced
and retarded single-particle Green’s functions connecting the
left and right leads, and �L,R are the lead self-energies [31].

In our study we will leave the TI bulk pure, since the
main effects of bulk disorder on the surface states can be
duplicated by adjusting the bulk parameters. In particular,
the bulk band width widens, the bulk band gap narrows, and the
penetration depth increases. These parameters are only weakly
sensitive to disorder when the disorder is small compared to
the band width. When the disorder strength approaches the
band width the bulk states gradually delocalize, surface states
are eventually destroyed by tunneling through the bulk, and
the material ceases to be a TI [32–36]. In contrast our focus
here is on bulk effects on a healthy topological metal, which
are controlled only by the few bulk parameters that we have
listed.

We include only surface disorder, which has been ex-
tensively investigated experimentally because practical TI
devices may be capped, gated, bombarded, or left exposed
to atmosphere [37–46].

III. PERFECTLY CONDUCTING CHANNEL

In Figs. 1 and 2 we focus on the topological metal’s PCC
signature, which is a quantized conductance plateau seen in
very long samples. We set the disorder strength to U = 2,
and the Fermi energy is EF = 0.7 in both the sample and the
leads. Figure 1(a) shows the plateau in W × H slabs, which
retain all bulk physics but are simplified by avoiding the gap in
the surface Dirac cone. The plateau conductance is G = 2 e2

h

because each surface hosts a PCC. We define the PCC decay
length λ, i.e. the plateau length, as the wire length where the

FIG. 1. (Color online) The perfectly conducting channel (PCC),
a topologically protected conductance plateau in very long TI
samples. (a), (b) The conductance plateau as a function of length L

in (a) W × H slabs with no magnetic field, and in (b) W × W wires
with a fine-tuned longitudinal field. (c) In slabs the decay length λ

is controlled by tunneling and scales exponentially with slab height
H . (d) In wires the decay length scales with W 3 and is caused by
the surface state’s penetration into the bulk. The dotted lines are
(c) λ ∝ exp(1.12 H ) and (d) λ = 4W 3.
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FIG. 2. (Color online) The conductance plateau’s dependence on
magnetic field B at disorder strength U = 2. The wire lengths of the
20 × 20 wires (right) are chosen to be about eight times bigger than
the wire lengths of the 10 × 10 wires (left). On the x axis we plot
the magnetic field, rescaled by W/4B0 ∝ W 3. The match between
the 10 × 10 and 20 × 20 wires proves that the decay length scales
with W 3 and that the conductance peak’s width (in B) scales with
W−3. At U = 2 bulk effects cause the conductance peak to shift to a
larger field strength, so we have subtracted from B the optimal field
strength B0 at zero disorder.

conductance is half of its plateau value.3 Figure 1(c) shows
that λ grows exponentially as the slab height H increases from
3 to 8, which proves that the PCC decay is caused by tunneling
and is exponentially small except in very thin slabs [47]. This
is disorder-enabled tunneling; λ diverges in pure slabs.

Next we turn to W × W TI wires, where the PCC is realized
only after we remove the gap in the Dirac cone. Since spin is
locked to momentum in TIs, parallel transport of the spin on
one circuit around a wire’s circumference causes a π Berry
phase. This causes a small gap �B = 2

√
2vF /C where C is

the wire circumference. However the π phase can be canceled
and the gap removed if the magnetic flux through the wire is
fine tuned to produce an additional π phase [15,16,49–51].
Figure 1(b) shows our results after numerically optimizing B

to maximize the PCC lifetime, which at leading order kept the
magnetic length LB ∝ √

�/eB proportional to the wire width
W . The obvious PCC conductance plateau confirms that the
topological metal is robust in wires.

Figure 1(d) presents the first numerical calculations of the
PCC decay length λ’s dependence on the wire width W in a
model that includes the TI bulk. Our results are of high accu-
racy, with errors of a few percent. They required calculation
of very long and wide wires, numerical optimization of B,
and many samples (from N = 864 for W � 12 to N = 80 for
W = 18). They prove that PCC decay in wires is much faster
than a slab’s exponentially slow decay, and that λ scales with
the cube of the wire width λ ≈ αW 3, with prefactor α ≈ 4.
This points to the magnetic field and not tunneling as the
dominant source of PCC decay in TI wires.

The decay length’s cubic W 3 scaling is caused by bulk
physics. Previously λ ∝ W 4 scaling was predicted based on a
bulk-independent mechanism [16,52]. Diffusion into the bulk
[53] is also expected to scale with L4

B ∝ W 4. If we note that the

3The Supplemental Material [48] shows that in slabs λ is roughly
independent of the slab width W , and that W = 3 gives results that
are quite close to the converged value. In Fig. 1 we use narrow W = 3
slabs, allowing calculation of very long wires.

large value of α prohibits instances of the inverse scattering
length l−1 ≈ 1/30a [48], then simple dimensional analysis
obtains λ ∝ W 3/d2, where d ∝ a is the penetration depth of
the surface states. This implies that the fastest mechanism of
PCC decay is caused by the surface state’s penetration into the
bulk.

Bulk physics also combines with surface disorder to alter
the magnetic field strength, which maximizes λ. In any
TI disorder on the surface will push the topological states
into the bulk, rescaling their magnetic cross section by
(1 − 4δ/W ) [28,47,54]. δ is their displacement, which can
be determined from the shift in optimal magnetic field via
δ = (Bopt − B0)(W/4B0), where Bopt and B0 are respectively
the optimal fields at finite disorder U and at zero disorder
U = 0. Figure 2 plots the conductance at U = 2 as a function
of δB (W/4B0), δB = B − B0. It shows that the displacement
at U = 2 is about 0.06 lattice units and the change in optimal
field is Bopt − B0 = 0.24 B0/W .

Figure 2 shows that after rescaling by W/4B0 the conduc-
tance peak has the same position and width in both 10 × 10 and
20 × 20 wires. This proves that both the optimal value and the
peak width of the magnetic field scale with B0δ/W ∝ W−3.
In thick wires the PCC will not be visible unless the magnetic
field is very finely tuned with an accuracy proportional to W−3.
We expect that this formula, the previous scaling formulas, and
the graphs of the PCC peak will all be useful for PCC hunters.

IV. CONDUCTIVITY

In Fig. 3 we turn to studying the topological metal’s
second signature, a conductivity σ , which grows robustly
with sample size regardless of disorder strength. We have
carefully controlled for many effects and errors. σ grows
only in the diffusive regime where several channels remain
conducting, and here it is independent of sample width W .
Figure 3(a) shows that both σ and its logarithmic derivative
β(L) = d ln σ/d ln L converge to their diffusive values when
W > 1.1 L; we restrict our remaining data to this converged
regime. Moreover in the diffusive regime both large slabs and
large wires have the same conductivity; the gap is erased by
disorder, and has no effect even at E = 0 [48]. Here we report
results obtained from slabs. We also ensure convergence with
slab height H by using thick slabs with H = 6 in Fig. 3(a)
and H = 12 elsewhere. The associated computational cost
is compounded by β’s sensitivity to statistical errors; very
large N = 960–4800 numbers of samples—and smoothing in
Figs. 3(a) and 3(c)—were necessary to obtain these low-noise
β curves. Leads effects are minimized by doping them into the
metallic bulk band at EF = 2.

The most prominent feature of our data is highlighted in
Fig. 3(c): a resonance between the disordered surface states
and the bulk band, seen here as a valley in both 2/πσ and β,
which we have plotted as functions of disorder U at four Fermi
levels inside the gap. It is centered around disorder strength
U = [6,10], matching the bulk band width �E = 10. The
resonance is generic to all TIs, since its physics is generic:
surface disorder displaces the surface states into the bulk, as
we already saw in Fig. 2. At weak disorder U the displacement
is small (δ = 0.06 at U = 2 in our model), but as U passes
through the resonance center the surface states migrate from
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FIG. 3. (Color online) The conductivity σ and its logarithmic
derivative β(L) = d ln σ/d ln L. (a) Convergence of β and σ (in inset)
as the sample width W is increased from 15 to 80. (c) The resonance
between the topological surface state and the bulk band, manifested
as valleys in both β (solid lines) and 2/πσ (dashed lines). At the
resonance center the topological state is most strongly disordered,
and also exhibits the largest conductivity. (b) Topological protection
ensures that the surface states’ conductivity σ always increases with
sample size L, as verified here near the resonance center U = 7.2, off
center U = 9.1, and in the large-disorder shoulder U = 15.9,30.0.
At very small L tunneling through the bulk causes σ to decrease
with L. The variation in line slope with U and with Fermi energy EF

breaks the universality predicted by scaling theory. (d) The β function.
Scaling theory predicts a universal β = 2/πσ curve independent of U

and EF , shown here as a black dotted-dashed curve, and also shown in
(a). The deviations from universality seen here imply similar behavior
in the magnetoconductivity.

the disordered surface layer into the clean bulk. At the
resonance center scattering is maximized, as is mixing between
the bulk and the surface states. Since quantum scattering
processes are responsible for the conductivity’s growth, σ is
also maximized at the resonance center. We conclude that
outside the resonance center the bulk tends to decrease the
effect of surface disorder. This will change the magnitude of
the surface conduction in TI samples and will also change the
scattering length and the diffusion constant, each of which can
be observed experimentally.

Figure 3(c) shows a very interesting feature: at the reso-
nance center the four conductivity curves kiss, which signals
that scattering is independent of energy. The surface density
of states (DOS) ρ also must be independent of energy, since
it determines the scattering time via τ ∝ (〈U 2〉 ρ)−1. This is
in remarkable contrast with the linear DOS ρ(E) ∝ E seen at
zero disorder.

Figure 3(b) examines the the conductivity growth signature
of topological metals at two values of the Fermi level

EF = 0, 0.2 and four representative disorder strengths. The
growth is very clear in the two pink lines at the top, which
lie near the resonance center U = 7.2, and also in the slightly
lower two orange lines, which lie slightly off center U = 9.1.
The lowest four lines lying in the resonance shoulder U =
15.9, 30.0 do reveal a decreasing conductivity at small L, but
this is a finite-size effect from the leads: disorder-assisted bulk
tunneling between the leads increases σ in very short samples,
and this excess decreases rapidly with L [48]. Leaving aside
this tunneling effect, we find that σ grows even when its value
(per surface) is as small as σ � 0.31 e2

h
≈ 1

π
e2

h
. This contrasts

with materials without topological protection where any value
of σ up to σC ≈ 1.4 e2

h
produces a decreasing conductivity

[19,27,55–58], and proves that a TI’s conductivity growth is
robust against bulk effects.

The details of Fig. 3 can be compared with the one
parameter scaling theory of conduction, which makes specific
predictions about the diffusive regime. Scaling theory’s most
important prediction is universality: the only effect of changing
the disorder strength and Fermi level should be to rescale both
the scattering length l and the overall length scale [59]. The
β function is not sensitive to l, so it should be universal.
Numerical works on topological metals have shown that this
universal curve agrees quite well with β(σ ) = 1/πσ , even
when σ ≈ 1/π is quite small [19,20,25,60]. In consequence
σ grows logarithmically ∝ 1/π ln L. In our TI slabs β and σ

are multiplied by 2 for the two surfaces. In summary, scaling
theory predicts that in Fig. 3(d) the β(σ ) curves should all
coincide with each other and with the 2/πσ black dotted line,
and that in Fig. 3(c) each solid β(σ ) line should coincide with
its partnering dashed 2/πσ line. Moreover the conductivity
curves in Fig. 3(b) should all follow straight lines with the
same slope 2/π . These universal results are at the origin of
the Hikami-Larkin-Nagaoka formula which gives a universal
prediction for the conductivity’s response to a small magnetic
field, and in particular the 2/π coefficient in these scaling
theory predictions transfers over directly to the HLN formula’s
magnitude [60].

Near the resonance center U ≈ 7.2 we find excellent
agreement with scaling theory, as evidenced by the pink
straight line conductivity curves found in Fig. 3(b) and by the
pink β curves in Fig. 3(d), which coincide nicely with 2/πσ .
The excellent agreement with scaling theory indicates that at
the resonance center conduction is completely determined by
diffusion and its quantum corrections, and that the scattering
length is very small.

At other disorder strengths we find that scaling theory’s
universality is systematically violated. We begin well within
the resonance at U = 9.1, which is shown in the orange lines
in Figs. 3(b), 3(d). These lines are straight, indicating that
the conductivity grows with the dimensionless quantity ln L,
and proving that σ is not controlled by any finite-size effect.
However the lines’ slopes are clearly smaller than the U = 7.2
slope (20% smaller at E = 0 and 12% at E = 0.2), so β is
smaller than scaling theory’s 2/πσ . Figure 3(c) confirms this,
showing that at disorder strengths near the resonance center
the solid β lines lie consistently below the dashed 2/πσ lines.
This cannot be attributed to finite-size effects or other errors,
and is an unambiguous signal of nonuniversality.
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Turning to the resonance shoulder (U = 15.9, 30.0), at
large L we find that β consistently exceeds the universal
scaling theory prediction 2/πσ for E = 0.2,0.3, as seen both
in Fig. 3(c) and in the blue dotted E = 0.2,W = 30 curves
in Figs. 3(b), 3(d). This nonuniversal conduction is likely
superdiffusive, somewhere between diffusion and ballistic
motion. Once again this cannot be a finite-size effect, since
Fig. 3(b) shows that in long L = 35 samples σ always
becomes roughly linear, i.e. proportional to ln L. This is
confirmed by Fig. 3(d), which shows β converging toward
the decreasing β ∝ 1/σ form, which accompanies σ ∝ ln L.
We have checked that in longer L � 70 samples all of the β

curves shown here begin decreasing.
We conclude that the TI bulk reduces the topological

metal’s scattering and leaves the conductivity in a nondiffusive,
nonuniversal regime that is sensitive to sample details such
as disorder strength and Fermi level. This has immediate
consequences for experimental measurements of the magne-
toconductivity. In particular, its magnitude should be sensitive
to variations of the disorder strength and the Fermi level, in
synchrony with the changing magnitude of β and σ .

V. CONCLUSIONS

In summary, our results confirm that the topological metal
is robust against bulk effects when a finely tuned magnetic
field is applied, but also reveal that its response to disorder
and to the magnetic field is substantially changed by the bulk.
The bulk alters the PCC’s decay, protects the topological metal
from surface disorder except when the disorder is in resonance
with the bulk, and pushes conduction into a nondiffusive,
nonuniversal regime where it is sensitive to the Fermi energy
and the disorder strength.
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