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A device enabling mechanically controlled spin and electric transport in mesoscopic structures is proposed. It
is based on the transfer of electrons through weak links formed by suspended nanowires, on which the charge
carriers experience a strong Rashba spin-orbit interaction that twists their spins. It is demonstrated that when the
weak link bridges two magnetically polarized electrodes, a significant spintro-voltaic effect takes place. Then, by
monitoring the generated voltage, one is able to measure electronic spins accumulated in the electrodes, induced,
e.g., by circularly polarized light or, alternatively, the amount of spin twisting. Mechanically tuning the device
by bending the nanowire allows one to achieve full control over the spin orientations of the charge carriers.
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I. INTRODUCTION

Achieving significant interplay among the electric, mag-
netic, and mechanical degrees of freedom in solid-state devices
suggests exciting perspectives in coherent operations involving
all three of them. Charge carriers in conducting materials are
perfect candidates for realizing such an interplay since they
carry both electric charges and magnetic moments (their spins)
and can be coupled quite strongly to mechanical deformations
in beamlike mesoscopic setups.

Indeed, experiments have demonstrated [1–6] the feasibility
of coupling charge carriers to mechanical vibrations of
suspended nanodevices, showing, e.g., that a mechanically
vibrating single-walled carbon nanotube can also act con-
comitantly as a single-electron transistor. The role of the
spin degree of freedom, i.e., the generation, detection, and
exploitation of spin currents, has been recently discussed quite
extensively, in particular in conjunction with the spin Seebeck
effect in the magnetic insulator yttrium iron garnet [7]. This
effect refers to the generation of an electric power from a
temperature difference between the magnetic insulator and a
layer of normal metal attached to it [8–11]. The temperature
difference gives rise to a spin current, which is pumped into
the normal metal in a longitudinal configuration and induces
there a traverse emf via the inverse spin Hall effect [12,13].
The companion phenomenon, i.e., the spin Peltier effect, has
been detected as well [14]. Thermally activated spin current
through ferromagnetic tunnel contacts has been detected in
Ref. [15].

A particularly promising situation arises when the elec-
tric current through a mechanically deformed weak link is
provided by a battery of uncompensated electronic spins.
Such a setup combines together all three types of degrees
of freedom and allows for a plethora of intriguing phenomena.
When the magnetic polarizations in the electronic reservoirs
forming the electrodes are not identical, then quite generally
both charge and spin currents result from the transport of
electrons through the junction. The situation at hand resembles
in a way thermoelectric transport in a two-terminal junction:
the two currents (charge and spin), flow in response to two
affinities, the voltage difference, and the difference in the
amount of magnetic polarization between the two reservoirs.

Nondiagonal phenomena, analogous to the thermoelectric
Seebeck and Peltier effects, can therefore be expected. For
instance, it is possible to generate a spin current by injecting
charges into the material, which in turn may give rise to a
spatially inhomogeneous spin accumulation.

However, the two opposite spins can still contribute equally
to the charge transport, resulting in zero net spin propagation,
much like the vanishing of the thermopower when electron-
hole symmetry is maintained. In the case of combined spin
and charge transport, nondiagonal spin-electric effects appear
once the spin and charge transports are coupled in a way
that distinguishes between the two spin projections. One
may achieve such a spin-dependent transport by exploiting
magnetic materials in which the electronic energy is spin
split. When the magnetization is spatially inhomogeneous (as
happens in composite magnetic structures) the spin-dependent
part of the energy will be inhomogeneous as well, leading to
a spin-dependent force acting on the charge carriers. Another
possibility, feasible even in magnetically homogeneous mate-
rials, is to employ the Rashba spin-orbit interaction [16], which
can be controlled by external electric fields. This interaction
causes the electronic spin to rotate around an axis determined
by its spin and the electric-field direction [17]. When this
interaction varies in space, the electronic spin is twisted.
The end result is the same as in the first scenario above: A
spin-dependent force (resulting from the Rashba interaction)
is exerted on the electrons, opening the way for nondiagonal
spintro-electric transport.

Obviously, making such a spintro-electric effect tunable
and controllable would be of great importance both from
the viewpoint of fundamental physics as well as from that
of practical applications. Here we propose that such a
manipulation of the spintro-electric transport can be achieved
by confining the spin-orbit interaction into a small domain
in space that at the same time can also be mechanically
treated. In other words, one can modify geometrically the
spatial region where the spin-orbit interaction takes place.
When this very domain also serves as a weak link, both
the spin-orbit coupling and the electric resistance can be
controlled through a geometrical deformation of the device.
Such an arrangement can be realized in electronic weak links
or microconstrictions; it makes room for the possibility to
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FIG. 1. (Color online) Schematic representation of the proposed
setup. A nanowire, bent in the x-y plane, is coupled to two
magnetically polarized electronic reservoirs with arbitrarily oriented
magnetization axes n̂L and n̂R . The externally pumped spins give
rise to spin-dependent electrochemical potentials μL(R),σ ≡ μL(R) +
σUL(R). The bending of the nanowire is specified by the angle it makes
with the x̂ axis, with an instantaneous value θ around the equilibrium
angle θ0.

control the transport by modifying the electronic scattering in
a small region of the material around the junction. Specifically,
we suggest that a suspended nanowire is most suitable for
playing the role of the desired weak link. It is known that
the Rashba spin-orbit interaction is anomalously large in
certain nanowires [18] and also in nanotubes [19]. These
beamlike structures are beneficial for our purposes since they
are likely to produce spin twist due to the Rashba interaction,
while mechanically controlling their bending allows for the
manipulation of the amount of twisting. This possibility arises
because mechanically bending nanowires directly modifies the
ballistic motion of the electrons through them, via the spin
torque exerted by the Rashba spin-orbit interaction [20].

Below we present a complete description of the spintro-
electric transport through a Rashba spin twister and demon-
strate the nondiagonal effects that are possible in such a
device. Section II presents the general formulation for the
transport of the spin and the charge through a vibrating weak
link, in the presence of both an Aharonov-Bohm flux and a
Rashba spin-orbit interaction. The results are summarized by
the 3 × 3 linear-response matrix of transport coefficients (22)
and (23). Explicit expressions for these coefficients are derived
in Sec. III and given in Eq. (31). Section III also considers
several special cases, showing how one can generate a voltage
without a charge current across an open circuit by a spin
imbalance in the reservoirs (see Fig. 1) and how one can
change the spin twisting by bending the weak link wire. A
summary and our conclusions are given in Sec. IV. Certain
detailed calculations are relegated to Appendixes A and B.

II. SPINTRO-VOLTAIC EFFECTS DUE
TO RASHBA SPLITTING

A. General approach

A ubiquitous description of transport phenomena through
electronic weak links is based on the assumption that the
electric resistance of the weak link dominates the resistance
of the entire device [21]. This assumption means that the
distribution of the electrons in momentum space in each of the
electronic reservoirs follows locally the equilibrium one. The
electric current through the weak link is then accomplished
by tunnel coupling. Here we adopt this approach. However,
having the electronic spin as an active component in the

transport, this scheme needs to be extended to include also
the distribution of the electrons in spin space. The latter
depends on the specific experimental setup. For instance,
injecting spin-polarized electrons into each of the electrodes
when the spin-relaxation rate there is slow enough yields spin
pumping [22], which results in an imbalance between oppo-
sitely oriented electronic spins. Under these circumstances the
electrochemical potential that determines the local equilibrium
distribution in each of the electrodes will be different for
the two spin projections. A similar situation can be created
upon using circularly polarized light to pump excess spins
into an electronic system [23]. More options are open when
the electrodes are made of magnetic materials. In that case
the spin polarization of the electrons induced by the internal
magnetization can differ from the one invoked by an external
injection. The actual electronic distribution in spin space then
has to be determined from an additional kinetic equation, a
task that is beyond the scope of the present study. Instead, we
will assume that the spin orientation of the injected electrons
coincides with the direction of the internal magnetization in
magnetic reservoirs [24].

The setup we propose is depicted schematically in Fig. 1.
It comprises a nanowire bridging two leads, firmly coupled
to the left and right electronic reservoirs, held at spin-
dependent electrochemical potentials μL,σ ≡ μL + σUL and
μR,σ ≡ μR + σUR , respectively (the symbols L and R refer
to the left and the right leads; see Fig. 1). Here σ is the
spin index. The two bulk metals forming the reservoirs are
each polarized along its own polarization axis, denoted by
the unit vectors n̂L and n̂R , respectively. The wire vibrates
in the x-y plane such that the angle θ it makes with the x̂
axis oscillates around an equilibrium value θ0. An additional
(weak) magnetic field, applied along the ẑ direction, gives rise
to an instantaneous Aharonov-Bohm effect [25], modifying
the transport properties of the device and thus adding to its
versatility.

The spin-resolved current through such a Rashba spin
junction was considered in detail in Ref. [20]. The model
exploited in the explicit calculations replaces the nanowire
by a quantum dot [26] that has a single level of energy
ε0. As explained above, the reservoirs are represented by
their respective electronic distributions determined by the
spin-dependent electrochemical potentials

fL,σ (εk,σ ) = [eβ(εk,σ −μL,σ ) + 1]−1,
(1)

fR,σ ′ (εp,σ ′) = [eβ(εp,σ ′−μR,σ ′ ) + 1]−1,

with β−1 = kBT . The electron gas states in the left (right)
reservoir are indexed by k,σ (p,σ ′) and have energies εk,σ

(εp,σ ′).
The linear Rashba interaction manifests itself by phase

factors multiplying the tunneling amplitudes that couple the
nanowire to the leads [27]. In the geometry of Fig. 2, these
phases are induced by an electric field perpendicular to the
x-y plane. The phase factors are given by exp[iαR × σ · ẑ],
where α denotes the strength of the spin-orbit interaction (in
units of inverse length; units in which � = 1 are used) and σ

is the vector of the Pauli matrices. Quite generally R = RL ≡
{xL,yL} for the left tunnel coupling and R = RR ≡ {xR, − yR}
for the right one, where both radius vectors RL and RR are
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FIG. 2. (Color online) Schematic geometry used for calculating
the spin-orbit coupling dependence of the effective tunneling ampli-
tude. A localized level is tunnel coupled to left (L) and right (R)
electronic electrodes. The setup lies in the x-y plane; a magnetic field
applied along ẑ is shown by ⊗. The radius vectors RL and RR connect
the quantum dot with the left and right electrodes.

functions of the vibrational degrees of freedom (see Fig 2).
We adopt the plausible geometry yL = yR = (d/2) sin(θ ) and
xL = xR = (d/2) cos(θ ), where d is the wire length (θ is
the instantaneous bending angle) [28]. In order to mimic
the bending vibrations of the wire we assume that once the
wire is bent by the (equilibrium) angle θ0, then the distance
along x between the two supporting leads is fixed, while the
(red) dot in Fig. 2 vibrates along y. As a result, tan(θ ) =
2y/[d cos(θ )], implying that �θ = (2/[d cos(θ )]) cos2(θ0)�y.
[Here d cos(θ0) is the wire projection on the x direction.] It
follows that

θ = θ0 + �θ = θ0 + [a0 cos(θ0)/d](b + b†), (2)

where a0 is the amplitude of the zero-point oscillations and
b (b†) is the destruction (creation) operator of the vibrations.
Their free Hamiltonian is described by the Einstein model
Hvib = ωb†b. More details of the derivation are given in
Appendix A.

The quantum vibrations of the wire, i.e., the dynamics
of the bending angle, make the electronic motion effectively
two dimensional [25]. This leads to the possibility of further
manipulating the device via the Aharonov-Bohm effect, by
applying a magnetic field perpendicular to the junction plane
(see Fig. 2). This field imposes an additional phase on the
tunneling amplitudes φL(R) = −(π/�0)(HxL(R)yL(R)) for the
left and the right sides, respectively, where H is the magnetic
field (a factor of order unity [25] is absorbed in H ). The

transport through the Rashba junction depends only on the
total Aharonov-Bohm phase φ,

φ ≡ φL + φR = −πH

�0
(xLyL + xRyR) = −πHd2

4�0
sin(2θ ),

(3)

measured in units of the flux quantum �0 = hc/e.
The end result of the above considerations is that the tun-

neling through the Rashba weak link is effectively described
by a tunneling Hamiltonian connecting directly the left and
the right electrodes [20]

He
tun =

∑
k,p

∑
σ,σ ′

(c†p,σ ′[Wpk]σ ′σ ck,σ + H.c.), (4)

where ck,σ and c
†
k,σ (cp,σ ′ and c

†
p,σ ′ ) are the annihilation and

creation operators of the electrons in the left (right) electrode.
To second order in the (original) tunneling amplitudes, the
effective tunneling is [20]

[Wpk]σ ′σ = 1

2

∑
σ̃

Vp,σ ′σ̃ Vk,̃σσ

(
1

εk,σ − ε0
+ 1

εp,σ ′ − ε0

)
. (5)

The tunneling amplitudes between the left and the right
electrodes and the quantum dot, Vp and Vk , respectively
(matrices in spinor space), consist of the bare tunneling
amplitudes (denoted JL and JR , respectively) and the phases
describing the effects of the perpendicular (Aharonov-Bohm)
magnetic field and the Rashba interaction

Vk(p) = −JL(R) exp[−iψL(R)], (6)

where

ψL = φL − α(xLσy − yLσx),
(7)

ψR = φR − α(xRσy + yRσx).

The spin-resolved particle current emerging from the left
electrode IL,σ is found [20] by calculating the time evolution
of the number operator of electrons with spin projection σ ,
ṄL,σ ,

− IL,σ ≡ ṄL,σ =
∫ ∞

0
dτ

∑
k,p,σ ′

(fR,σ ′(εp,σ ′)[1 − fL,σ (εk,σ )]

×{ei(εk,σ −εp,σ ′ )τ 〈[Wpk]σ ′σ [W †
kp(τ )]σσ ′ 〉 + ei(εp,σ ′−εk,σ )τ 〈[Wpk(τ )]σ ′σ [W †

kp]σσ ′ 〉}
− fL,σ (εk,σ )[1 − fR,σ ′(εp,σ ′)]{ei(εp,σ ′−εk,σ )τ 〈[W †

kp]σσ ′[Wpk(τ )]σ ′σ 〉 + ei(εk,σ −εp,σ ′ )τ 〈[W †
kp(τ )]σσ ′[Wpk]σ ′σ 〉}). (8)

An analogous expression gives the current emerging from
the right electrode. The angular brackets in Eq. (8) denote
thermal averaging over the vibrations and over their time
evolution with respect to the Einstein Hamiltonian. Assuming
off-resonance conditions, the wave-vector dependence of the
effective tunneling amplitude may be discarded and then [see
Eq. (5)]

〈[Wpk]σ ′σ [W †
kp(τ )]σσ ′ 〉 = J 2

LJ 2
R

ε2
0

×〈[e−iψR e−iψL ]σ ′σ [eiψ
†
L(τ )eiψ

†
R (τ )]σσ ′ 〉 (9)

[note that ψL,R = ψ
†
L,R , see Eqs. (7)] with

〈[e−iψR e−iψL ]σ ′σ [eiψ
†
L(τ )eiψ

†
R (τ )]σσ ′ 〉

=
∑
n,n′

P (n)ei(n′−n)ωτ |〈n|[e−iψR e−iψL ]σ ′σ |n′〉|2. (10)

Here |n〉 and |n′〉 denote the eigenstates of energies (n + 1/2)ω
and (n′ + 1/2)ω, respectively, of the Einstein vibrations and

P (n) = e−(n+1/2)βω

Tre−βHvib
= e−nβω(1 − e−βω) (11)
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such that
∑∞

n=0 P (n) = 1 and
∑∞

n=0 P (n)n = 1/[eβω − 1] ≡
NB(ω) is the Bose-Einstein distribution. The other thermal
averages in Eq. (8) are expressed in a similar form.

Since the electrodes are magnetically polarized, the density
of states in each of them depends on both the internal exchange
interaction and the external spin pumping as expressed by
the energy split of the electrochemical potentials UL,R that
determine the kinetic energy of the electrons participating in
the transport. However, the latter dependence is weak [29]
and to lowest order in UL,R/μ, where μ = (μL + μR)/2
is the common chemical potential of the entire device,
it may be neglected. Therefore, one is able to convert
the sums over the wave vectors in Eq. (8) into integrals by
introducing the spin-resolved densities of states at the common
chemical potential of the left and right leads NL,σ and NR,σ ,
respectively. It then turns out that the spin-resolved particle
currents emerging from the left and the right electrodes are

− IL,σ = 2πNL,σ

∑
σ ′

NR,σ ′

∞∑
n,n′=0

P (n)Tnn′,σσ ′

× (1 − eβ(μL,σ −μR,σ ′ ))
μL,σ − μR,σ ′ + (n′ − n)ω

eβ[μL,σ −μR,σ ′+(n′−n)ω] − 1
(12)

and

− IR,σ ′ = 2πNR,σ ′
∑

σ

NL,σ

∞∑
n,n′=0

P (n)Tnn′,σσ ′

× (eβ(μL,σ −μR,σ ′ ) − 1)
μL,σ − μR,σ ′ + (n′ − n)ω

eβ[μL,σ −μR,σ ′+(n′−n)ω] − 1
.

(13)

Clearly particle number is conserved, as can be seen by adding
together Eq. (12) summed over σ and Eq. (13) summed over σ ′.

The spin indices of the matrix element squared [30] forming
the transmission T in Eqs. (12) and (13) deserve some
caution: The quantization axes of the magnetization in the two
electronic reservoirs are generally different (see Fig. 1) and
they both may differ from the quantization axis that is used to
describe the Rashba interaction on the nanowire. Specifying
the quantization axis in the left (right) reservoir by the angles
θL (θR) and ϕL (ϕR), then

Tnn′,σσ ′ =
(

JLJR

ε0

)2

|〈n|[S†
Re−iψR e−iψLSL]σ ′σ |n′〉|2, (14)

where the rotation transformations SL(R) are given by

SL(R) =
[
e−i(ϕL(R)/2) cos θL(R)

2 e−i(ϕL(R)/2) sin θL(R)

2
ei(ϕL(R)/2) sin θL(R)

2 −ei(ϕL(R)/2) cos θL(R)

2

]
. (15)

For instance, when the quantization axes in both electrodes
are identical n̂L = n̂R , S just rotates the direction of the
quantization axis of the Rashba interaction.

B. Linear-response regime

As mentioned above, the transport of the charge carriers in
our setup consists of both charge and spin currents. Here we
examine these currents in the linear-response regime, where

the spin-resolved particle currents (12) and (13) become

IL,σ = 2πNL,σ

∑
σ ′

NR,σ ′(μL,σ − μR,σ ′ )Aσσ ′,

(16)
IR,σ ′ = 2πNR,σ ′

∑
σ

NL,σ (μR,σ ′ − μL,σ )Aσσ ′,

with the transmission

Aσσ ′ =
∞∑

n=0

P (n)Tnn,σσ ′

+
∞∑

nn′=0
n�=n′

P (n)Tnn′,σσ ′
(n′ − n)βω

e(n′−n)βω − 1
. (17)

The first term in Eq. (17) gives the contribution to the spin-
resolved transport from the elastic tunneling processes. The
second is due to the inelastic processes and is active at finite
temperatures.

Our final expressions for the charge currents are then

eIL ≡ e
∑

σ

IL,σ = e(μL − μR)C1 − eURC3 + eULC2, (18)

with eIR ≡ e
∑

σ ′ IR,σ ′ = −eIL. The spin currents emerging
from the left and right reservoirs are

I
spin
L ≡

∑
σ

σIL,σ = (μL − μR)C2 − URC4 + ULC1,

(19)
I

spin
R =

∑
σ ′

σ ′IR,σ ′ = (μR − μL)C3 + URC1 − ULC4.

In Eqs. (18) and (19) we have introduced the linear-response
transport coefficients

C1 = 2π
∑
σσ ′

NL,σAσσ ′NR,σ ′ ,

C2 = 2π
∑
σσ ′

NL,σ σAσσ ′NR,σ ′ ,

(20)
C3 = 2π

∑
σσ ′

NL,σAσσ ′σ ′NR,σ ′ ,

C4 = 2π
∑
σσ ′

NL,σ σAσσ ′σ ′NR,σ ′ ,

giving the various transmission probabilities of the junc-
tion [30].

C. Onsager relations

As mentioned in Sec. I, there is a certain analogy between
the configuration studied here and that of thermoelectric
transport. In order to further pursue this point we consider
the entropy production in our device, assuming that the spin
imbalance in each of the two reservoirs does not vary with time
and that all parts of the setup are held at the same temperature
T . Under these circumstances the entropy production Ṡ is

T Ṡ =
∑

σ

μL,σ IL,σ +
∑
σ ′

μR,σ ′IR,σ ′

= IL(μL − μR) + ULI
spin
L + URI

spin
R , (21)
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where the various currents are given in Eqs. (18) and (19).
Obviously, the first term on the right-hand side of Eq. (21)
is the dissipation due to Joule heating. The other two terms
describe the dissipation involved with the spin currents.

As seen from Eq. (21), the entropy production may be
presented as a scalar product of the vector of driving forces
(sometimes called affinities) {V ≡ (μL − μR)/e,UL,UR} and
the resulting currents {eIL,I

spin
L ,I

spin
R }. In the linear-response

regime (see Sec. II B) these two vectors are related to one
another by a 3 × 3 matrix M, which contains the transport
coefficients ⎡⎢⎣ eIL

I
spin
L

I
spin
R

⎤⎥⎦ = M

⎡⎣ V

UL

UR

⎤⎦ (22)

with

M =

⎡⎢⎣ e2C1 eC2 −eC3

eC2 C1 −C4

−eC3 −C4 C1

⎤⎥⎦ . (23)

One notes that this matrix obeys the Onsager relations:
Reversing the sign of the magnetic field, i.e., inverting the sign
of the Aharonov-Bohm phase φ [Eq. (3)] and concomitantly
interchanging the vibration states indices n with n′ and the spin
indices σ with σ ′ in Eqs. (14) and (17) leaves all off-diagonal
terms in the matrix M unchanged.

III. SPIN-ELECTRIC TRANSPORT THROUGH
A RASHBA TWISTER DEVICE

A. Transport coefficients

The full calculation of the transmission matrix A that
determines the transport coefficients Ci [see Eqs. (17) and (20)]
is quite complicated and requires a numerical computation.
We provide in Appendix B an approximate form for it, valid
when the coupling of the charge carriers to the vibrational
modes of the wire is weak. The approximation is based on
the different magnitudes that coupling takes in the magnetic
Aharonov-Bohm phase and in the Rashba one. In order to
see this, it is expedient to present the phase factors in the
transmission amplitude in the form

exp(−iψR) exp(−iψL) ≡ e−iφ(A + iB · σ ) (24)

[see Eqs. (6), (7), and (9)]. Here A and B are functions of the
instantaneous bending angle θ [Eq. (2)],

A = 1 − 2 cos2(θ ) sin2(αd/2),

B = {0, cos(θ ) sin(αd), − sin(2θ ) sin2(αd/2)},
A2 + B · B = 1, (25)

and φ is the instantaneous Aharonov-Bohm flux in dimension-
less units (3). The components of the spin-orbit vector B are
given in the coordinate axes depicted in Fig. 1.

As can be observed by inserting Eq. (2) for the vibration-
dependent bending angle into Eqs. (6) and (7), the effect of the
electron-vibration interaction on the Rashba coupling is of the
order of the zero-point amplitude of the vibrations divided by
the wire length a0/d. On the other hand, upon inserting Eq. (2)

into Eq. (3) one finds that the Aharonov-Bohm phase is

φ 	 −πHd2

4�0
sin(2θ0) − πa0dH

2�0
cos(θ0) cos(2θ0)(b + b†).

(26)

The dynamics of the Aharonov-Bohm flux is thus determined
by the flux enclosed in an area of order a0d divided by the flux
quantum (see Appendix B). The latter ratio can be significantly
larger than a0/d. For instance, the length of a single-walled
carbon nanotube is about d = 1μ, while the vibrations’ zero-
point amplitude is estimated to be 10−5μ. This leads to a0/d 	
10−5, while Ha0d/�0 is of the order of 10−2 for magnetic
fields of the order of a few teslas (at which the effect of the
magnetic field on the transport through the Rashba weak link
becomes visible).

The disparity between the way the electron-vibration
coupling affects the Rashba phase factor and the manner by
which it dominates the magnetic one results in a convenient
(approximate) form for the transmission matrix A [30]. We
show in Appendix B that

A = g(T ,H )

[
Ad And

And Ad

]
. (27)

Here g is the transmission of the junction in the absence of the
Rashba interaction; it depends on the temperature and on the
perpendicular magnetic field

g(T ,H ) =
(

JLJR

ε0

)2( ∞∑
n=0

P (n)|〈n|e−iφ|n〉|2

+
∞∑

n=0

∞∑
�=1

P (n)|〈n|eiφ|n + �〉|2 2�βω

e�βω − 1

)
. (28)

This quantity is discussed extensively in Ref. [25], where one
may find its detailed dependence on the temperature and on
the magnetic field. In particular, at high and low temperatures
(compared to the vibration frequency)

g(T ,H ) =
(

JLJR

ε0

)2
{

1 − βω

6
H 2

H 2
0
, βω 
 1

exp[−H 2/H 2
0 ], βω � 1,

(29)

where H0 = √
2�0/[πda0 cos(θ0) cos(2θ0)], with a0 being

the amplitude of the zero-point oscillations and �0 the flux
quantum.

The spin-dependent part of the transmission is given by the
matrix in Eq. (27),

Ad + And = 1,

Ad − And = (
A2

0 − B2
0

)
n̂L · n̂R + 2A0B0 · n̂L × n̂R

+ 2(B0 · n̂L)(B0 · n̂R). (30)

Here A0 and B0 are given by the values of A and B defined in
Eqs. (25) at equilibrium, i.e., when the angle θ there is replaced
by θ0. Their physical meaning is explained in Sec. III B:And =
sin2(γ ), where γ is the twisting angle of the charge carriers’
spins, and Ad = cos2(γ ).

Using the explicit expression (27) for the transmission
matrix A, it is straightforward to find the transport coefficients
Ci . Retaining only terms linear in the difference between the
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densities of states of the spin orientations, we obtain

C1 + C4 	 8πg(T ,H )AdNLNR 	 C2 + C3,

C1 − C4 	 8πg(T ,H )AndNLNR, (31)

C2 − C3 = 4πg(T ,H )And(NL,↑NR,↓ − NL,↓NR,↑),

where NL,R is the total density of states of each electronic
reservoir (summed over the two spin directions). Glancing at
Eq. (18) for the charge current and taking into account the first
of Eqs. (30) shows that the conductance G of the junction is
independent of the spin-orbit interaction and is given by [31]

G = 4πe2NLNRg(T ,H ). (32)

Specific spintro-voltaic effects are considered below.

B. Rashba twisting

When the junction is not subject to a perpendicular
magnetic field and the charge carriers passing through it do
not collect an Aharonov-Bohm phase due to it, one may safely
ignore the effect of the quantum flexural nanovibrations of the
suspended wire. Indeed, the electron-vibration coupling on
the weak link is of order a0/d 	 10−5 for carbon nanotubes
(see the model description in Secs. II A and III A and
Appendix B). This interaction is therefore not expected to
modify significantly the transmission through the wire.

The scattering of the electrons’ momentum, caused by the
spatial constraint of their orbital motion inside the nanowire,
also induces scattering of the electronic spins. The latter
results from the spin-orbit Rashba interaction located at the
wire. Consequently, an electronic wave having a definite spin
projection on the magnetization vector of the lead from which
it emerges is not a spin eigenstate in the other lead.

Thus, a pure spin state |σ 〉 in one lead becomes a mixed
spin state in the other,

|σ 〉 ⇒ α1|σ 〉 + α2|σ 〉, (33)

with probability amplitude α1 to remain in the original state
and probability amplitude α2 for a spin flip (σ = −σ ). During
the propagation through the weak link the spins of the charge
carriers are twisted, as is described by the transmission
amplitude [see Eqs. (24) and (B1)] A0 + iB0 · σ . It follows
that the probability amplitude for a spin flip α2 is given by

α2 = [S†
R(A0 + iB0 · σ )SL]σσ , (34)

with SL,R given in Eq. (15). The Rashba twisting angle γ can
now be defined by

α2 = sin(γ )eiδ, (35)

with

|α2|2 = sin2(γ ) = And, (36)

yielding a clear physical meaning to the transmissions Ad and
And [see Eqs. (30)].

The physical quantities depend only on the relative phase
between α1 and α2. Therefore, we choose α1 = cos γ . It is then
easy to check that the average of the vector σ in the state of
Eq. (33) is equal to {sin(2γ ) cos(δ), sin(2γ ) sin(δ), cos(2γ )}.
This vector is rotated by the angle 2γ relative to its direction in
the absence of the spin-orbit interaction. We call this rotation

of the electronic moments in each of the two leads a twist of the
spins. It is distinct from simple spin precession since the axis
of this precession changes its direction during the electronic
motion along the curved trajectory.

In the simplest configuration of parallel magnetizations in
both electrodes, i.e.,

n̂L = n̂R ≡ n̂, (37)

Eqs. (30) yield

sin(γ ) = [
B2

0 − (n̂ · B0)2
]1/2

. (38)

Interestingly enough, in this simple configuration sin(γ ) is
determined by the component of the Rashba vector B0 normal
to the quantization axis of the magnetization in the electrodes.
Mechanically manipulating the bending angle that determines
the direction of the Rashba vector B0, one may control the
twisting angle γ . Note also that had the vectors n̂L and n̂R

been antiparallel to one another then sin(γ ) = [1 − B2
0 + (n̂ ·

B0)2]1/2.
An even more convenient way to monitor the twisting

effect may be realized by studying the spintro-voltaic effect
in an open circuit, i.e., when the total charge current vanishes.
One then finds that the spin-imbalanced populations in the
electrodes give rise to an electric voltage Vsv . Assuming that
the spin imbalances in the two reservoirs are identical, i.e.,
UL = UR ≡ U , Eq. (18) yields

Vsv = C3 − C2

C1
U. (39)

The ratio of the voltage created by the spin imbalance Vsv to
the amount of spin imbalance in the electrodes (expressed by
U ) can be found upon using Eqs. (31), in conjunction with
Eqs. (30) and (36),

Vsv = sin2(γ )
NL↑NR↓ − NL↓NR↑

NLNR

U. (40)

The voltage generated by the Rashba interaction gives directly
the twisting angle, the proportionality between Vsv/U and
sin2(γ ) being the magnetic mismatch parameter of the junc-
tion.

The twisting angle γ determines also the various spin
conductances of the junction. From Eqs. (22) and (23) we
find [32]

I
spin
L + I

spin
R

= eV (C2 − C3) + (UL + UR)(C1 − C4).

= 2
G

e2
And

(
UL + UR + eV

NL,↑NR,↓ − NL,↑NR,↓
2NLNR

)
,

(41)

where G is the charge conductance (32) and we have made use
of Eqs. (31) for the C’s. One now observes that both the spin
conductance Gspin (normalized by the charge conductance),

Gspin = I
spin
L + I

spin
R

(UL + UR)G/e2

∣∣∣
V =0

, (42)
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and the cross spin conductance G
spin
× (again normalized by the

charge conductance),

G
spin
× = I

spin
L + I

spin
R

eV G/e2

∣∣∣∣
UL=UR=0

, (43)

are determined by And, that is, by the twisting angle γ

[Eq. (36)] (the second requires the asymmetry in the spin-
resolved densities of states).

For parallel magnetizations in the leads, the twisting angle
[see Eq. (38)] depends solely on the spin-orbit coupling and on
the equilibrium value of the bending angle. We plot in Fig. 3 the
dependence of sin(γ ) on these two factors; for convenience,
we display in Fig. 4 a cut of these plots. Perhaps the most
significant features of these plots is the spin-twisting angle
at two special values of the bending angle. First we note the
disappearance of the spin twisting for any direction of the
polarizations in the leads at θ0 = π/2. This can be easily
understood within a classical picture for the spin rotation
caused by the Rashba interaction. The spin evolution of the
tunneling electron can be regarded as a rotation around an axis
given by the vectorial product of the velocity and the electric
field (directed along ẑ in our configuration). At this value of θ0

the tunneling trajectory is oriented along the ŷ axis (because
then xR = xL = 0) and so the electron bounces back and forth
along ŷ. This leads to a cancellation of the Rashba contribution
to the tunneling phase [see Eq. (7)]. The other special case
is when the wire is not bent, i.e., θ0 = 0. The spin twisting
for leads’ magnetizations along ŷ vanishes, while for devices
with ferromagnetic magnetizations along the x̂ or ẑ directions
it reaches its maximal value sin(αd). The reason for this also
has to do with the orientation of the spin rotation axis. At small
values of θ0 the electronic trajectory is primarily along x̂. Then,
when the spin of the incident electron is directed along ŷ (as
is the case described by the dotted lower curve in Fig. 4) it
is parallel to the rotation axis and no rotation is taking place.
In contrast, when the spin of the incident electron is oriented
along x̂ or ẑ, it is perpendicular to the rotation axis, leading
to a full rotation. For carbon nanotubes [19], for which the
energy gap induced by the spin-orbit coupling is 0.37 meV, the
strength α is about 104 cm−1 and therefore tubes of length of
a few microns are expected to produce the maximal twisting.

IV. CONCLUSION

In this paper we have shown that one can have additional
spintro-electric functionalities if one uses a vibrating sus-
pended weak link, with both a magnetic flux and an electric-
field-dependent Rashba spin-orbit interaction. The twisting of
the electronic spins as they move between the (spin-polarized)
electrodes can be manipulated by the bias voltage, the bending
of the weak link wire, and the polarizations of the spins in the
electrodes.

The traditional picture of twisting of the electronic spin is
viewed quantum mechanically as a splitting of the electronic
wave in spin space. We have shown that the twisting angle,
which determines the probability amplitude of such a splitting,
can be measured electrically through a spintro-voltaic effect.
The Rashba device proposed in this paper is therefore a promis-
ing component to be incorporated in mesoscopic electronic

sin�Γ�, n along x

Π
4

Π
2

Θ0

Π
4

Π
2

Αd
0.

0.5

1.

sin Γ , n along y

Π
4

Π
2

Θ0

Π
4

Π
2

Αd
0.

0.5

sin�Γ�, n along z

Π
4

Π
2

Θ0

Π
4

Π
2

Αd
0.

0.5

1.

FIG. 3. (Color online) Normalized spin conductance (42) ex-
pressed in terms of the twisting angle [see Eqs. (36), (38), and (41)–
(43)] as a function of the spin-orbit coupling (scaled by the length of
the junction) and on the bending angle θ0 of the junction (see Fig. 1).
The three plots correspond to the magnetization in the leads aligned
along x̂, ŷ, and ẑ, as marked in the figures.

circuits where quantum coherence determines various inter-
ference effects of electronic waves, split in both momentum
and spin spaces.

The mechanical motion affects two aspects of spin-selective
transport through the Rashba nanodevice. Those are the effect
of mechanical bending on the electronic spin twisting and the
electronic charge sensitivity to an external magnetic field due
to the Aharonov-Bohm phase accumulated by the tunneling
electron. The latter is absent for a nonmovable wire, due to
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Π
4

Θ0

0.5

sin Γ

FIG. 4. (Color online) Normalized spin conductance (42) ex-
pressed in terms of the twisting angle [see Eqs. (36), (38), and (41)–
(43) as a function of the wire θ0, when the magnetizations in the leads
are along x̂ (upper dotted line), along ŷ (lower dotted line), and along
ẑ (solid curve). Here αd = 1.3 rad.

the one-dimensional nature of electronic propagation through
it. Quantum fluctuations of the wire bending (zero-point
mechanical vibrations) make the electronic motion in the
wire effectively two dimensional, enabling the charge and
spin transport to be sensitive to an external magnetic field.
Equation (29) gives conditions on the magnetic-field strength
and on the temperature, to make this effect visible. These
require rather strong (about a few ten teslas) magnetic fields
and low enough (of the order of few ten mK) temperatures (see
also Ref. [25]).
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APPENDIX A: TUNNELING HAMILTONIAN

Here we add details of the derivation of the effective
tunneling Hamiltonian (4) and (5). The Hamiltonian of the
system comprises the Hamiltonian of the two leads, modeled
for simplicity by free-electron gases [see the discussion at
the beginning of Sec. II A, culminating with Eqs. (1)], the
free vibration Hamiltonian Hvib = ωb†b [see the discussion
around Eq. (2)], the Hamiltonian of the dot representing the
wire Hdot = ε0

∑
σ c

†
0σ c0σ , and the tunneling Hamiltonian

Htun =
∑
k,σ,σ ′

(Vkσσ ′c
†
0σ ckσ ′ + H.c.)

+
∑

p,σ,σ ′
(Vpσσ ′c†pσ c0σ ′ + H.c.). (A1)

The electron gas states in the left (right) lead are indexed
by k (p) and have energies εk (εp). We denote by ckσ (cpσ )
the annihilation operators for the leads and by c0σ that for the
localized level representing the wire (see Fig. 2). The tunneling
amplitudes in Eq. (A1) are given in Eqs. (6) and (7). We
consider a nonresonant case, where the localized level is far
above the energies of the occupied states in both leads (i.e., no

energy level on the wire is close enough to ε0 to be involved
in inelastic tunneling via a real state). This allows us to exploit
the tunneling as an expansion parameter [25] and to perform
a unitary transformation that replaces the wire by an effective
direct tunneling between the leads through virtual states

He
tun =

∑
k,p

(c†kW
†
kpcp + H.c.), (A2)

with W given in Eq. (5) (using matrix notations in spin space).

APPENDIX B: TRANSMISSION MATRIX

Here we detail the approximate calculation of the transmis-
sion probability A [Eq. (17)], confining ourselves to the case
of weak coupling of the electrons to the vibrational modes. We
begin by rewriting the transmission T [Eq. (14)] in the form

Tnn′σσ ′ =
(

JLJR

ε0

)2

|〈n|e−i(φ0+�φ)

×{S†
R[A0 + �A + i(B0 + �B) · σ ]SL}σ ′σ |n′〉|2.

(B1)

Here we have used Eqs. (24) and (25), expressing φ, A, and
B as the sums of their equilibrium values φ0, A0, and B0 [i.e.,
with θ in Eqs. (3) and (25) replaced by θ0] and their dynamical
parts that include the vibrations’ operators and are denoted by
�φ, �A, and �B. It is straightforward to verify that the terms
including �A + i�B · σ contribute only when the electron-
vibration interaction is accounted for at least to second order.
In view of the smallness of the effect that interaction has on
the Rashba coupling, as opposed to its effect on the magnetic
phase (see the discussion in Sec. III A), we omit those terms,
keeping the electron-vibration interaction only in the magnetic
phase. As a result we obtain

Tnn′σσ ′ 	
(

JLJR

ε0

)2

|〈n|e−iφ|n′〉|2|Rσ ′σ |2, (B2)

with the spin-dependent part of T given by

R = S†
R(A0 + iB0 · σ )SL. (B3)

One notes that

Tr{RR†} = 2 (B4)

and

Tr{RσzR†σz} = 2[(A2
0 − B2

0 )n̂L · n̂R

+ 2A0B0 · n̂L × n̂R + 2(B0 · n̂L)(B0 · n̂R)], (B5)

where we have used

SL,RσzS†
L,R = n̂L,R · σ . (B6)

The matrix R can be written as

R = C + iD · σ , (B7)

with C2 + D2
x + D2

y + D2
z = 1. Therefore, the diagonal ele-

ments of the matrix R are two complex conjugate numbers
and so are the off-diagonal elements. This implies that the
diagonal elements of |Rσ ′σ |2 are equal to one another and
the off-diagonal ones are also identical. To derive explicit
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expressions for them, we note that the matrix R has the
property

Tr{C + iD · σ )σz(C − iD · σ )σz} = 2
(
C2 + D2

z − D2
x − D2

y

)
.

(B8)

It follows that the diagonal matrix elements (in spin space)
of the transmission are Tnn′,σσ ≡ Tnn′,d ≡ C2 + D2

z and the
off-diagonal ones are Tnn′,σσ ≡ Tnn′,nd ≡ D2

x + D2
y , with

Tnn′,d = 1

2

(
JLJR

ε0

)2

|〈n|e−iφ|n′〉|2{1 + [
(
A2

0 − B2
0

)
n̂L · n̂R

+ 2A0B0 · n̂L × n̂R + 2(B0 · n̂L)(B0 · n̂R)]},

Tnn′,nd = 1

2

(
JLJR

ε0

)2

|〈n|e−iφ |n′〉|2{1 − [
(
A2

0 − B2
0

)
n̂L · n̂R

+ 2A0B0 · n̂L × n̂R + 2(B0 · n̂L)(B0 · n̂R)]}. (B9)

Returning now to the transmission matrix A [Eq. (17)], we
find that it can be factorized into a temperature- and magnetic-
field-dependent factor and a spin-dependent factor, so it takes
the form given in Eqs. (27), (28), and (30).
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[28] An alternative geometry, with xL = xR = d/2 and yL = yR =
(d/2)tan(θ ), gives similar results.

[29] We expect this dependence to be weak when the spin biases UL,R

are much smaller than the Curie temperature in the magnetic
leads.

[30] Note the peculiar way of defining the transmission as given
in Eq. (14): It has dimensions of energy squared because it
is not yet multiplied by the appropriate densities of states.

The (dimensionless) transmission probabilities are given in
Eqs. (20).

[31] It should be noted that had we included the electron-vibration
interaction to higher orders, we would have obtained a
tiny modification of the conductance due to the spin-orbit
interaction.

[32] Because of charge conservation one has
∑

σ I spin
σ = 2I

spin
↑ =

−2I
spin
↓ .
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