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Anisotropic optical properties of Fe/GaAs(001) nanolayers from first principles
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We investigate the anisotropy of the optical properties of thin Fe films on GaAs(001) from first-principles
calculations. Both intrinsic and magnetization-induced anisotropy are covered by studying the system in the
presence of spin-orbit coupling and external magnetic fields. We use the linearized augmented plane wave method,
as implemented in the WIEN2K density functional theory code, to show that the C2v symmetric anisotropy of the
spin-orbit coupling fields at the Fe/GaAs(001) interface manifests itself in the corresponding anisotropy of the
optical conductivity and the polar magneto-optical Kerr effect. While their magnetization-induced anisotropy
is negligible, the intrinsic anisotropy of the optical properties is significant and reflects the underlying C2v

symmetry of the Fe/GaAs(001) interface. This suggests that the effects of anisotropic spin-orbit coupling fields
in experimentally relevant Fe/GaAs(001) slabs can be studied by purely optical means.
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I. INTRODUCTION

Spintronics is an attempt to generalize conventional elec-
tronics by exploiting the electron spin as an additional degree
of freedom. The goal of semiconductor spintronics [1,2] is to
design novel nanoelectronic devices [3–5] that exploit spin ef-
fects, and whose fabrication can be seamlessly integrated into
the existing infrastructure for complementary metal-oxide-
semiconductor (CMOS) technology. Semiconductor spintron-
ics rests on three pillars: spin injection, spin manipulation,
and spin detection. First, a nonequilibrium spin distribution
needs to be created by spin injection from a ferromagnet
into a semiconductor. By exploiting spin-orbit coupling (SOC)
effects in the material, it can then be manipulated by magnetic
or electric fields before the resulting spin distribution is
eventually detected.

The Fe/GaAs heterostructure was the first system in which
room-temperature spin injection from a ferromagnet into a
semiconductor was achieved [6]. It is an ideal model system
for spin injection: Iron contributes its high Curie temperature
and spin moment, and gallium arsenide its high carrier mobility
and its long spin lifetime. Moreover, the lattice mismatch of
these materials is rather small [7]. That allows for the epitaxial
growth of unstrained Fe/GaAs interfaces, whose preparation
is cheap and has been demonstrated repeatedly [8–10].

Although the Fe/GaAs(001) interface quality is known to
be limited by various surface reconstructions and possible
interdiffusion processes, it is easier to prepare than the
Fe/GaAs(110) variant [11,12] and is thus the more widely
studied system. The interface structure crucially determines
the electronic structure of the system, such as the spin
polarization at the Fermi level and the magnetic moments.
It was found that arsenic termination of the Fe/GaAs(001)
interface limits diffusion processes and favors a flat interface
structure over a partially intermixed one [13–15]. Given the
complexity of a quantitative calculation covering two interface
structures in the same unit cell, we choose a model system
covering only the dominant (flat) inferface structure. Since
the symmetry properties of both aforementioned interface
structures are equal, we do not expect a qualitative change
of the results. Consequently, an As-terminated flat interface

was chosen as the basic structure for the model calculations of
the present study.

The microscopic structure of the Fe/GaAs(001) interface
exhibits C2v symmetry [2], which manifests itself in many
properties of the system. For example, the in-plane mag-
netocrystalline anisotropy of thin Fe layers on GaAs(001)
has a dominant uniaxial contribution [16–22]. Furthermore,
Fe/GaAs(001) shows a small but very robust tunneling
anisotropic magnetoresistance effect, which was demonstrated
by Moser et al. in 2007 [23]. The tunneling anisotropic
magnetothermopower and spin-Seebeck effects are similar
phenomena that have been predicted for this system [24,25].
All these anisotropic effects can be directly attributed to
the C2v symmetry of the effective SOC magnetic field at
the Fe/GaAs(001) interface [26–28], which includes both
Bychkov-Rashba [29] and Dresselhaus [30] contributions that
stem from the structure inversion asymmetry and the bulk
inversion asymmetry of the system, respectively.

In the present paper we investigate the influence of the
anisotropic interface SOC fields on the optical properties of the
Fe/GaAs(001) heterostructure by means of density functional
theory model calculations. While we find the direction of
magnetization of the Fe layer to have a negligible effect
on the optical properties, the intrinsic (or crystallographic)
optical anisotropy is significant. We show that it is manifest
in an anisotropic optical conductivity as well as an anisotropic
polar magneto-optical Kerr effect (AP-MOKE). The latter
means that the Kerr angles (rotation and ellipticity) at normal
incidence of the probing beam depend on its direction of linear
polarization, thus reflecting the underlying anisotropy of the
optical constants of the material. We find the AP-MOKE of our
Fe/GaAs(001) model system to have the same C2v symmetry
as the SOC fields at the interface. The anisotropy that we
observe in the optical conductivity of our C2v structure is to
be contrasted with the absence of anisotropy in the Boltzmann
dc conductivity [31] of a two-dimensional electron gas with
Bychkov-Rashba and Dresselhaus spin-orbit interactions.

In the next section we present the methods used to perform
the calculations of this study. It is followed by a discussion of
the results and concluding thoughts.
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II. METHOD

We choose a slab supercell of 15 atoms (see Fig. 1) to
model an Fe/GaAs(001) interface consisting of 9 monolayers
of GaAs(001) and 3 monolayers of Fe. The interface is
As terminated and flat, and the vacuum distance between
neighboring slabs is 6 Å. The structure is not relaxed, but
experimental values for the lattice constants are chosen.
Passivation of the structure with hydrogen is not necessary
since an explicit calculation shows that the SOC contribution
of the As atoms at the bottom of the structure to the optical
properties is negligible.

The linearized augmented plane wave method [32], as im-
plemented in the density functional theory (DFT) code package
WIEN2K [33], is used to calculate the electronic structure of the
system for various directions of the magnetization in the Fe
layer. Here, a Monkhorst-Pack [34] mesh of (12 × 12 × 1)
k points in the full first Brillouin zone is used, and an
accuracy of 10−7 Ry in the total energy is chosen as the
convergence criterion. We use the Perdew-Burke-Ernzerhof
[35] variant of the generalized gradient approximation for
the exchange-correlation functional. Spin-orbit coupling is
included in all calculations and for all atoms of the supercell
using the method of second diagonalization native to WIEN2K.
To study the magnetization-induced anisotropy of the system,
the calculations are performed for the magnetization M
oriented along x, y, and z as well as selected intermediate
directions in the xy plane. The mapping of Cartesian to
crystallographic axes is given in Fig. 1.

On top of the converged electronic densities of the
previous step, we calculate the dielectric function and the

FIG. 1. (Color online) The supercell used to model the
Fe/GaAs(001) interface viewed from three different angles. The co-
ordinate tripods indicate the mapping of Cartesian to crystallographic
axes.

optical conductivity in linear response. Here, a much denser
Monkhorst-Pack mesh consisting of at least (70 × 70 × 1)
k points is used. The obtained results are converged for all
practical purposes. The WIEN2K optics package makes use of
the following expression [36] to calculate the imaginary part of
the complex dielectric tensor from the converged Kohn-Sham
eigensystem:

Im[εαβ(ω)] = �
2e2

πm2
eω

2

∑
n�=n′

∫
dk �α

nn′,k�
β

n′n,k

×[f (εn,k) − f (εn′,k)]δ(εn′,k − εn,k − �ω),

(1)

where �α
nn′,k = 〈n′,k|p̂α|n,k〉 is the transition matrix element

of the α component of the momentum operator for a direct
interband transition (n �= n′) from the initial Kohn-Sham
state |n,k〉 with energy εn,k into the final state |n′,k〉 with
energy εn′,k. The Fermi-Dirac distribution function evaluated
at energy εn,k is given by f (εn,k), me denotes the electron
mass, and ω is the angular frequency of the electromagnetic
radiation causing the transition.

The k-space integration uses the Blöchl tetrahedron method
[37] and only direct interband transitions from occupied
to unoccupied bands up to an energy of 20 eV above the
Fermi level are taken into account. An energy resolution of
13.6 meV is chosen for the photon energy �ω, and a Lorentzian
broadening of 100 meV is applied to account for finite-lifetime
effects. Since that broadening distorts the results unphysically
for energies on the same order, results for energies smaller
than 300 meV are not shown.

The real part of the complex dielectric tensor is obtained
from the imaginary part by a Kramers-Kronig transformation.
The complex optical conductivity tensor can then be calculated
according to [38]

σαβ(ω) = ω

4πi
[εαβ(ω) − δαβ]. (2)

The AP-MOKE rotation and ellipticity angles depend
both on the photon energy �ω and the polarization state of
the probing light beam at normal incidence, which means
propagation along the −z direction and linear polarization in
the xy plane. Rotating the direction of linear polarization of the
incoming beam about the z axis by an angle ϕ is equivalent to
rotating the sample by an angle −ϕ in the xy plane. We choose
the latter description to simplify the derivation of an expression
for AP-MOKE. For the present Fe/GaAs(001) model system,
with M oriented along z, the complex dielectric tensor is of
the form [39–41]

ε =

⎛
⎜⎝

εxx εxy 0

−εxy εxx + δ 0

0 0 εzz

⎞
⎟⎠, (3)

where δ = εyy − εxx is a measure of the intrinsic anisotropy in
the xy plane. The C2v symmetry of the system enters through a
nonzero δ, so that the crystallographic structure of the system
is reflected in the symmetry of the dielectric tensor. Here
and in the following, the explicit dependence of ε and all
derived quantities on ω is suppressed to simplify the notation.
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A detailed account of the following derivation for a general
dielectric tensor can be found in Ref. [42].

Let the incoming beam be linearly polarized along the
x direction of the fixed coordinate system. The transformed
dielectric tensor for the sample rotated by −ϕ about the z axis
is then given by

ε′ = Rz(−ϕ)εRT
z (−ϕ) =

⎛
⎜⎝

ε′
xx ε′

xy 0

ε′
yx ε′

yy 0

0 0 εzz

⎞
⎟⎠, (4)

where the superscript T denotes the transpose. The rotation
matrix Rz(−ϕ) is defined as

Rz(−ϕ) =

⎛
⎜⎝

cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0

0 0 1

⎞
⎟⎠. (5)

The transformed components of the dielectric tensor are
expressed as

ε′
xx = εxx + 1

2 [δ − δ cos(2ϕ)], (6)

ε′
yy = εxx + 1

2 [δ + δ cos(2ϕ)], (7)

ε′
xy = εxy + δ cos ϕ sin ϕ, (8)

ε′
yx = −εxy + δ cos ϕ sin ϕ. (9)

We describe the complex electric field vector of polarized
light with wave vector k by the plane wave

E(r,t) = E0 exp
[
i
(ω

c
nr − ωt

)]
, (10)

where r and t are the space and time coordinates, respectively,
c is the speed of light in vacuum, and n = kc/ω is the vector
of complex refractive indices for a wave with wave vector
k. In the Jones vector formalism the complex amplitude E0 is
described by its transverse components. For propagation along
−z we can thus write

E0 =
(

E0,x

E0,y

)
. (11)

In general, the polarization state of the reflected beam
Er , which has undergone rotation and ellipticity changes, is
elliptical. It is determined by the complex reflection matrix ρ

acting on the incoming beam E0:

Er =
(

Er,x

Er,y

)
=

(
ρxx ρxy

ρyx ρyy

)(
E0,x

E0,y

)
. (12)

To derive an expression for AP-MOKE, we need to
determine ρ with respect to the polarization direction rotation
angle ϕ. First, we derive the propagation properties of the
normal modes En in the material from the transformed complex
dielectric tensor ε′ using the Fresnel equation(

ε′ + nj ⊗ nj − n2
j 1

) · En,j = 0. (13)

Here, 1 is the 3 × 3 unit matrix, the solution for En,j is
the j th normal mode of the material (of which there are in
general only two), and nj = |nj | is the absolute value of the

complex refractive index vector nj associated with the normal
mode En,j .

At normal incidence, which means for light propagation
along −z, the vector of complex refractive indices takes the
form n = (0,0,n)T . This, combined with Eqs. (4) and (13),
yields two solutions nj (j = 1,2) with

n2
j = ε′

xx + ε′
yy

2
±

√
δ2

4
− ε

′2
xy, (14)

whereas the associated normal modes are described by the
parameter βj (j = 1,2) given by

βj = En,j,y

En,j,x

= 1

2ε′
xy

(
δ ±

√
δ2 − 4ε

′2
xy

)
. (15)

One can then show that the components of the reflection
matrix ρ are given by

ρxx = β2(1 − n1)(1 + n2) − β1(1 + n1)(1 − n2)

(β2 − β1)(1 + n1)(1 + n2)
, (16)

ρyy = β2(1 + n1)(1 − n2) − β1(1 − n1)(1 + n2)

(β2 − β1)(1 + n1)(1 + n2)
, (17)

ρyx = 2β1β2(n2 − n1)

(β2 − β1)(1 + n1)(1 + n2)
, (18)

ρxy = −2(n2 − n1)

(β2 − β1)(1 + n1)(1 + n2)
. (19)

Finally, the total rotation θtot and ellipticity εtot caused by a
material with dielectric tensor ε can be written as

θtot = 1

2
arctan

(−2 Re[ρxxρ̄yx]

|ρxx |2 − |ρyx |2
)

, (20)

εtot = 1

2
arcsin

(−2 Im[ρxxρ̄yx]

|ρxx |2 + |ρyx |2
)

, (21)

where an overbar indicates complex conjugation. Those quan-
tities include contributions from both the diagonal components
of ε, which are even in M, and the off-diagonal components,
which are odd in M [43]. Only the latter are of magneto-optical
origin and contribute to the pure AP-MOKE, which is why we
need to extract their contribution to θtot and εtot. We can expand
those quantities as follows:

θtot(M) = θKM + θdiagM
2, (22)

εtot(M) = εKM + εdiagM
2. (23)

Here, the index K indicates a Kerr effect quantity, “diag” refers
to the contribution of the diagonal components, and M is the
value of the magnetization along z. The Kerr rotation and the
Kerr ellipticity are then given by

θK = 1
2 [θtot(M) − θtot(−M)], (24)

εK = 1
2 [εtot(M) − εtot(−M)]. (25)

The dielectric tensor for the −M case is obtained by per-
forming the transformation εxy → −εxy in Eq. (3). Combining
Eqs. (6)–(8), (14)–(16), (18), (20), (21), (24), and (25), together
with the numerical ab initio results for the dielectric tensor
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FIG. 2. (Color online) Calculated anisotropy of Etot (solid blue
circles) with respect to the angle between M in the xy plane and the x

axis, relative to Emin
tot . The DFT results are fitted with a C2v symmetric

function (dashed brown line).

(3), allows us to determine the energy-dependent AP-MOKE
rotation and ellipticity for an incoming beam at normal
incidence whose direction of linear polarization in the xy plane
is rotated by ϕ with respect to the x axis.

III. RESULTS

In order to study the anisotropy of the model system
with respect to the direction of the magnetization M, we
calculate the total energy per slab supercell Etot and the
real and imaginary part of σxx for M oriented along x,
y, and z as well as selected intermediate directions in the
xy plane. The total energy Etot exhibits a C2v symmetric
anisotropy of about 88 μeV (see Fig. 2), with a minimum
of Emin

tot = −53 437.348 934 68 Ry for M oriented along x,
and a maximum of Emax

tot = −53 437.348 928 22 Ry for M
oriented along y. In contrast, the anisotropy of the diagonal
components of σ with respect to the orientation of M is found
to be negligible over the whole calculated energy range (not
shown). This is attributed to the fact that the magnetization
shifts the energy bands of the system mostly in k, but not in the
energy. The variation of the Fermi level with the magnetization
is therefore very small, and both spin-up and spin-down states
are addressed equally by the incoming beam—independent of
the direction of magnetization. Note that all subsequent results
are obtained for M oriented along z, and that σ is given in cgs
units.

A. Intrinsic anisotropy

In contrast to its negligible magnetization-induced
anisotropy, the Fe/GaAs(001) model system exhibits a sig-
nificant intrinsic anisotropy. Figure 3 shows the differing real
parts of σxx and σyy . Both components show pronounced peaks
of different height centered at 0.5 eV (σyy) and 0.65 eV (σxx),
and an asymptotic decrease to zero for high energies. The σyy

component shows three intermediate peaks where the relative
deviation of the two components is largest. The inset of Fig. 3
presents that relative intrinsic anisotropy ARe

xy of the real parts
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FIG. 3. (Color online) Real part of σxx (solid blue line) and σyy

(dashed green line) with respect to the photon energy. The inset shows
the relative intrinsic anisotropy ARe

xy (solid red line) with respect to
the photon energy. Encircled numbers mark features referred to in the
text.

of σxx and σyy calculated according to

ARe
xy = Re[σyy] − Re[σxx]

Re[σxx]
. (26)

While ARe
xy is on the order of tens of percent in the visible range

of the electromagnetic spectrum, it reaches values above 100%
and 400% for 3.8 and 9.6 eV, respectively. Equivalent results
for the imaginary part of the optical conductivity are presented
in Fig. 4. The corresponding relative intrinsic anistropy AIm

xy ,
given by

AIm
xy = Im[σyy] − Im[σxx]

Im[σxx]
, (27)

is shown in the inset of Fig. 4. It is on the order of tens of
percent for the most part of the calculated energy range, with
pronounced extrema at energies of 3.7, 9.3, and 10.2 eV. The
divergence at 0.6 eV is a consequence of Im[σxx] crossing zero
at that energy.
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FIG. 4. (Color online) Same as Fig. 3, but for the imaginary part.
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FIG. 5. (Color online) Anisotropy of the transition matrix elements in the first Brillouin zone between the bands n and n′ corresponding
to the most relevant transitions that contribute to the intrinsic anisotropy of the absorptive part of the dielectric tensor at energies of 9.6, 3.8,
and 1.6 eV (first row). Corresponding maps of the spin-resolved orbital atomic partial charge of occupied and unoccupied bands are shown in
the second and third row, respectively. The partial charge maps in the third column are split into a positive and a negative kx plane to show the
different orbital and atomic characters, clarifying positive and negative valued regions of A�

xy .

B. Analysis

Direct interband transitions between two bands n and n′
can only occur if the matrix element �nn′,k is nonzero. For
single-photon transitions this means that the wave functions
of the optically coupled states are of opposite parity, and that
they fulfill the selection rules imposed by the crystal point
group and the symmetry of the involved energy bands. For our
case of interfacial C2v symmetry and normal light incidence
the transition dipole operator transforms under the B1 + B2

irreducible representation (note that the C2v symmetry of the
system is reduced if the magnetization is not parallel to the
z axis). Transitions between states belonging to the A1 and
A2, or the B1 and B2, representation are thus forbidden. Also,
note that a single-photon transition, which is not allowed at the
Brillouin zone center k = 0, can be allowed at finite k because
of wave function mixing resulting in mixed-parity states. This
effect is enhanced in the present case, where the electrons close
to the interface experience a potential very different from that
in the bulk. Therefore, the bands near the Fermi level comprise

strongly hybridized mixed-orbital states with mixed parity.
By projecting those states to atomic orbitals we can classify
them by their irreducible representations and apply selection
rules to shed light on the origin of the intrinsic anisotropy
of the optical conductivity σ (or, equivalently, the dielectric
tensor ε).

For the real part of σ , the intrinsic anisotropy at photon
energies of about 1.6, 3.8, and 9.6 eV is remarkable (see
the labeled features in Fig. 3). In order to find the relevant
optical transitions at these energies, we identify dominant
contributions to the peaks of the real part of σ by calculating the
absorptive parts of the dielectric tensor ε for each combination
of bands n and n′. It follows from Eq. (1) that an optical
transition contributes to the dielectric tensor if the optical
matrix elements and the so called joint density of states are
different from zero. In general, there is no simple relation
between the conventional total density of states (DOS),
the DOS projected on a particular atom (local DOS), the
orbital character of the DOS, and the energy dependence of
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the absorptive part of the dielectric tensor ε(ω). The latter
incorporates information about all transitions at the photon
energy �ω that are allowed by the applicable selection rules.
To go one step further, we define the k-resolved anisotropy of
the transition matrix elements between initial state n and final
state n′ as

A�
xy(k) = (

�
y

nn′,k�
y

n′n,k − �x
nn′,k�

x
n′n,k

)
δ(εn′,k − εn,k − �ω).

(28)

The anisotropy A�
xy(k) allows us to identify regions in the

Brillouin zone (BZ) that contribute to ε(ω). The Dirac delta in
the above equation strictly selects the transitions with a photon
energy of �ω. In order to enhance the visual representation of
those regions in Fig. 5, we approximate it by a Gaussian with a
width of 300 meV. Figure 5 shows A�

xy(k) for the three energies
9.6, 3.8 and 1.6 eV, labeled as (1), (2), and (3), respectively.
Note that the intrinsic anisotropy reflects the C2v symmetry of
the system.

The anisotropy at 9.6 eV [label (1) in Figs. 3 and 5] is
dominated by the transition in the center of the four BZ
quadrants [see Fig. 5(a)]. Analyzing the k-resolved plots of
partial charges [corresponding to the projection of the wave
function to the atomic orbitals; see Figs. 5(b) and 5(c)], we find
that the transition from an occupied |s〉↑ As surface state to
an unoccupied |py〉↑ As surface state is dominant for spin-up
electrons. Abiding by the optical transition rules for dipolar
transitions allowed by the C2v point group, we see that this
transition contributes to the absorptive part of εyy . The density
of px states at those energies is negligible compared to py ,
which is why Re[σyy] > Re[σxx]. The deep, localized py states
on the As surface thus dominate the energy region in which
the relative anisotropy reaches values up to 400%.

Significant contributions to the anisotropy Re[σyy] >

Re[σxx] at about 3.8 eV [label (2) in Figs. 3 and 5] can be
assigned to the regions of A�

xy along the kx line for small
ky momenta [see Fig. 5(d)]. Inspecting the partial charges
of the involved bands reveals that the transitions responsible
for the anisotropy are the spin-down-conserving transitions
between an initial |py〉↓ state of the interface As atoms and
a final |dz2〉↓ state of the Fe atoms above the Ga atoms.
Note that the occupied |py〉↓ state is partially mixed with a
|dxy〉↓ state. However, the density of the occupied |px〉↓ states
and the unoccupied |py〉↓ states that contribute to Re[σxx]
is insignificant for the selected bands, which decreases the
anisotropy.

The region where Re[σyy] < Re[σxx] at about 1.6 eV [label
(3) in Figs. 3 and 5] is dominated by the transition shown in the
right column of Fig. 5. We find that the dominant contributions
to this transition stem from occupied |py〉↓ and |px〉↓ states of
the interfacial As atoms and the unoccupied |s〉↓ states of the
As and Ga atoms underneath. The transition from the |py〉↓
states give rise to regions of positive A�

xy along the kx axis,
whereas the regions of negative A�

xy along the ky axis originate
in |px〉↓ initial states.

C. Off-diagonal optical conductivity

Well converged off-diagonal components of the optical
conductivity tensor and the dielectric tensor are crucial for
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FIG. 6. (Color online) (a) Real (solid blue line) and imaginary
part (dashed green line) of the off-diagonal component σxy of the
optical conductivity with respect to the photon energy. (b) Momentum
matrix elements �x

nn′,k�
y

n′n,k multiplied by the joint density of states
(broadened by 150 meV) for the dominant optical transitions at �ω =
2.85 eV. (c) Calculated bands along the �X line corresponding to the
final states n′ and n′ − 1. The radii of the circles are proportional to
the orbital character of the states in the interfacial Fe layer. The dx2−y2

and dxy states belong to the Fe atom above the Ga atom, while the
dz2 character originates from the second Fe atom in the interfacial Fe
layer. The region of k vectors contributing to the spot at kx line in (b)
is given in gray. (d) Calculated bands as in (c), but without spin-orbit
coupling.

the calculation of magneto-optical quantities such as the Kerr
rotation θK or the Kerr ellipticity εK . Figure 6(a) shows the
result for the off-diagonal component σxy , which is found to be
sufficiently converged at 8100 k points in the full first Brillouin
zone. Note that it is an order of magnitude smaller than the
diagonal components.
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FIG. 7. (Color online) Kerr rotation for beams linearly polarized
along x (solid blue line) and y (dashed green line) at normal incidence
with respect to the photon energy. The inset shows the absolute
difference in Kerr rotation (solid red line) for x- and y-polarized
incoming beams with respect to the wavelength.
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FIG. 8. (Color online) Same as Fig. 7, but for the Kerr ellipticity.

Both magnetically ordered states and spin-orbit coupling
are necessary to account for magneto-optical effects, which
require a nonzero εxy . There are three distinct sources [44]
for nonvanishing off-diagonal components εxy : (i) lifting of
energy level degeneracies; (ii) hybrid states mixing different
spin characters; and (iii) spin-flip transitions due to spin-orbit
coupling. For the present Fe/GaAs(001) heterostructure we
find that spin-orbit coupling allows the mixing of states of
different orbital character that belong to bands of different
irreducible representation. This is by far the most important
mechanism that translates the effects of the anisotropic spin-
orbit coupling fields to the observed anisotropy in the Kerr
rotation and ellipticity in the visible range.

In Fig. 6(b) we show a k-resolved plot of
�x

nn′,k�
y

n′n,kδ(εn′,k − εn,k − �ω) in the first BZ for the
combination of initial (n) and final (n′) state that contributes
most to Re[εxy] at an energy of �ω = 2.85 eV (435 nm).
This dominant contribution arises from the region close to the
center of the �X line (ky = 0). Inspecting the orbital- and
atom-resolved partial charges of the initial state, we find that

FIG. 9. (Color online) Kerr rotation of a probing beam incident
along −z with respect to the photon energy. The azimuth indicates
the angle between the x axis and the direction of linear polarization
of the probing beam.

FIG. 10. (Color online) Kerr rotation of a probing beam incident
along −z, relative to the Kerr rotation of a probing beam polarized
along the x direction, with respect to the wavelength. The azimuth
indicates the angle between the x axis and the direction of linear
polarization of the probing beam.

the relevant optical transitions originate in the px spin-down
states of the interfacial As layer. The final state n′, however, is
a mixed state of dx2−y2 and dxy character (from the interface
Fe atom above the Ga atom), as well as dz2 character [from
the second interface Fe atom; see Fig. 6(c)]. Note that the
final state is also of spin-down character, which means that
the transition conserves the spin. Spin-orbit coupling plays
a crucial role here because it mixes the dz2 and dx2−y2 states
belonging to the A1 irreducible representation of the n′ − 1
band with the dxy character from the A2 representation of
band n′. This allows a nonzero �x

nn′,k�
y

n′n,k. Figure 6(d)
illustrates that by plotting the two relevant bands without
considering spin-orbit coupling.

D. Anisotropic polar MOKE

The AP-MOKE rotation and ellipticity are obtained ac-
cording to the procedure described in Sec. II. Figure 7 shows
the Kerr rotations for incoming beams polarized along x

and y at normal incidence along −z. Their absolute values
are smaller than 1◦ over the whole calculated energy range,

FIG. 11. (Color online) Same as Fig. 9, but for the Kerr ellipticity.

045315-7



SEBASTIAN PUTZ, MARTIN GMITRA, AND JAROSLAV FABIAN PHYSICAL REVIEW B 90, 045315 (2014)

FIG. 12. (Color online) Same as Fig. 10, but for the Kerr
ellipticity.

with the largest deviation at an energy of about 10 eV.
The inset shows the absolute difference in Kerr rotation for
the x- and y-polarized incoming beams with respect to an
experimentally relevant wavelength range. The absolute value
of that difference does not exceed 0.1◦ in the given wavelength
range.

Analogous results for the Kerr ellipticity are presented
in Fig. 8. The absolute value of the ellipticity is smaller
than 0.5◦ for energies smaller than 8 eV, while it is on the
order of 1◦ for higher energies. The largest deviation in Kerr
ellipticity for an x- and y-polarized incoming beam occurs at
about 9 eV. The inset shows the absolute difference in Kerr
ellipticity for the x- and y-polarized case with respect to the
wavelength. It is bounded by ±0.1◦ over the given wavelength
range.

The AP-MOKE for arbitrary linear polarization angles
of the incoming beam is illustrated by the polar plots in
Figs. 9–12. The azimuth in those plots corresponds to the angle
ϕ (see Sec. II) between the direction of linear polarization of
the incoming beam and the x direction, which corresponds to
the crystallographic [11̄0] direction (see Fig. 1). The photon
energy or the wavelength is given along the radial direction,
and the color scale indicates the respective magneto-optical
quantity.

These plots serve to visualize the C2v symmetry of AP-
MOKE (with the two mirror axes along x and y), which is a
manifestation of the underlying effective SOC field symmetry
at the Fe/GaAs interface. Depending on its initial polarization
state, the reflection of the incoming beam is governed by a
transformed dielectric tensor or optical conductivity tensor,

which results in an anisotropy of the calculated magneto-
optical quantities.

IV. CONCLUSIONS

We studied the anisotropic optical properties of an
Fe/GaAs(001) model system from first-principles calculations.
While the anisotropy of the optical conductivity with respect
to the direction of magnetization in the Fe layer is found
to be negligible, the intrinsic anisotropy is significant. The
relative intrinsic anisotropy of the real and imaginary parts of
the optical conductivity in the infrared, visible, and ultraviolet
spectrum is on the order of tens of percent, with maxima of up
to 100% and 400% at certain energies.

In addition to the optical conductivity, the anisotropic
polar magneto-optical Kerr effect was studied for arbi-
trary linear polarization directions of the probing beam at
normal incidence. The resulting anisotropic Kerr rotation
and Kerr ellipticity reach values up to about ±1◦ and
reflect the underlying C2v symmetry of the Fe/GaAs(001)
interface.

It should be noted that our results are for an ideal, clean, and
uncapped model system. Experimental results for real samples
are usually influenced by dirt and protective capping layers,
which have been shown to reduce the size of the observed
effects [45,46]. It is thus very likely that our values for the Kerr
angles are larger than they would be in the experiment [47,48].
In the visible range of the electromagnetic spectrum our results
are well below 1◦ (about 0.2◦), which is typical for transition
metal compounds [49]. While interface imperfections and
protective capping layers might lead to quantitatively different
experimental results, the qualitative results presented here
are expected to be observable in high-quality samples using
state-of-the-art optical setups.

In conclusion, our results suggest that the effects of the
C2v symmetric effective SOC fields at the Fe/GaAs(001)
interface can be studied by purely optical means in ex-
perimentally relevant samples. Interfacial effects, including
lowering of the planar symmetry along the interface, play
an increasingly important role in the electronic transport
and the optics of nanostructures. By controlling the interface
electrically, for example, one could also control the spin-orbit
fields and thus modify the electric and optical properties of
the connected electronic system (in our case ferromagnetic
iron).
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