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Occurrence of nematic, topological, and Berry phases when a flat and a parabolic band touch
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A (single flavor) quadratic band crossing in two dimensions is known to have a generic instability towards
a quantum anomalous Hall (QAH) ground state for infinitesimal repulsive interactions. Here we introduce a
generalization of a quadratic band crossing which is protected only by rotational symmetry. By focusing on
the representative case of a parabolic and flat band touching, which also allows for a straightforward lattice
realization, the interaction induced nematic phase becomes the dominant instability in certain parts of the phase
diagram already at weak coupling, by competing successfully with the QAH insulator. The full phase diagram
of the model, together with its topological properties, is mapped out using a perturbative renormalization-group,
strong-coupling analysis, the mean-field theory. Interestingly, the Berry flux varies continuously in the single
flavor limit with various control parameters.
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I. INTRODUCTION

Topological states of matter possess the unique property
that some of their response functions are universal, and
independent of the sample-dependent microscopic parameters,
such as scattering rate, interactions strength, etc. The early
members of this family were the celebrated quantum Hall
states, but with the advent of the topological insulator (TI) [1],
numerous relatives have recently emerged. The topological
protection of these materials mostly arises from their specific
band structure, deriving from a strong spin-orbit interaction.
Application-wise, TIs hold the promise to revolutionize
spintronics, and to contribute to conventional and quantum
computing.

It is interesting to contemplate different physical mech-
anisms that could lead to nontrivial topological properties.
Several strategies other than band-structure engineering from
the material science do exist. Time-periodic perturbations
allow for modifying the Floquet band structure [2,3], this
way influencing the topological properties of materials in
situ without altering their composition. Applying strain to
alter the band structure seems also feasible for a variety of
materials [4].

The common theme in these ideas is nevertheless the direct
modification of the single-particle band structure. Electron-
electron interactions, however, can also produce the desired
effect. Simple mean-field decoupling of the interaction can
mimic an effective spin-orbit coupling, for example, thus
inducing a transition from a topologically trivial to a nontrivial
phase [5–8]. How precisely this happens, and how competitive
the topologically nontrivial phases in general are, is an open
question which often calls for more elaborate analysis [9]. The
uncertainties notwithstanding, clear-cut answers are available
for two-dimensional systems with Fermi points instead of the
usual Fermi surface. In Refs. [10,11], for example, it was
argued that a single quadratic band crossing, protected by time
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reversal and rotational symmetry, is unstable with respect to
topological insulating phases.

Here we formulate a more general quadratic band crossing
Hamiltonian in two dimensions, protected only by rotational
symmetry. A single copy of such a band crossing contains all
three Pauli matrices and thus naturally breaks time-reversal
symmetry (TRS) and possesses a nontrivial Berry phase.
We focus on the representative case of a flat and parabolic
band touching, although our results apply more generally (see
below). We show that the nematic order becomes the dominant
instability within a certain range of the parameters for weak
couplings. This happens even though the broken TRS might
most naturally have suggested a quantum anomalous Hall
(QAH) type phase, which indeed does dominate in related
models [10,11]. In particular, our (continuum) model features
a metastable phase purely nematically ordered, and without
the QAH effect, in contrast to the standard result [10]. We
also propose a simple lattice realization of our generalized
quadratic band crossing Hamiltonian which could serve as
an atomic physics platform for the experimental study of the
competition between the different interaction-induced phases
considered here.

II. MODEL AND BASIC PROPERTIES

Our generalization of the two-dimensional quadratic band
crossing Hamiltonian [10] has a rotationally invariant spec-
trum, featuring however all three Pauli matrices,

H0 = − p2

4m′ I − p2c

4m
σ3 − s

4m

[
σ1

(
p2

x − p2
y

) + σ22pxpy

]
,

(1)

with the parameters c = cos(2α), s = sin(2α). Although its
spectrum is independent of α, the topological properties are
not. Equation (1) exhibits a quadratic band crossing with
generally unequal effective masses for |m| � |m′| [12]. We
focus on the representative case with m = m′, when one of the
bands becomes flat, but all of our results apply to the more
general situation.
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FIG. 1. (Color online) Left: The evolution of the noninteracting
spectrum with ε0 is shown together with the resulting quadratic and
flat band touching. The horizontal red line denotes the flat band,
which remains fixed. Right: the dice lattice with t cos(α) and t sin(α)
hopping along the blue solid and red dashed lines. The on-site energy
of the sixfold connected filled blue sites, which are integrated out, is
ε0.

For c = 0 (α = π/4), this reduces to the model studied in
Ref. [10]. Due to the presence of all three Pauli matrices, the
Hamiltonian necessarily violates the TRS. The spectrum con-
sists of two bands, one completely flat and another dispersive
∼ −p2/2m (see Fig. 1). For m > 0, the low-energy dynamics
is described by a filled inverted parabolic band touching an
empty flat band at its maximum. For m < 0, a filled flat band
touches an empty parabolic band at its minimum. In spite of
the explicit dependence of the Hamiltonian on α, its spectrum
of eigenvalues is independent from it. The eigenvectors,
on the other hand, do depend on α, as |0〉p = [sin(α), −
cos(α) exp(2iϕp)]T and |p2〉p = [cos(α), sin(α) exp(2iϕp)]T .
In both cases, the flat band touches the parabolic band at a
single point in momentum space, producing a Berry phase
of 2π (1 ± c) for the flat and parabolic bands, respectively,
that depends continuously on α. These non-π -quantized Berry
phases indicate a no-go theorem for the Hamiltonian H0, and
require an even number of band touchings as described by
Eq. (1), similarly to the Dirac equation in graphene. The
exception is when c = 0 or s = 0, when some of the three
Pauli matrices are absent, as in Refs. [10,13–15]. In what
follows we will focus on the case m < 0, but our results can
directly be translated to the case m > 0 as well.

Equation (1) remains invariant upon shifting α by π , and the
ground-state properties of the system are even functions of α,
since its sign change can be compensated by a π/2 rotation of
the momentum. It suffices therefore to focus on α in the interval
[0,π/2]. The “sublattice” symmetry is naturally broken in
Eq. (1), unless α = π/4, since 〈�+

1 �1〉0 = ρ0W sin2(α) and
〈�+

2 �2〉0 = ρ0W cos2(α) in the noninteracting ground state.
Here, �1,2 are the field operators for the two species of
electrons, W is the high-energy cutoff, and ρ0 = |m|/2π is the
constant density of states in the parabolic band. The system is
thus naturally a “charge density wave” when α �= π/4.

Quadratic Hamiltonians resembling ours, but lacking the
third Pauli matrix, arise in an effective collinear spin-density-
wave theory [16], from the surface states of certain Weyl
semimetals [17], as well as from the Lieb lattice [18].

Next, we define the full (interacting) low-energy Hamilto-
nian:

H =
∫

dr[�+(r)H�(r) + Uδn1(r)δn2(r)], (2)

where the spinor �+ = (�+
1 ,�+

2 ), U is the strength of the
coupling constant, and δnl = �+

l �l − 〈�+
l �l〉0, with l = 1,

2, stands for the densities measured from their noninteracting
values. The second term can be regarded as a fine-tuning
of the interaction, which can be provided by single-particle
terms of the form, e.g., �+

1 �1〈�+
2 �2〉0. Without this careful

subtraction of the noninteracting densities a constant self-
energy ∝Uσ3 would be generated, gapping out the spectrum
already at the Hartree level. This effect occurs for the semi-
Dirac points [19], and here comes as a consequence of the
broken sublattice symmetry at a general α �= π/4 mentioned
earlier.

III. LATTICE REALIZATION

Equation (1) can describe a modified dice or T3 lattice,
consisting of three layers of triangular lattices with only
intersublattice hoppings between adjacent layers, or two
honeycomb lattices sharing one sublattice, shown in Fig. 1.
The Hamiltonian matrix reads [20–22]

Hdice =
⎛
⎝ 0 t1fk 0

t1f
∗
k ε0 t2fk

0 t2f
∗
k 0

⎞
⎠ , (3)

where t1 and t2 are the hopping integrals between adjacent
triangular lattices, ε0 is an on-site potential in the middle
layer (arising from, e.g., a real chemical potential, or from
the Hartree term of a short-range interaction) and fk =
1 + 2 exp(i3ky/2) cos(

√
3kx/2). If ε0 is large compared to

the energies of interest, the electrons on the middle layer
can be integrated out [14] yielding the effective two-band
Hamiltonian

H eff
dice = − 1

ε0

( |t1fk|2 t1t2f
2
k

t1t2f
∗2
k |t2fk|2

)
. (4)

One set of the eigenvalues of the effective Hamiltonian
is a completely dispersionless flat band, whereas the other
one reads as −(t2

1 + t2
2 )|f (k)|2/ε0. Around the K point in

the Brillouin zone one can linearize the function f (K + p) ≈
(3/2)(px − ipy), and upon further parametrizing the hopping
integrals in terms of an “angle” α as t1 = t cos(α), t2 =
t sin(α), the low-energy dynamics is described by Eq. (1) with

m = 2ε0/9t2, t =
√

t2
1 + t2

2 . Similarly as in graphene, a time-
reversed copy of the Hamiltonian with σ2 → −σ2 describes
the low-energy physics at the opposite corner of the hexagonal
Brillouin zone, at the point K ′. The two Hamiltonians at the
K and K ′ points map onto each other under time reversal, and
therefore taken together preserve the TRS. Nevertheless, for
the sake of simplicity, in studying the effects of interactions
our focus will mainly be on a single valley.

IV. WEAK-COUPLING ANALYSIS

The model at hand shares similarities with those for
bilayer graphene [11,13,23,24] and the simpler quadratic
band touching in two dimensions [10]. The dynamic critical
exponent is z = 2, which together with the spatial dimen-
sionality of 2 predicts short-range interactions to be precisely
marginal at the tree level. By performing the standard one-loop
renormalization group (RG), assuming the flat band to be
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FIG. 2. (Color online) (a) the Berry flux for the single valley Hamiltonian in Eq. (1) with QAH and nematic order parameters, becoming
quantized only when c or s vanishes. The Berry flux jumps when 
/|M| = −c/|s|. (b) the Chern number of two time-reversed copies of
Eq. (1) at the K and K ′ points with 
K = −
K ′

(relevant for the dice lattice). The phase boundaries between phases with different Chern
numbers are given by 
K/|M| = ±c/s. For 
K = 
K ′

, the Chern number is identically zero. The phase of the nematic order parameter has
no effect on the two left panels. (c) the typical evolution of the order parameters is shown for Uρ0 = 0.31. The sign of the QAH order is well
defined (i.e., its sign change would alter the ground-state energy) since it is reached through a first-order phase transition for α �= π/4. At
α = π/4, the transition is second order and is identical to Ref. [10]. (d) Schematic phase diagram in the U -α plane. The stable solutions are
depicted in blue, while the metastable part is in red. The transition is first order across the lines between the various phases on either side of the
black dash-dotted line, along which the transition is second order to a QAH state.

fully filled and the parabolic band to be empty, the repulsive
interactions turn out to be marginally relevant. In fact, exactly
as in the previously studied case of a single-valley quadratic
band crossing [10], the particle-particle diagram vanishes
and only the particle-hole diagrams contribute. This can be
understood as a consequence of the absence of the “fermionic”
(negative when squared) time-reversal symmetry necessary for
Cooper pairing [25] in both cases. The resulting β function is
then

dU

d ln s
= U 2ρ0 + O(U 3), (5)

which is, unexpectedly, completely independent of the param-
eter α, at least to the leading order. Here we integrated out the
fermions with momenta within the shell [W/s,W ] and with all
Matsubara frequencies. To the leading order in U neither the
angle α nor the mass in Eq. (1) flow.

In order to determine the type of ordering that ensues, we
rewrite the interaction in a more suggestive form as

8�+
1 �1�

+
2 �2 = (�+�)2 −

3∑
l=1

(�+σl�)2, (6)

from which the orderings preferred by the repulsive interaction
are identified as


 = −U

2
(〈�+σ3�〉 − 〈�+σ3�〉0), (7a)

M exp(iθ ) = −U

2
〈�+(σ1 + iσ2)�〉, (7b)

where θ keeps track of the relative phase of the two nematic
order parameters. All of these yield a fully gapped spectrum for
α �= π/4, and since Eq. (1) contains all three Pauli matrices,
they also feature a finite zero-field Hall conductivity, which is,
however, not quantized in general. This parallels closely the
noninteger quantized Hall response of a single Dirac cone [26],
which only gets quantized upon considering its time-reversal
partner, similarly to graphene. The 
 corresponds to the QAH
state, which gaps out the spectrum and does not break any

additional symmetry, such as time reversal, when α �= π/4,
since all three Pauli matrices are already present in the bare
Hamiltonian in Eq. (1). Only when α = π/4 and the matrix
σ3 is absent does the QAH phase break the TRS. On the other
hand, M describes the nematic orderings, which would result
from the spontaneous reduction of the C6 rotational symmetry
down to C2, with the full rotational symmetry of the spectrum
broken [see Eq. (9)]. When c = 0, the nematic phase becomes
gapless with two linearly dispersing Dirac cones, similarly to
Refs. [10,11], and its zero-field Hall conductivity vanishes.
The Berry flux [1,22], i.e., the integral of the Berry curvature
around a single valley, is shown in Fig. 2 in the presence of
QAH and nematic orderins. The Berry flux is nonzero even in
the nematic phase due to the broken TRS in H0. Surprisingly, it
varies continuously similarly to the Berry phase and can take
any value between −2 and 2, which is not expected from a
topological invariant. It becomes quantized when even copies
of Eq. (1) are considered, signaling a no-go theorem for H0.

The ratio of the susceptibilities corresponding to these order
parameters is α dependent:

χ


χM
= 2s2

2 − s2
. (8)

Although the spectrum, and even the RG flow of the inter-
action, were oblivious to the parameter α, it nevertheless
determines the leading susceptibility, and thus the ultimate
nature of the instability at weak coupling. The nematic and
QAH susceptibilities are equal only at a critical value αc,
given by sin2(2αc) = 2/3. The QAH state is realized when
| sin(2α)| >

√
2/3, with the nematic order being otherwise

dominant.
In the case of two valleys, relevant to the dice lattice, the

order parameter 
 with different signs in the two valleys
breaks TRS and results in an overall finite QAH effect. On
the dice lattice, this could be realized by intrasublattice,
non-on-site interactions à la extended Hubbard model which
can be decoupled to favor the QAH order, as was done on the
honeycomb lattice [5,6]. In the case of identical signs, 
 only
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additionally contributes to the amplitude of the charge density
wave, which already exists for general α �= π/4. Albeit the
nematic order parameter possesses a nonzero Berry flux in
a single valley, the contribution from the other valley with
opposite chirality always compensates it to zero, at least in the
physically motivated case when the absolute value of the the
two order parameters in the two valleys are equal. When QAH
and nematic order coexist, the Chern numbers are shown in
Fig. 2.

V. STRONG-COUPLING ANALYSIS

Without the kinetic-energy term (t = 0), the interaction
clearly favors deviations from the particle densities in the
noninteracting limit, with either 〈δn1〉 > 0 and 〈δn2〉 < 0,
or vice versa. Depending on the particle densities in the
noninteracting limit, one of these would be energetically
favorable, and the ground-state energy profile as a function
of the respective particle densities develops an asymmetric
double-well structure, leading to a first-order transition. At
α = π/4, the depths of the two wells become equal, and the
order of the transition changes from first to second. As a result,
the system will be a “fully polarized” charge density wave in
the sense that one sublattice is fully occupied while the other
is empty. This corresponds to 
 �= 0, i.e., the analog of the
QAH state for all values of α.

Connecting the weak- and strong-coupling regimes when
| sin(2α)| <

√
2/3 requires therefore a quantum phase tran-

sition from the nematic to the QAH state with increasing
interaction. The details of this transition are evidently beyond
the reach of the weak-coupling RG calculations, and so we
formulate a mean-field theory in order to study it further. For
| sin(2α)| >

√
2/3, on the other hand, the same QAH state

appears at both strong and weak couplings.

VI. MEAN-FIELD THEORY

Allowing for all three kinds of orderings, the mean-field
decoupling of the interaction gives the energy spectrum

E±(p) = εp

2

±
√

ε2
p

4
+ εp[Ms cos(2ϕp − θ ) + 
c] + 
2 + M2,

(9)

where εp = p2/2|m|.
The ground-state energy per unit cell is

E = 
2 + M2

U
+

∫
d2p

(2π )2
E−(p) + Wρ0
c, (10)

subject to minimization with respect to 
 and M. The last
term arises from the fine tuning of the interaction in terms of
the noninteracting densities. The relative angle of the nematic
order parameters θ drops out from the calculation. Were the
rotational symmetry of the spectrum already broken in Eq. (1)
by, for example, choosing unequal prefactors of the σ1 or σ2

term, the preferred value of θ would also be determined by the

mean-field equations, and the competition between different
nematic orders and the QAH phase would be more subtle.

The Ginzburg-Landau expansion of E contains even and
odd powers of 
, therefore the energy landscape exhibits an
asymmetric double well structure, leading to a first-order phase
transition. On the other hand, only even powers of M are
present in E, yielding a second-order phase transition for the
nematic order. Close to α � π/4, a pure QAH state is stable
for Uρ0 � 1, and


 = W

c − 1
exp

(
− 1

Uρ0s2
+ c

1 − c

)
, (11)

displaying the characteristic essential singularity in the weak-
coupling limit. For α � π/4, Eq. (11) describes a metastable
solution, with the stable solution obtained from it by the
replacement α → π/2 − α, and change in sign of the right-
hand side of Eq. (11). This is depicted in Fig. 2. The nematic
order dominates around α ∼ 0 with a similar interaction
dependence ln(W/M) ∼ 1/Uρ0, but with a more compli-
cated full expression. These two orders possess the same
ground-state energy for sin2(2α) = 2/3, as predicted by the
susceptibilities. However, the nematic order parameter always
coexists with a secondary, parasitic QAH order for the stable
solution, satisfying 
 ∼ Uρ0M in the extreme weak coupling,
Uρ0 � 1 limit. With increasing interaction, this coexistence
region shrinks and the region with pure QAH as the primary
order parameter gains in territory.
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FIG. 3. (Color online) The interaction and α dependence of the
stable order parameters is shown.
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A typical evolution of ordering with α is depicted in Fig. 2
in the weak-coupling limit. The QAH and nematic phases
coexist only for the stable solution, and exclude each other
in the metastable solutions of the first-order transition. The

 = M = 0 case always represents an unstable solution to
the gap equations. The full phase diagram, visualizing both
stable and metastable regions, is plotted schematically in
Fig. 2, constructed from the numerical solution of the gap
equations. As predicted by the RG, there is a wide region for
a QAH and nematic (accompanied by a subdominant QAH)
phases. With increasing U , the region of the nematic state
shrinks, and eventually for large U through a quantum phase
transition gives way to the pure QAH state, in accordance with
the considerations at strong coupling. The numerical solution
of the gap equations, minimizing E, is shown in Fig. 3 for the
stable solutions.

VII. EXPERIMENTAL REALIZATIONS

The dice lattice with unequal hoppings and distinct sublat-
tice potentials can be realized experimentally in a controlled
way with cold atoms loaded in an optical lattice [22,27]. The
interaction strength is tunable by, e.g., a Feshbach resonance
and by tuning the parameter α, so that our predictions can
directly be tested. In condensed matter, the dice lattice arises
from a trilayer structure of the face-centered-cubic lattice,
grown in the [111] direction [22], with SrTiO3/SrIrO3/SrTiO3

trilayer heterostructures [28] promising in this respect. Finally,
the dice lattice can also be created by generalizing artificial
graphene’s honeycomb lattice [29].

Cold atomic settings, unlike solid-state ones, can host
metastable states with a long lifetime due to the excellent

control over various relaxation channels, offering the possibil-
ity to explore the full phase diagram. Since both nematic and
QAH states are gapped, a near-adiabatic tuning of α allows for
passing through the stable to the metastable region. Moreover,
when two copies of our low-energy Hamiltonian, one for each
valley, are realized by a given lattice model, a stable QAH state
in one valley and a metastable one in the other valley would
always realize a metastable topological insulating phase.

VIII. CONCLUSION

We have investigated a generalized quadratic band crossing
with only rotational symmetry and broken TRS. Surpris-
ingly, a single valley Hamiltonian favors nematic ordering
as the dominant instability in certain parameter range, though
the broken TRS would have suggested the QAH effect (in
the same way as, e.g., a finite magnetic field induces a finite
magnetization). In particular, although the RG equation for
the interaction is the same as in Ref. [10], the QAH and
nematic susceptibilities depend strongly on α. Moreover, with
increasing interaction, the nematic order disappears and QAH
ordering dominates.
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