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Quantized escape and formation of edge channels at high Landau levels and edge transport
mediated zero-differential resistance states
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We present nonlocal resistance measurements in an ultrahigh-mobility two-dimensional electron gas. Our
experiments show that even at weak magnetic fields, classical guiding along edges leads to a strong nonlocal
resistance on macroscopic distances. In this high Landau level regime, the transport along edges is dissipative
and can be controlled by the amplitude of the voltage drop along the edge. We report resonances in the nonlocal
transport as a function of this voltage that are interpreted as escape and formation of edge channels, and the
formation of zero-differential resistance states when the nonlocal voltage is measured on length scales much
larger than the mean free path.
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The investigation of nonlocal effects in electrical trans-
port has provided new insights into nonclassical conduction
mechanisms. These effects are responsible for the appearance
of a potential difference across a region of the sample well
outside of the classical current paths. They have been reported
in conductors that exhibit quantum coherence [1–3], ballistic
transport [4,5], or in the quantum Hall effect regime of a
two-dimensional electron gas [6–8]. In the latter case, the
nonlocal resistance appears due to the formation of edge
channels that are isolated from the bulk and can carry the
current to classically inaccessible regions. The propagation
of edge channels in this regime has attracted a significant
interest due to their potential for quantum computation and
interferometry [9–12]. Here, using nonlocal measurements,
we consider the opposite limit of high Landau levels where
the bulk density of states is gapless. We show that in this limit,
the exchange of charges between bulk and edge states can be
controlled by the voltage drop along the edges, which leads
to the formation of resonances in the nonlinear transport that
allow us to observe directly a quantization of edge channels
at high Landau levels. Our results are also important for the
understanding of nonequilibrium physics in ultrahigh-mobility
two-dimensional electron gases (2DEGs), which has attracted
significant attention recently in connection with the discovery
of microwave-induced zero-resistance states [13–27] (for a
review, see [28]). Indeed, we also demonstrate that edge
transport phenomena can lead to the formation of zero-
differential resistance states very similar to those reported in
Hall-bar and Corbino-disk measurement geometries [29–31].
These findings support the importance of edge transport in
the understanding of the unexpected transport properties of
2DEGs far from equilibrium [32–36].

We start by describing the measurement geometry for
nonlocal magnetoresistance and by explaining the results
we obtained in the linear regime. We then focus on the
nonlinear regime at larger polarization currents, showing
the appearance of spectacular resonances in the nonlocal
differential resistance, which we interpret as a manifestation
of the quantized escape and formation of edge channels.
Finally, we demonstrate that these resonances can give
rise to zero-differential resistance states when the nonlocal

resistance is probed in a macroscopic measurement geometry
where all the length scales are larger than the mean free
path, effectively averaging to zero the nonlocal differential
resistance.

I. NONLOCAL MAGNETOTRANSPORT
IN THE LINEAR REGIME

We have investigated the magnetic-field dependence of
nonlocal transport in a GaAs/Ga1−xAlxAs 2DEG with density
ne � 3.3×1011 cm−2, mobility μ � 107 cm2/V s correspond-
ing to transport time τtr � 0.4 ns, and a mean free path of
�e = 100 μm. The Hall bar with a channel width W = 100 μm
was patterned using wet etching. The nonlocal resistance Rnl

was measured in a geometry illustrated in Fig. 1 where current
was injected along the y axis and the voltage was detected
between two probes distant by Dx � 50 μm at a distance
L � W from the current injection points. The experimental
data in Fig. 2 show that Rnl exhibits an unusual dependence on
magnetic field that is strikingly different from ρxx behavior.
Indeed, in contrast to ρxx(B), Rnl(B) is a strongly asymmetric
function of the magnetic field that almost vanishes for negative
magnetic fields and exhibits a sharp onset at low positive
magnetic fields reaching a value of the order of ρxx for
B > 0.1 T.

We have first checked whether this dependence can be
explained using the continuum theory of a Hall bar. For
this purpose, it is convenient to describe our sample as a
2DEG stripe, and to approximate the current injection leads
by pointlike sources. This stripe can be parametrized by
complex numbers z = x + iy with y ∈ (0,W ). The potential
V (z) created by a current source I positioned at x = x0 along
the top and bottom edges then reads V±(z) = R±(z,x0)I [plus
(minus) sign for top (bottom) edge], where

R±(z,x0) = Rp

[
exp

(
πz

W

)
exp

(−πx0

W

)
± 1

]
. (1)

The function Rp gives the potential created by a unit current
source located at the origin in the semi-infinite 2DEG
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FIG. 1. (Color online) Sample geometry in our nonlocal trans-
port experiments. Arrows indicate the geometrical parameters in our
experiment, the position of the source and drain electrodes, and the
electrodes across which the nonlocal potential drop Vnl is measured.
The nonlocal resistance is then defined as Rnl = Vnl/I . The closed
black contour highlights the geometry of the domain used in our
finite-element simulations whose results are displayed in the top
panels for α = ρxy/ρxx = −1 and α = −100, the color (gray-scale)
level indicates the potential values [source (drain) potentials are fixed
to ±1]; the potential gradients are concentrated in the center of the
sample. The curves on the right represent the dispersion relation εn(k)
for edge states for a hard wall potential, k is the wave number, and lB
is the magnetic length [37].

half-plane y > 0:

Rp(z) = ρxx

π
(log |z| + α arg z), (2)

where we introduced the notation α = ρxy/ρxx .

-1 -0.5 0 0.5 1
B (Tesla)

0

2

4

6

8

R   (   )/2xx Ω

Temp = 1.2 K

R   (   )Ωnl

(V   > 0)nl

nl(V   < 0)
xy

Escape

Capture

Ex

xE

propagation

FIG. 2. (Color online) Dependence of the nonlocal resistance Rnl

(as defined in Fig. 1) and of the longitudinal resistance Rxx � ρxx on
the magnetic field B. The longitudinal resistance Rxx is almost a
symmetric function of B, whereas Rnl(B) is strongly asymmetric
and almost vanishes for B < 0. The insets illustrate typical classical
electron orbits for a capture and an escape event due to the parallel
electric field Ex for B > 0, where electrons propagate along the upper
edge in the positive x direction. Capture occurs for Vnl < 0 and escape
occurs for Vnl > 0.

Subtracting these two expressions, we find the potential
V = [R+(z,0) − R−(z,0)]I created by a current between a
pointlike source and drain located opposite to each other along
the channel. Using these equations for the particular case of
the potential generated along the top edge z = iW , far
from the sources |x| � W , we find the following expression
for the nonlocal resistance:

Rnl = 2ρxxDx

W
exp

(
−πL

W

)
, (3)

where Dx is the spacing between the voltage probes and L is
their distance from the source along the channel (for simplicity,
we have assumed Dx � W ). The geometrical parameters in
our experiment are L � 500 μm, W � 130 μm, and Dx �
50 μm (see Fig. 1), which lead to a numerical estimation Rnl �
4.4×10−6ρxx . Thus according to this point source model, the
nonlocal resistance is proportional to ρxx with an exponentially
small damping factor that is independent of the magnetic field.
This conclusion, however, is in strong disagreement with the
experimentally observed dependence. To check the validity of
this analytical estimation in our more complex experimental
geometry, we have performed a finite-element simulation of
the potential that (see Fig. 1) confirms the exponential decay
of the field amplitudes away from the current polarization
contacts.

Thus even at small magnetic fields (�0.1 T), our exper-
iments indicate a large nonlocal resistance that cannot be
described within the continuum theory. Due to the macroscopic
dimensions of our sample (channel width W � 130 μm),
quantum coherence effects cannot explain the origin of the
nonlocal resistance in our measurements. An explanation
relying solely on the formation of Landau levels is also unlikely
since we observe Rnl ∼ ρxx even at weak magnetic fields
B � 0.1 T where Shubnikov–de Haas oscillations are absent.
We thus propose guiding along sample edges as a possible
explanation for the observed behavior, and we attempt to
include the physics of skipping orbits within the continuum
model. The formation of skipping orbits occurs due to the
bending of the Landau levels at the edge of the 2DEG [37],
which is represented in Fig. 2. It can lead to noticeable effects
even when individual Landau levels are not resolved [38].

In the presence of skipping orbits, electrons can propagate
along the edges before being injected into the bulk of the
2DEG. This gives rise to edge currents I+,I− along the top
and bottom edges of the sample. Due to the influence of
disorder, electrons will progressively detach from the edges
causing a progressive drop of the edge current in the direction
of propagation of the electrons. The drop in the current carried
by the edges dI+/dx and dI−/dx creates a distributed current
source for the bulk of the 2DEG. Equation (1) derived within
the continuum model allows us to find the potential created by
this distributed current source:

V = −
∫

R+(z,x)
dI+(x)

dx
dx −

∫
R−(z,x)

dI−(x)

dx
dx. (4)

We will assume that the edge currents are nonzero only in the
direction of propagation of the electrons, and that they decay
exponentially with a characteristic length scale λe that we will
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call the mean free path along edges. This leads to

I+(x) = I−(−x) = sBIe−sBx/λeη(sBx), (5)

where sB = ±1 for positive (negative) magnetic fields and η

is the Heaviside function. It is straightforward to check that
the total current − ∫

dI+(x)
dx

dx injected into the bulk 2DEG
from the top electrode is I . Assuming |α| � 1 and combining
Eqs. (4) and (5), we find the following approximation for the
nonlocal resistance:

Rnl = ρxy

W

λe

exp

(
−πL

λe

)
η(sB). (6)

Since this equation was derived assuming that electrons
were guided only in one direction, it predicts a vanishing
nonlocal resistance for negative magnetic fields, in qualitative
agreement with the experiment. We note, however, that for
B < −0.5 T, a finite nonlocal resistance of oscillating sign
appears that is not expected within this model. A possible
origin of this effect could be due to electrons that are recaptured
by the edges after moving through the bulk of the samples
and that are not accounted for in the present model. At
positive magnetic fields, this equation can be used to estimate
λe from the experimental data, which yields for B � 0.1 T,
λe � 90 μm. Weak variations of λe as a function of the
magnetic field (at most 10%) can explain the presence of
Shubnikov–de Haas oscillations in Rnl(B). We note that the
obtained value λe is very close to the transport mean free path
in the sample, �e � 100 μm.

II. SIGNATURE OF THE QUANTIZED ESCAPE
AND FORMATION OF EDGE CHANNELS

IN THE NONLINEAR TRANSPORT

Even if the proposed model describes qualitatively the ob-
served nonlocal resistance, it is based on a phenomenological
assumption on the distribution of the edge currents Ie(x), and
a microscopic theory is needed to determine self-consistently
the potential inside the device and the distribution of the edge
currents. Several approaches have been proposed to treat the
interaction between bulk and edge transport in the quantum
limit at low filling factors [6,39–41], but they do not directly
apply to the present case. Indeed, the propagation along edge
channels has mainly been studied at an integer quantum Hall
effect plateau, where the transport is nondissipative, Rxx = 0,
and a gap in the density of states opens in the bulk [10,12].

In our case, due to the low magnetic fields, the gap is
not present and electrons can escape to the bulk or on the
contrary approach toward the edge. To look for signatures of
the escape and creation of edge channels, we have measured the
nonlocal differential resistance (NLDR) dVnl/dI as a function
of magnetic field and dc excitation current I . At positive
magnetic fields, when the potential Vnl is positive, electrons
lose energy |e|Vnl as they cross the separation distance between
the voltage probes, thus some electrons will escape from the
edge because their Larmor radius becomes smaller as they
propagate. If the potential Vnl is negative, electrons in the
bulk will tend to drift toward the edge under the action of
the electric field, Ex = Vnl/Dx , and new edge channels may
be formed. The typical trajectories for a capture and an escape
event are represented in Fig. 2. We thus expect that the transport
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FIG. 3. (Color online) Dependence of the differential nonlocal
resistance dVnl/dI on magnetic field B and on the dc current
amplitude I for positive and negative magnetic fields (top and
bottom panels, respectively). The data at negative magnetic fields
are displayed as a function of −B and −I . Temperature was 1.2 K.

properties along the edge will depend strongly on the sign of
Vnl.

In agreement with our heuristic arguments, the experimen-
tal results displayed in Fig. 3 exhibit a striking asymmetry
between positive and negative currents. For positive currents
(at B � 0.5 T), we measure positive dVnl/dI for I > 0,
whereas for I < 0, dVnl/dI drops and exhibits sharp oscilla-
tions around zero. To ensure that this difference is not related
to some asymmetry of the sample, we have also measured
dVnl/dI at negative magnetic fields. Except for the region
around I = 0 where the differential resistance almost vanishes,
in agreement with our guiding model, we find that after
the transformation I → −I , results are very similar to those
obtained at B > 0. This observation confirms that our findings
cannot be attributed to a geometrical asymmetry which would
not depend on the sign of the magnetic field. To understand the
origin the approximate symmetry observed in Fig. 3, we note
that a mirror symmetry around the Hall bar channel changes,
I → −I and B → −B, and interexchanges top and bottom
edges. The nonlocal voltage across the bottom edge is therefore
expected to be Vnl(−B, − I ), and the electrons emitted from
the bottom edge can then be recaptured at the top edge where
dVnl/dI is measured, giving a contribution proportional to
dVnl/dI at B > 0 and current −I damped by the propagation
through the bulk. Hence from now on we will focus on the
analysis of the data obtained at B > 0.
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FIG. 4. (Color online) Dependence of the differential nonlocal
resistance dVnl/dI on the dimensionless quantity eVnl/�ωc at a
magnetic field of 0.3 T. The vertical lines on the left and right are
equally spaced with respective spacing 0.75 and 1.3, and they are a
guide to the eye to show the periodicity of the oscillations.

The dependence on I displayed in Fig. 3 exhibits several
intriguing features. To gain an understanding of their physical
origin, we will concentrate on the region of weak magnetic
fields (B between 0.2 and 0.9 T). In this region, dVnl/dI

exhibits smooth oscillations as a function of I . Integrating
on current, we find the dependence Vnl(I ) and display the
differential resistance as a function of eVnl/�ωc, where �ωc

is the spacing between Landau levels. This transformation
reveals the periodic nature of the observed NLDR oscillations.
An example of the experimental dependence of NLDR as a
function of eVnl/�ωc at B = 0.3 T is shown in Fig. 4, and
several oscillations are resolved at both positive and negative
voltages, which allows us to define with good accuracy the
period �Vnl of the oscillations. We note that at B = 0.3 T,
the amplitude of the Shubnikov–de Haas oscillations on the
longitudinal resistance Rxx represents around 15% of the total
magnetoresistance (see Fig. 2). This corresponds to a low
magnetic field regime where there is no energy gap in the
bulk density of states.

The dependence of the oscillation period �Vnl on the
magnetic field is displayed in the inset of Fig. 5. As shown
in Fig. 5, at higher magnetic fields, B � 0.6 T, only a limited
number of oscillations can be resolved. In those cases, we
use the distance between the first resolved peaks to define
�Vnl. For Vnl < 0, where we expect the formation of new edge
channels due to drift of bulk electrons toward the edge, �Vnl

is almost equal to �ωc/e (we attribute the 20% difference to
the aspect ratio between the distance between voltage probes
and their width). However, for Vnl > 0, when electrons lose
energy as they propagate and edge channels progressively
escape to the bulk, the ratio e�Vnl/�ωc progressively increases
with magnetic field. Our interpretation is that at Vnl < 0, we
are probing the outermost edge channels that have an energy
spacing close to �ωc, while for Vnl > 0 edge channels escape
progressively and only the inner channels with an energy
spacing larger than �ωc are still propagating (see the level
diagram in Fig. 1).
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FIG. 5. (Color online) Dependence of the differential nonlocal
resistance dVnl/dI (in arbitrary units) on the dimensionless quantity
x = |eVnl|/�ωc at magnetic fields between 0.3 and 0.9 T. A voltage
offset was applied to fix the position of the first resolved peak at x = 1.
The period of the oscillations is plotted as a function of magnetic field
in the inset for positive and negative Vnl. It corresponds to the distance
between the first resolved peaks at magnetic fields where only a few
oscillations could be resolved.

As the magnetic field increases, the following trends can be
noted: for I > 0, the smooth oscillations develop into sharp
resonances at certain values of Vnl, while for negative currents,
dVnl/dI starts to change sign as a function of I , rendering our
analysis as a function of Vnl impossible. Experiments with a
larger separation between voltage probes, Dx � 500 μm, did
not display the described oscillation and resonances, which
suggests that their observation is possible only when Dx is
smaller than the mean free path. In a control sample with
wide voltage probes of around 300 μm, a zero-differential
resistance plateau was observed at I < 0, indicating that in
this regime the electrostatic potential oscillates as a function
of the distance along the edge and averages to zero when the
voltage is measured on a large length scale. These experimental
results are described in detail in the next section.
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FIG. 6. (Color online) Dependence of the nonlocal differential
resistance dVnl;F /dI on magnetic field and dc current amplitude;
this quantity was measured in a geometry where the separation
between voltage probes was Dx � 500 μm on the μ = 107 cm2/V s
sample from the first two sections. The size of the voltage
probe contacts on the Hall probe is still smaller than the mean free
path, with a lateral dimension of around 10 μm, as can be seen on the
optical image of the sample on Fig. 1. Temperature was T = 1.2 K.

III. TRANSITION TO ZERO-DIFFERENTIAL
RESISTANCE STATES IN MACROSCOPIC GEOMETRIES

A vanishing differential resistance has previously been
reported in local measurement geometries [29–31] where bulk
and edge contributions are intermixed. Our experiments show
that a zero-differential resistance state can be created by edge
effects alone.

We have measured NLDR in a geometry where the voltage
probes were separated by a distance Dx = 500 μm larger
than the mean free path �e = 100 μm in the sample. The
experiment was performed on the same sample but with a
different arrangement of voltage and current probes, and the
current sources were located 500 μm away from the voltage
probes. We designate the signal measured in this geometry
as dVnl;F /dI . In the linear-response regime, the dependence
of Rnl;F = dVnl;F /dI (I = 0) on the magnetic field was very
similar to the data shown in Fig. 2. The quantity Rnl:F was finite
for positive magnetic fields and almost vanished for B < 0.
The dependence of dVnl;F /dI on the magnetic field B and
on the dc current amplitude I is represented in Fig. 6 for B > 0.
The oscillating features as a function of the dc current I are
not resolved, contrary to measurements where Dx was smaller
than the mean free path (see the data in Fig. 3). Negative
values of dVnl;F /dI at negative current I are still observed in
this geometry.

We have also studied NLDR in a macroscopic geometry
with all the geometrical parameters larger than the mean
free path. In this sample, the size of the voltage probes
was much larger than the mean free path as opposed to
the voltage probe configuration in the experiment shown in
Fig. 6. The sample was made in a lower mobility 2DEG,
with mobility μ = 3×106 cm2/V s and a carrier density of
ne = 3.2×1011 cm−2. The geometry of the measurement is
sketched in Fig. 7. This figure summarizes our results on the
NLDR in this sample, for positive magnetic fields for which
the nonlocal resistance is nonvanishing.
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FIG. 7. (Color online) Dependence of NLDR dVnl;L/dI on mag-
netic field and dc current amplitude for the μ = 3×106 cm2/V s
mobility sample. NLDR was measured in the geometry sketched
in the top panel. In this geometry, the distance between the voltage
probes and the voltage probe size were both significantly larger than
the mean free path with dimensions around 500 μm. Temperature
was T = 0.3 K.

The strong asymmetry between positive and negative
currents is also observed in this lower-mobility 2DEG,
however the characteristic magnetic field where the asymmetry
appears is around a factor 3 stronger as compared to the
μ = 107 cm2/V s sample. This difference is consistent with
the ratio between the mobilities of the two samples. As in
Fig. 6, the separation between the voltage probes was larger
than the mean free path, �e = 30 μm, and the oscillations as
a function of the dc current cannot be resolved. However, in
the present experiment, NLDR is almost zero in a large region
of negative currents, which contrasts with previous data where
NLDR could be negative for I < 0 (see Figs. 2 and 6).

To highlight the presence of a zero-differential resistance
state (ZDRS), we have calculated the dependence of Vnl;L on
current by integrating the experimental differential resistance
data. The results obtained after this procedure are represented
in Fig. 8, which shows that the voltage Vnl;L exhibits a
plateau at negative I where it is almost independent of
current in a wide range of magnetic fields, while for positive
currents the voltage dependence is almost Ohmic. The inset in
Fig. 8 shows the dependence of the voltage on the magnetic
field for several values of current inside the ZDRS plateau.
These results confirm that the voltage saturates to a constant
value independent of current in this regime. The value of
the saturation voltage grows almost linearly with magnetic
field with weak oscillations that are probably related to the
Shubnikov–de Haas oscillations in the longitudinal resistance.

The observed zero-differential state possesses the symme-
try of an edge effect. It appears only for the sign of the magnetic
field, which ensures that it guides toward the voltage probe
electrodes from the distant current sources, and for a specific
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in local geometries, we have shown −Vnl;L as a function of −I in
this figure). The inset shows the voltage as a function of magnetic
field for several currents inside the plateau regime. Temperature was
T = 0.3 K.

sign of the dc current that creates a voltage drop along the
edge tending to stabilize propagation along edges. Therefore,
it seems likely that an edge-transport-related mechanism leads
to the formation of ZDRS in this case. In the higher-mobility
sample where the dimension of the voltage probes was smaller
than the mean free path, negative values of NLDR were
observed (see Figs. 3 and 6), which suggests that ZDRS is
formed due to the clamping of the potential on large length
scales by the voltage probe electrodes. On the contrary, if
the electrodes are not invasive, the potential exhibits sharp
variations whenever the energy of the electrons propagating
along the edge is changed by an amount close to �ωc. These
voltage oscillations are probably indicative of a spatially
modulated charge-density distribution, and they could explain
the observation of oscillating/negative differential resistances
in our experiments. It would be highly interesting to understand
the role played by the edge mediated ZDRS mechanism in
ZDRS experiments realized in the conventional longitudinal
resistance measurement geometry.

We note that additional experimental and theoretical in-
vestigations are needed to fully understand edge transport at
high Landau levels in the nonlinear regime. It would also be
interesting to perform similar experiments under microwave
irradiation where stabilization of edge channels is expected
[32] and where nonlocal effects can also be present [25].

IV. CONCLUSIONS

To summarize, we have demonstrated through nonlocal
resistance measurements that guiding effects can strongly
modify the potential distribution in ultrahigh-mobility samples
even in the limit of weak magnetic fields, B � 0.1 T. In
the linear transport regime, our observations are consistent
with a spreading of the distribution of the current source
in the direction of propagation along edges. As opposed to

the quantum Hall regime, where transport in the bulk is
suppressed, an exchange between edge and bulk conduction
paths takes place in our experiments. We show that this
exchange can be controlled by the amplitude of the potential
drop along the edge. Additional edge channels can be formed
if the electrons gain energy as they propagate along the edge;
in the opposite case when electron lose energy, the edge
channels can escape to the bulk. We propose that oscillations
in nonlinear transport when the amplitude of the voltage
drop along the edge is changed by the spacing between
Landau levels are a signature of quantized escape and the
formation of edge channels. We also demonstrated that these
oscillations develop into zero-differential resistance states
when the voltage is clamped on a macroscopic length scale by
macroscopic contacts. Thus edge transport in the limit of high
filling factors allows us to explore a rich physical regime that
may have deep implications in our understanding of electron
transport in ultraclean two-dimensional systems.
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APPENDIX: CONTINUUM THEORY

In this appendix, we provide a more detailed derivation
of formulas from continuum theory that we used in the first
section. We start our calculations from the potential created by
a point source of current I located at z = 0 in a semi-infinite
two-dimensional electron gas. It is convenient to represent
points in the 2DEG as complex numbers z = x + iy, where
(x,y) are the point Cartesian coordinates, and the half-plane
fills the space y > 0. In this case, we find the potential Vp(z) =
Rp(z)I with

Rp(z) = ρxx

π
(log |z| + α arg z), (A1)

where we have introduced the Hall angle α = ρxx

ρxy
.

A stripe geometry described by z = x + iy with y ∈ (0,W )
can be mapped onto this half-plane using the conformal
mapping z = exp(πz

W
). This allows us to find the potential

V−(z,x0) = R−(z,x0)I created by a point source located on
the bottom edge of the stripe at z = x0 (x0 real):

V−(z,x0) = Rp

[
exp

(
πz

W

)
exp

(−πx0

W

)
− 1

]
I. (A2)

The potential V+(z,x0) = R+(z,x0)I created by a source on
the top edge of the stripe at z = x0 + iW reads

V+(z,x0) = Rp

[
exp

(
πz

W

)
exp

(−πx0

W

)
+ 1

]
I. (A3)

Subtracting these two expressions, we find the potential
V = V+(z,0) − V−(z,0) created by a current between point-
like sources and drains located opposite to each other along
the channel (at z = iW and z = 0, respectively). For the
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particular case of the potential generated along the top edge
y = iW , far from the sources |x| � W , we find the following
expression:

V (x) = 2

π
Iρxx exp

(−π |x|
W

)
− ρxyIη(−x), (A4)

where η(x) is the Heaviside function. This gives the expression

for the nonlocal resistance given in the main text:

Rnl = 2ρxxDx

W
exp

(
−πL

W

)
, (A5)

where Dx is the spacing between the voltage probes and L is
their distance from the source along the channel (for simplicity,
we have assumed Dx � W ).
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