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Dependence on pressure of the refractive indices of wurtzite ZnO, GaN, and AlN
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We have measured both the ordinary and extraordinary refractive index of m-plane cuts of wurtzite ZnO,
GaN, and AlN single crystals at room temperature and as a function of hydrostatic pressure up to 8 GPa. For
that purpose we have developed an alternative optical interference method, called bisected-beam method, which
leads, in general, to high contrast interference fringes. Its main feature, however, is to be particularly suitable for
high pressure experiments with the diamond anvil cell, when the refractive index of the sample is low and similar
to that of diamond and/or the pressure transmitting medium, as is the case here. For all three wide-gap materials
we observe a monotonous decrease of the ordinary and extraordinary refractive indices with increasing pressure,
being most pronounced for GaN, less marked for ZnO, and the smallest for AlN. The frequency dependence
of the refractive indices was extrapolated to zero energy using a critical-point-plus-Lorentz-oscillator model
of the ordinary and extraordinary dielectric function. In this way, we determined the variation with pressure
of the electronic part (no-phonon contribution) of the static dielectric constant ε∞. Its volume derivative,
r = d ln ε∞/d ln V , serves as single scaling coefficient for comparison with experimental and/or theoretical
results for other semiconductors, regarding the pressure effects on the dielectric properties. We have obtained
an ordinary/extraordinary average value r of 0.49(15) for ZnO, 1.22(9) for GaN, and 0.32(4) for AlN. With the
values for the ordinary and extraordinary case being within experimental uncertainty, there is thus no apparent
change in dielectric anisotropy under pressure for these wurtzite semiconductors. Results are discussed in terms
of the pressure-dependent electronic band structure of the materials.
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I. INTRODUCTION

The complex dielectric function ε(ω) = ε1(ω) + i · ε2(ω)
is a fundamental material property which describes the way
electromagnetic radiation interacts with the given substance. In
particular, for photon energies �ω below the fundamental band
gap, the material is fully transparent (no optical absorption
besides for that due to vibrations in the far infrared) and the
frequency dependent refractive index is simply given by [1]:

n(ω) =
√

ε1(ω). (1)

In fact, ε1(ω) and thus n(ω) are second-rank tensors which, in
wurtzite materials, possess only two independent components:
the ordinary one, describing the dielectric response for electric
fields polarized in the plane perpendicular to the hexagonal
c axis, and the extraordinary component, corresponding to
fields polarized parallel to c. In wide-gap semiconductors
like ZnO and several group-III nitrides such as GaN and
AlN, the refractive indices (nord and next) play a key role,
particularly, in the description of the waveguiding properties
and, generally, for the design of optoelectronic devices [2,3].
Another important parameter is the electronic part (no-phonon
contribution) of the static dielectric constant ε∞, which enters
in all charge screening effects and other collective phenomena
like exciton formation, plasmons, etc. In addition, for strongly
polar materials like ZnO, GaN, and AlN the dielectric constant
ε∞ is also determinant for several lattice-dynamical properties
like, for example, the transverse effective charge e∗

T . The latter
is at the origin of the LO-TO splitting between the frequencies
of the longitudinal and transversal optical phonon modes [4].

Large built-in and/or residual strains are ubiquitous in
nowadays micro and nano-optoelectronic devices and het-
erostructures due to the mandatory combination of materials
with large lattice mismatch [5]. Hence the precise knowledge
of the way in which the refractive index as well as ε∞ vary
upon mechanical stress is clearly an issue of relevance in
semiconductor research. A case of particular interest concerns
the typical difficulties that arise when trying to understand
the volume dependence of the transverse effective charge e∗

T

in polar semiconductors, if reliable values for the pressure
coefficients of ε∞ are lacking. The crucial point is that
the behavior of e∗

T as a function of volume is not solely
determined by the sign of the pressure coefficient of the LO-TO
splitting, which can be either directly measured by Raman
scattering or obtained from first-principles lattice dynamical
calculations (see Refs. [6–9] for ZnO, Refs. [10–12] for GaN,
and Refs. [11,13,14] for AlN). For the two nitrides the LO-TO
splitting slightly increases with pressure [11], whereas for ZnO
it decreases [9]. In contrast, the static dielectric constant ε∞
as well as the transverse effective charge decrease in all three
cases. In the general case, although e∗

T seems to exhibit a
systematics in terms of the polarity of the lattice or the bond
ionicity [9], this does not hold for the sign and magnitude of
the pressure derivative of ε∞ and LO-TO splitting. Even more
intriguing is the apparent total lack of correlation between the
pressure coefficients of the two latter material properties.

In this work we report the dependence on hydrostatic pres-
sure of the refractive indices (ordinary as well as extraordinary)
of the wurtzite phases of three wide-gap semiconductors,
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namely ZnO, GaN, and AlN. Measurements were performed
with the diamond anvil cell for pressures up to 8 GPa in the
spectral range from roughly 1.4 to 2.6 eV, using the purposely
developed interferometric method of the bisected beam. We
use a Lorentz oscillator plus a P0-type critical-point model of
the dielectric function to fit the experimental data, in order
to obtain by extrapolation the values of ε∞ and its pressure
dependence. In an attempt to look for specific trends in the
volume dependence of ε∞, we have performed an exhaustive
survey of the literature and compared experimental and/or
theoretical results for different semiconductors spanning the
whole range of bond ionicities, from homopolar elemental
semiconductors up to ionic insulators.

II. EXPERIMENT

All samples studied here are high quality single crystals
of the wurtzite phase. The two ZnO crystals (one c-plane
and one m-plane crystal cut) were grown by hydrothermal
methods and purchased from CrysTec. The GaN sample (m-
plane cut), provided by the Ferdinand-Braun-Institut, Berlin,
was grown by hydride vapor phase epitaxy [15]. The AlN
crystal (m-plane cut) was synthesized by the seeded crystal
growth method utilizing physical vapor transport, as described
elsewhere [16]. For optical interference experiments under
high pressure, the samples were prepared by mechanical
polishing in the form of plane-parallel plates with thicknesses
ranging from 30 to 50 μm. To attain best possible contrast
of the interference fringes after the initial coarse grinding,
flat surfaces with optical quality were obtained by a series of
polishing steps using alumina abrasive pastes with decreasing
grain size (9 to 0.05 μm). The thinned samples were cut into
pieces of approximately 150 × 150 μm2 and loaded into a
gasketed diamond-anvil cell (DAC) using a 4:1 mixture of
methanol-ethanol as pressure-transmitting medium. Pressure
was measured in situ by the ruby luminescence method [17].

A custom-made micro-optical system was used to focus
white light from a tungsten lamp onto the sample inside the
DAC and to collect the transmitted intensity, focusing it onto
the slits of a 0.3 m single grating monochromator. The light was
detected by a Si-based charge-coupled device (CCD) detector.
Lines of a Hg-Ar lamp were used for the wavelength cali-
bration. Spectroscopic ellipsometry measurements at ambient
pressure-temperature conditions were performed in the range
from 1.4 to 5.2 eV using a SOPRA ES4G ellipsometer. As
excitation light source we used a 75 W high-pressure Xe
arc lamp and the reflected light was collected by an optical
fiber, coupled into a double prism/grating monochromator of
0.75 m equivalent focal length, and detected with a multialkali
photomultiplier tube.

III. BISECTED-BEAM INTERFERENCE METHOD

The conventional optical interference method for the
determination of the refractive index is based on the detection
of the pattern of interference fringes, which develops when
the main light beam transmitted through a plane-parallel plate
interferes with its multiple reflections between both surfaces of
the sample, leading to a series of intensity maxima and minima
as a function of the wavelength of the transmitted light [18].
The contrast between maxima and minima is strongly reduced
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FIG. 1. (Color online) (a) Sketch of the optical path through the
diamond anvil cell in the bisected-beam optical interference method.
The upper and lower drawing corresponds to a cross sectional and
front (transmission) view, respectively. (b) Transmission spectra
(black lines) of a 47-μm-thick piece of m-plane AlN at nearly ambient
pressure loaded into the DAC obtained with the bisected-beam
method using linearly polarized light either perpendicular (ordinary)
or parallel (extraordinary) to the crystallographic c axis. Only a small
wavelength range is shown for clarity. Red curves represent results
of a fit to determine the position of the interference maxima. Vertical
dashed lines indicate a maximum in each spectrum with the same
interference index m.

if the refractive index of the material is similar to the one
of either the diamond anvils (ndiamond = 2.4) or the pressure
medium (nalcohol = 1.3 to 1.6 between 0 and 8 GPa). This is
exactly the case for the three wide-gap semiconductors studied
here. We thus developed the alternative interference method
of the bisected beam, which does not rely on any dielectric
contrast. As sketched in Fig. 1(a), the method consists in
focusing the incident light onto a small spot of 50 to 100 μm
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in diameter at one sharp cleaved edge of the sample, in such
a way that roughly half of the beam is transmitted through
the sample and the other half passes nearby through the
pressure medium. By tightly focusing the bisected beam at
the entrance of the optical fiber used to convey the light
to the grating spectrometer, both beam halves interfere with
each other leading to high contrast fringes. The conditions for
constructive interference correspond to the cases in which the
optical path difference between both beam halves is an integer
multiple of the wavelength of the light, according to

n(λm) − nmed(λm) = m · λm

d
, m ∈ Z, (2)

where n,nmed are the refractive index of sample and pres-
sure medium, respectively, d is the sample thickness, and
λm is the wavelength of the interference maximum with
index m.

The incident light beam can be linearly polarized at any
desired angle just by placing a rotatable linear polarizer in
the optical path before the DAC. For a m-plane crystal cut
the crystallographic c axis lies in the plane of the sample
surface, perpendicular to direction of incidence. Hence, simply
by orienting the linear polarizer either perpendicular or parallel
to the c axis, one can determine independently the ordinary
and extraordinary refractive index of the sample, respectively.
Figure 1(b) displays an example of transmission spectra (black
lines) of a piece of m-plane AlN at nearly ambient pressure
loaded into the DAC, obtained with the bisected-beam method
using linearly polarized light properly oriented with respect
to the c axis. The main oscillations correspond to the fringes
resulting from the interference of both halves of the light beam.
Red curves represent results of a fit to determine the position of
the maxima. Vertical dashed lines indicate a maximum in each
spectrum with the same interference index m; their relative
wavelength shift being a direct consequence of the difference
in ordinary and extraordinary refractive index [Eq. (2) holds
for both cases but with slightly different wavelength].

The use of the bisected-beam method for the determination
of the refractive index of a substance under high pressure,
though, presents the difficulty that the spectral dependence
of the refractive index of the pressure medium, as well as its
variation with pressure, have to be well known. This appears
as a serious limitation of the method. Fortunately enough, in
the case of the 4:1 methanol-ethanol mixture, we can count on
the results of the very meticulous work of Eggert et al. [19], in
which the authors report on measurements of nalc(ω,P ) with
a residual standard error of 4 × 10−3 for photon energies �ω

in the range from 1.5 to 3.0 eV and hydrostatic pressures P

between 0.5 and 11.5 GPa. The relevant equations are [20]

nalc(ω,P ) =
(

1 + Ed · E0

E2
0 − (�ω)2

) 1
2

, (3)

Ed = 10.6

(
ρ

ρ0

)1.31

, E0 = 13.4

(
ρ

ρ0

)0.07

, (4)

ρ

ρ0
=

[
1 − 1

B ′
0 + 1

· ln

(
1 + (B ′

0 + 1) · P

B0

)]−1

, (5)

where B0 = 0.778 GPa and B ′
0 = 10.18 are the bulk modulus

of the methanol-ethanol mixture and its pressure derivative,
respectively (see discussion in Ref. [19]).

We point out that condensed He is an alternative pressure
medium which presents the great advantage of having an
almost dispersionless refractive index that might be also fairly
insensitive to pressure. Nevertheless, it presents disadvantages
too. First of all, the preceding statement has to be corroborated
experimentally by performing a similar study as for the
methanol-ethanol mixture. More important is perhaps the fact
that condensed He needs to be loaded into the DAC following
a cumbersome cryogenic procedure which is extremely time
and resources consuming. Cryogenic He loading, though, can
be circumvented by employing membrane DACs, which is not
our case.

IV. RESULTS AND DISCUSSION

A. Measurements of the refractive index under pressure

Figure 2 displays two representative transmission spectra
of a c-plane ZnO sample measured at different pressures,
where the interference patterns are readily observed. The zero-
pressure spectrum was actually taken using the bisected-beam
method with the sample already loaded into the DAC, thus
immersed in alcohol. The pressure cell, though, was very
loosely closed such that the residual pressure is estimated
to be less than 0.03 GPa. The wavelength λm of each
interference maximum of order m is obtained with precision
by fitting the fringes with Gaussians, as illustrated by the
red curves in Fig. 1(b). To determine the order m of each
interference maximum and the sample thickness d0 from the
zero-pressure spectrum, we need the values of the refractive
index of the sample at ambient pressure. For this purpose we
have previously determined both ordinary and extraordinary
refractive indices as a function of photon energy for the three
materials (using the m-plane cuts) by means of spectroscopic
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FIG. 2. (Color online) Two representative transmission spectra
of a 31-μm-thick piece of c-plane ZnO measured at room temperature
for different hydrostatic pressures. The interference maximum with
index m = 21 is shown to shift to shorter wavelengths with increasing
pressure.
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ellipsometry. In this way and using Eqs. (3) to (5) for the
refractive index of the alcohol mixture, we obtain

m = λm+1 · �n(λm)

λm · �n(λm+1) − λm+1 · �n(λm)
,

(6)
�n(λ) = n(λ) − nalc(λ),

d0 = 1

N

∑
m

m · λm

�n(λm)
, (7)

where m is actually the integer part of Eq. (6) and d0 is the
average value obtained from the N maxima considered. It is
crucial to keep track of the numbering of the maxima during
the whole pressure cycle (see example of Fig. 2 for m = 21).
This was achieved by monitoring the movement of a certain
maximum live at the CCD camera, while pressure was slowly
changed employing an electric motor drive with a speed of
∼0.1 GPa/min. The results obtained for the refractive indices
of ZnO, GaN, and AlN are shown in Figs. 3(a) to 3(c) as a
function of photon energy and, for the sake of clarity, only for
selected pressures. Closed (open) symbols correspond to the
ordinary(extraordinary) refractive index data.

For the correct analysis of the high-pressure transmission
spectra, it is important to take into account the thickness
reduction of the sample by properly scaling d using a
Murnaghan-type pressure-volume equation of state [21]. The
key point is that in wurtzite materials the ratio between the
length of the crystallographic c and a axes may vary linearly
with pressure (as the bulk modulus B does). In this case,
the thickness scales differently with pressure for a c-plane
or an m-plane sample. By defining R = c

a
, R0 = c0

a0
, and

R′
0 = d( c

a )
dP

= dR
dP

and assuming that R = R0 + R′
0 · P and

B = B0 + B ′
0 · P , we obtain that

a

a0
=

(
R

R0

)− 1
3

·
(

1 + B ′
0

B0
· P

)− 1
3B′

0 ≡ d

d0
(m plane), (8)

c

c0
=

(
R

R0

)+ 2
3

·
(

1 + B ′
0

B0
· P

)− 1
3B′

0 ≡ d

d0
(c plane). (9)

The used values of the c/a ratio, the bulk modulus, and their
pressure derivatives are listed in Table I for the three studied
materials.

A first test of the suitability of the presented method
consisted in comparing the results obtained for the ordinary

TABLE I. Bulk modulus B0 and its pressure derivative B ′
0 and

the c/a crystallographic axes ratio and its pressure derivative for the
wurtzite phases of ZnO, GaN, and AlN. Numbers in parentheses are
error bars.

Material B0 (GPa) B ′
0 R0 = c0

a0
R′

0 = d(c/a)
dP

(GPa−1)

ZnO 142.6(2)a 3.6a 1.6021(3)a −0.0005(1)a

GaN 200(20)b 4.3(20)c 1.626(4)c 0c

AlN 208(6)d 6.3(9)d 1.601(2)d −0.0006(1)d

aReference [22].
bReference [23].
cReference [24].
dReference [25].
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FIG. 3. (Color online) Ordinary (closed symbols) and extraordi-
nary (open symbols) refractive index of (a) ZnO, (b) GaN, and (c)
AlN as a function of photon energy at several hydrostatic pressures.
The solid curves represent least-squares fits to the experimental data
using a simple model consisting of one Lorentz oscillator and one
P0-type critical point (see text for details).

refractive index of ZnO using either a c-plane cut and
unpolarized light or an m-plane sample and linearly polarized
light along the direction perpendicular to the crystallographic
c axis. Figure 4 shows both data sets of nord versus pressure for
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FIG. 4. (Color online) Comparison of the results obtained for the
pressure dependence of the ordinary refractive index of ZnO using
either a c-plane (green, open symbols) or an m-plane (black, closed
symbols) crystal cut. The data points correspond to the values of nord

at the photon energies indicated in the legend.

different photon energies in the case of the c-plane (green, open
symbols) and the m-plane sample (black, closed symbols),
exhibiting excellent agreement with each other. We emphasize
that such good agreement was attained only after the correct
pressure dependence of the sample thickness was considered,
as expressed in Eqs. (8) and (9).

B. Model dielectric function

After Eq. (1), for a description of the photon-energy
dispersion of the refractive index, it is sufficient to be able to set
up a model dielectric function for ε1(ω) that can be successfully
fitted to the experimental data points in the spectral region
of transparency of the material, i.e., below the fundamental
band-gap energy. In this respect, the main constraint for the
model dielectric function is that it should fulfill the so-called
static sum rule (see, for instance, Appendix A of Ref. [26]):

ε1(ω = 0) ≡ ε∞ = 1 + 2

π
·
∫ Ec

0

ε2(ω)

ω
dω, (10)

where the cutoff energy Ec is introduced to avoid the unphys-
ical extension of the dielectric response to higher energies
within the model. Equation (10) is a direct consequence of
the requirements of causality to the optical response function,
which mathematically means that its frequency-dependent
real and imaginary parts are related via the Kramers-Kronig
relations [1]. Moreover, the static sum rule is intimately related
to the total oscillator sum rule, which expresses the fact
that the addition of the contributions to the imaginary part
of the dielectric function ε2(ω) from all electronic interband
transitions should be finite and give the effective number of
valence electrons participating in the optical response [26].
Both sum rules are extremely powerful relations which, in
turn, leave sufficient freedom for the construction of the model
dielectric function. Models of different complexity might
differ much in their spectral line shape above the fundamental
absorption edge and still yield the correct static limit and a

low-frequency dispersion in agreement with the experimental
one (see, for instance, Refs. [27–29]).

In order to set up the model we make explicit use of the
measured real and imaginary parts of the dielectric function
determined by means of spectroscopic ellipsometry in a very
wide range of photon energies from the visible up to the
deep ultraviolet (see Ref. [30] for ZnO, Refs. [31,32] for
GaN, and Refs. [31,33] for AlN). A careful inspection of the
imaginary part ε2(ω) indicates that the leading contribution at
low frequencies stems from an extended critical point located
at an energy E1 between 6 and 8 eV. It turns out that such
a strong feature in the dielectric response corresponds to a
two-dimensional critical point of P0 type [34], for which
both valence and conduction bands run parallel partly along
a given high symmetry direction in the Brillouin zone. This
single critical point, however, cannot yield a fully satisfactory
description of the measured refractive-index dispersion at
photon energies closer to the absorption edge. To account
for this extra dispersion we added one Lorentz oscillator,
associated with interband transitions at an energy E0 close
to the fundamental gap. We notice that the sharp peak at
the absorption edge in ε2(ω) [30,31], which is attributed
to the discrete exciton at the direct gap E0, is perfectly
described by a Lorentzian peak [28]. This feature can be
observed at room temperature due to the very large exciton
binding energies in these wide-gap materials, partly because
of the small static dielectric constant (poor screening of the
Coulomb interaction). Within this model, the refractive index
is expressed as [28,35]

n2(ω,P ) = 1 + A(P ) · γ · [�ω − E0(P )]

[�ω − E0(P )]2 + γ 2
− B(P ) ·

×
[
E1(P )

�ω

]2

· ln

⎛
⎝1 − [

�ω
E1(P )

]2

1 − [
�ω
Ec

]2

⎞
⎠ . (11)

The first nontrivial term corresponds to the Lorentz oscillator
centered at E0 with linewidth γ and amplitude A. The last term
in Eq. (11) represents the contribution of the P0-type critical
point at an energy E1 and with amplitude B. A quick look
at ε2(ω) indicates that a cutoff energy of Ec = 20 eV seems
appropriate for the three materials considered. As far as the
exciton linewidth is concerned, we just set it to a value of
γ = 0.01 eV, which is a typical room-temperature exciton
broadening. We further consider that γ is independent of
pressure [36,37]. This assumption is not only supported by
experimental evidence, it is certainly correct for all practical
means, since the fit of the refractive index data is not sensitive
to the particular value of γ in view of the fact that the difference
between the highest photon energy in the experiment and E0

is much larger than the linewidth. The particular choice of γ

just changes the initial value of the amplitude A, having no
influence on the quality of the fit.

In this way, the model function has, in principle, only
four adjustable parameters remaining, which are also pressure
dependent. Unfortunately, it turned out that the nonlinear
least-squares fitting routine would not converge to a minimum
due to a strong correlation between the pair of energies and
the pair of amplitudes of both oscillators. We decided then
to fix the values of the parameters of the Lorentz oscillator
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TABLE II. List of parameters and their pressure dependence as obtained from fits of the model dielectric function given by Eq. (11) to the
ordinary and extraordinary n(ω) data at different pressures for the wurtzite phases of ZnO, GaN, and AlN. They are the energy positions E0,E1

and amplitudes A,B of the Lorentz oscillator and the P0-type critical point, respectively. For the fits a common oscillator linewidth γ = 0.01
eV and a cutoff energy Ec = 20 eV were used. Data from the literature are properly indicated. Numbers in parentheses are error bars.

E0 = a + b · P + c · P 2 E1 = a + b · P B = a + b · P

Material a b c A = a
(

E0(P )
E0

)1.5
a b b

(wurtzite) (eV) (eV/GPa) (eV/GPa2) a (eV) (eV/GPa) a (GPa−1)

ZnO (ord.) 3.441(1)a 0.0247(1)a −90.8(6) 7.46(4) 0.188(9) 3.09(1) 0.015(3)
(extraord.) 3.482(1)a 0.0268(1)a −96.5(6) 7.25(4) 0.185(8) 3.12(1) 0.012(2)

GaN (ord.) 3.450(5) 0.0432(6)b −0.0004(1)b −53.0(20) 5.95(10) 0.065(4) 4.61(1) −0.031(4)
(extraord.) 3.472(5) 0.0432(6)b −0.0004(1)b −69.5(15) 6.05(10) 0.068(5) 4.75(2) −0.028(3)

AlN (ord.) 6.20(1)c 0.037a 7.70(4) 0.066(9) 3.73(1) 0.004(2)
(extraord.) 5.97(1)e 0.037d 7.36(5) 0.054(9) 3.87(1) 0.003(2)

aReference [36].
bReference [37].
cReference [42].
dReference [43].
eReference [44].

according to the following criteria: E0 was identified as
the corresponding fundamental band gap and its value at
ambient pressure and its pressure coefficient were taken from
experimental results of the literature. The amplitude A(0)
at zero pressure was obtained from a fit of the refractive
index data from ellipsometry, extending the fit up to photon
energies close to the gap. Furthermore, due to the outspoken
excitonic character of the optical transitions at E0, we expect
the oscillator amplitude A to be proportional to the excitonic
oscillator strength [38]. The latter varies, within Elliott’s theory
of the exciton absorption [39], as E

3/2
0 . The dependence on

pressure of the amplitude parameter A was thus calculated as

A(P ) = A(0) ·
[
E0(P )

E0(0)

] 3
2

. (12)

We note that such pressure dependence was already demon-
strated to hold for the excitonic absorption edge of GaAs [40]
and Ge [41]. In conclusion, the only free parameters of the
model used to fit the energy dispersion of the refractive index
under high pressure are the amplitude and energy position
of the critical point oscillator. We point out that the P0-type
critical point is not only the leading term in Eq. (11) but also
the logarithmic dependence of its contribution is crucial for
attaining a good description of the refractive index dispersion.

In wurtzite semiconductors, the top of the valence band
at the Brillouin zone center (the 	 point) splits into three
twofold degenerate bands labeled as A, B, and C in decreasing
energy order, all of which posses pure atomic p character.
These wave functions can be classified according to the
eigenvalues of the total angular momentum J as |J, ± Jz〉 =
| 3

2 , ± 3
2 〉,| 3

2 , ± 1
2 〉, and | 1

2 , ± 1
2 〉. The bottom of the conduction

band, in contrast, has pure atomic s character. Within the
dipolar approximation, the optical transitions contributing
to the ordinary or the extraordinary dielectric function are
the ones involving the valence band | 3

2 , ± 3
2 〉 and mainly

| 1
2 , ± 1

2 〉 multiplets, respectively. The precise assignment of
each multiplet to the valence bands A to C depends strongly

on the strength of the spin-orbit interaction and crystal field,
being thus different in every material. As seen in Table II,
the difference between the values of the fundamental gap E0

corresponding to the ordinary and extraordinary case varies
for each material, according to the literature, whereas the
pressure coefficient does not. In the same table, the parameters
corresponding to the P0-type critical point are also listed. They
were obtained by fitting Eq. (11) to the refractive-index data
points using solely B and E1 as adjustable parameters. The
solid curves in Figs. 3(a) to 3(c) represent the results of the
fits. The description of the dispersion of the refractive index
as a function of pressure in terms of Eq. (11) is in all cases
excellent. In the case of AlN, the fundamental gap E0 is also
as large as E1 [45]. This might be the reason for the fact that
only the leading term corresponding to the critical point at E1

was necessary to effectively fit the refractive index data. We
thus have dropped the contribution of the Lorentz oscillator in
the case of AlN.

Figures 5(a) and 5(b) display the fitted values of the critical
point energy E1 and amplitude B, respectively, as a function
of pressure for all three materials. The E1 values fall all in
the range from approximately 6 to 7.5 eV. For a tentative
identification of the interband optical transitions contributing
to that critical point at E1, it is instructive to inspect the
electronic band structure of the three semiconductors, looking
for the regions in the Brillouin zone where valence and
conduction band run piecewise parallel to each other, having
the desired gap energy. For ZnO this occurs along the 	-A
direction close to both ends, i.e., the zone center and the A

point [46], whereas for the nitrides this happens along the 	-M
direction close to the zone edge [43]. Due to the 2D nature of
this critical point, we expect the amplitude parameter B to be
proportional to the extension of the wave vector segment in
the Brillouin zone for which the valence and conduction band
run parallel. Under pressure, any change in B would, thus, be
ascribed to a variation of such extension.

For the three materials E1 turns out to increase linearly with
pressure. This is the main reason for the general decrease of
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FIG. 5. (Color online) Variation with pressure of (a) the critical
point energy E1 and (b) the amplitude B, as obtained by fitting
the photon-energy dependence of the ordinary (closed symbols) and
extraordinary (open symbols) refractive index data of ZnO (black),
GaN (blue), and AlN (red), using the model dielectric function given
by Eq. (11). Curves represent least-squares fits to the data points using
linear expressions.

the refractive indices with increasing pressure. In the case of
GaN, the amplitude B of the critical-point oscillators (ordinary
as well as extraordinary) displays a decrease with increasing
pressure. This behavior results in a much more pronounced
pressure-induced reduction of the refractive indices, as ob-
served in Fig. 3(b). For ZnO, in turn, the strong blueshift
of E1 with pressure seems to be partially compensated by
the increase of the amplitude B, leading to a very moderate
decrease of the refractive indices. For AlN E1 shifts to higher
energies the same way as for GaN but B is essentially pressure
independent. The consequence is that the refractive indices of
AlN decrease really slowly with increasing pressure.

C. Electronic static dielectric constant ε∞

Besides the purpose of having a good description of the
refractive index dispersion under high pressure, the model
function of Eq. (11) can be used to extract the values of ε∞ by
extrapolation to zero photon frequency (static limit). Whereas

0 1 2 3 4 5 6 7 8 9
3.8

4.0

4.2

5.0

5.2

5.4

5.6

m-AlN

m-GaN

m-ZnOD
ie

le
ct

ric
C

on
st

an
tε

∞

Pressure (GPa)

(a)

0.00 0.01 0.02 0.03 0.04 0.05

1.34

1.38

1.42

1.46

1.64

1.68

1.72

m-AlN

m-GaN

ln
(ε

∞
)

-ln(V/V
0
)

m-ZnO

(b)

FIG. 6. (Color online) (a) Dependence on pressure of the ordi-
nary (closed symbols) and extraordinary (open symbols) electronic
part of the static dielectric constant ε∞ and (b) double-logarithmic
plot of ε∞ versus volume both for ZnO (black), GaN (blue), and
AlN (red), using Eq. (13) to extrapolate the frequency dependence
of nord/ext(ω) to zero energy. Curves represent least-squares fits to the
data points using linear or quadratic expressions.

the extrapolation of the Lorentzian is trivial, the last term in
Eq. (11) presents some difficulties. The correct limit is found
by taking the series expansion of the logarithmic function
(E1/Ec 	 1) and keeping the first two nonvanishing terms
when ω → 0. The procedure yields

ε∞(P ) = 1 − A(P ) · γ

E0(P )
+ B(P ) ·

[
1 − E2

1(P )

E2
c

]
. (13)

Figure 6(a) displays the variation with pressure of the ordinary
and extraordinary static dielectric constant ε∞, as obtained
from Eq. (13) using the oscillator parameters extracted from
the fits to the refractive index data using Eq. (11), for ZnO
(black symbols), GaN (blue symbols), and AlN (red symbols).
Solid curves represent least-squares fits to the data points using
linear or quadratic functions. As expected, ε∞ decreases with
increasing pressure in all cases. Furthermore, for the three
materials the dependence of the ordinary and extraordinary
components is the same within experimental uncertainty. We
thus conclude that the dielectric anisotropy is essentially
independent of pressure in these wide-gap materials.
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TABLE III. Pressure and volume coefficients of the refractive index n(ω = 0) and (electronic) static dielectric constant ε∞, respectively,
for a series of semiconductors with different ionicity values fi , according to Refs. [47,48]. The bulk modulus B0 is used to transform from
pressure to volume derivatives. The crystal structure of each material is indicated in parentheses, where d, zb, w, and rs stands for the diamond,
zinc-blende, wurtzite, and rocksalt phase, respectively. For the anisotropic wurtzite materials the values in square brackets correspond to the
extraordinary case. Numbers in parentheses are error bars.

B0
dn(ω=0)

dP

Material fi (GPa) ε∞ (10−2 GPa−1) r = d lnε∞
d lnV

Ref.

Si (d) 0 95.8 12.05 −0.46 0.25 Theo.: Ref. [49], ab initio LMTO
1.38 Theo.: dielectric theory, Eq. (15)

Ge (d) 0 74.4 15.94(2) −4.5(2) 1.58(3) Expt.: Ref. [28], transmission, DAC
71.0 15.58 −4.03 1.43 Theo.: Ref. [49], ab initio LMTO

1.41 Theo.: dielectric theory, Eq. (15)

GaAs (zb) 0.31 74.7 10.92(2) −1.3(1) 0.73(4) Expt.: Ref. [28], transmission, DAC
74.2 10.83 −1.72 0.77 Theo.: Ref. [49], ab initio LMTO

0.89 Theo.: dielectric theory, Eq. (15)

GaP (zb) 0.37 88.1 9.50(1) −1.1(2) 0.63(8) Expt.: Ref. [27], transmission, DAC
0.79 Theo.: dielectric theory, Eq. (15)

AlN (w) 0.45 208 4.175(3) −0.17(2) 0.34(4) Expt.: This work, transmission, DAC
[4.349(3)] [ −0.15(2)] [0.29(3)]

0.4a Theo.: Ref. [50], ab initio pseudopot.
4.2a −0.37a 0.75a Theo.: Ref. [43], ab initio LMTO

203 4.227 −0.17 0.31 Theo.: Ref. [51], ab initio pseudopot.
0.57 Theo.: dielectric theory, Eq. (15)

GaN (w) 0.47 200 5.346(12) −0.70(5) 1.21(7) Expt.: This work, transmission, DAC
[5.515(14)] [ −0.72(7)] [1.23(11)]

245b −0.69(8) 1.20(15) Expt.: Ref. [52], transmission, DAC
0.8a Theo.: Ref. [50], ab initio pseudopot.

5.4a −0.44a 0.76a Theo.: Ref. [43], ab initio LMTO
176 5.673 −0.57 0.83 Theo.: Ref. [51], ab initio pseudopot.

0.58 Theo.: dielectric theory, Eq. (15)

InN (w) 0.51 143c 8.4a −1.25a 1.24a Theo.: Ref. [43], ab initio LMTO
0.57 Theo.: dielectric theory, Eq. (15)

ZnSe (zb) 0.60 64.7 5.9 −0.28 0.15 Theo.: Ref. [55], ab initio APW + lo
0.42 Theo.: dielectric theory, Eq. (15)

ZnS (zb) 0.63 78.0 5.20 −0.29(1)d 0.19(1)d Expt.: Ref. [56], interferometry, P < 0.7 GPa
−0.28 0.19 Theo.: Ref. [55], ab initio APW + lo

0.36 Theo.: dielectric theory, Eq. (15)

ZnO (w) 0.65 142.6 3.921(5) −0.33(10) 0.47(15) Expt.: This work, transmission, DAC
[3.980(6)] [ −0.35(10)] [0.50(15)]

−0.34(1)d 0.49(1)d Expt.: Ref. [57], interferometry, P < 0.7 GPa
[ −0.35(1)]d [0.50(1)d]

0.31 Theo.: dielectric theory, Eq. (15)

CdS (w) 0.71 68.8 5.31 −1.38(1)d 0.82(1)d Expt.: Ref. [57], interferometry, P < 0.7 GPa
[5.38] [ −1.36(1)]d [0.81(1)d]

0.26 Theo.: dielectric theory, Eq. (15)

MgO (rs) 0.86 162.6 3.02d −0.158(1)d 0.30(1)d Expt.: Ref. [58], interferometry, P < 0.7 GPa
0.04 Theo.: dielectric theory, Eq. (15)

NaCl (rs) 0.95 23.84 2.334(1) 1.16(1) −0.36(1) Expt.: Ref. [59], interferometry, DAC
−0.05 Theo.: dielectric theory, Eq. (15)

CsI (rs) 0.97 12.67 3.037(1) 3.74(2) −0.54(1) Expt.: Ref. [59], interferometry, DAC
−0.08 Theo.: dielectric theory, Eq. (15)

aEffective values calculated as (εext
∞ + 2εord

∞ )/3.
bReference [53].
cReference [54].
dValues at λ = 589 nm.
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Figure 6(b) shows the dependence of ε∞ on volume,
depicted as double-logarithmic plot. Usually, this kind of
representation leads to linear ε∞-versus-volume relations, for
which there suffices a single scaling coefficient (minus its slope
r = d lnε∞

d lnV
) to describe the volume dependence of the dielectric

constant. The values of r obtained for the three studied
materials are listed in Table III together with experimental
and/or theoretical results for the other eleven semiconductors.
For ZnO we find good agreement between our values of r

and the ones measured in a much smaller pressure range
(P < 0.7 GPa) [57]. Nevertheless, we point out that ZnO is
somewhat singular in the sense that its volume dependence of
ε∞ is nonlinear even in a double-logarithmic plot. A closer look
at the data in Fig. 6(b) indicates that there are two regimes for
lower and higher volume ratios than V

V0
∼ 0.975 characterized

by a coefficient r = 0.34(8) and 0.62(10), respectively (this
holds for both the ordinary and extraordinary component). The
reason for such a behavior remains elusive. Moreover, there
are no theoretical values with which to compare. For GaN
there is excellent agreement with previous experimental work
regarding the ordinary component [52], whereas the theoretical
values of r are about 30% lower [43,50]. For AlN we can
only confront our values with theoretical results, finding good
agreement with ab initio pseudopotential calculations [50,51].

An inspection of the r values listed in Table III, where
data for fourteen semiconductors spanning all the range of
possible ionicities are tabulated, clearly indicates that the
volume dependence of ε∞ depends on how covalent or ionic
is the material. The bond ionicity fi is defined according to
the dielectric theory of the covalent bond of Phillips and Van
Vechten [47], after which the static dielectric constant is given
by

ε∞ = 1 + D · A · ω2
p

E2
g

, E2
g = E2

h + C2, (14)

where ωp is the valence-electron plasma frequency and Eg

is the average optical gap or Penn gap, which splits into a
homopolar or covalent contribution Eh and an ionic one C [60].
The bond ionicity is thus defined as fi = C2

E2
g

[47]. Based on

Eq. (14), we have derived before an approximate expression
for r [26,28]

r = d lnε∞
d lnV

≈ 5(ε∞ − 1)

3ε∞
· (0.9 − fi) . (15)

Hence there should be a borderline between covalent and ionic
behavior at fi = 0.9, such that for lower (higher) ionicity
the dielectric constant decreases (increases) with increasing
pressure. Representative experimental as well as theoretical
values of r taken from Table III for the fourteen listed
semiconductors are plotted in Fig. 7 as a function of bond
ionicity fi . At first glance, expression (15), represented by
the black closed symbols joined by full lines in Fig. 7,
provides a nice description of the very general tendency of the
volume derivative of the static dielectric function to decrease
in magnitude with increasing bond ionicity, changing sign
at a value of about 0.9. Equation (15) also seems to hold
well for semiconductors of the same row of the Periodic
Table such as Ge, GaAs, and ZnSe, predicting a reduction
of r with increasing bond ionicity. In contrast, the data in
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FIG. 7. (Color online) Values of the logarithmic volume deriva-
tive of the static dielectric constant, r = d lnε∞

d lnV
, as obtained from

the entries in Table III, plotted as a function of the bond ionicity
fi for fourteen semiconductors. Blue symbols with error bars and
red symbols correspond to experimental and theoretical results,
respectively. Black dots joined by full lines represent the r values
obtained within the dielectric theory of the covalent bond using
Eq. (15).

Fig. 7 exhibit material trends for which expression (15) is
totally unable to account for. For instance, it fails blatantly for
materials with common cation (ZnSe, ZnS, ZnO, for example)
or common anion (e.g., the nitrides), for which r increases with
increasing ionicity instead. Also Eq. (15) is totally unable to
explain the huge difference in the r values between Si and
Ge, two homopolar semiconductors. The reason is simply that
the bond ionicity, though important, is not the only factor to
be taken into account at describing the volume dependence
of the dielectric constants of a material. For each case, a
discussion of the changes induced by pressure on the electronic
band structure, in particular, interband transition energies and
oscillator strengths, is unavoidable.

In order to understand the behavior of the dielectric function
under pressure we consider its (microscopic) expression
obtained within the dipolar approximation for electronic
interband optical transitions, which can be written as [26,61]

ε∞ − 1 ∝ ρ ·
∑

i

f0i

(�ω)2 − E2
i

, (16)

where ρ is the density of polarizable units or dipoles and
f0i is the optical-dipolar strength of the ith oscillator with
energy Ei . For ionic semiconductors (fi > 0.9), the optical
gap energy is mainly determined by its ionic part C and both
pressure derivatives of C (i.e., Ei) and the oscillator strength f0i

are practically zero [26], due to the vanishing overlap between
electronic wave functions of neighboring atoms. Thus Eq. (16)
indicates that the behavior of the dielectric constant under
pressure is primarily determined by the increase of the material
density, leading to negative values of r . In covalently bonded
semiconductors, in contrast, the increase in density under
compression is overcompensated by the strong blueshift of
the optical gaps, which appear in the denominator of Eq. (16).
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Hence ε∞ decreases under pressure and r is positive. The
actual value of the logarithmic volume derivative r would
finally depend on the sign and magnitude of the pressure
coefficient of the oscillator strength. These, in turn, result
from the peculiarities of the band structure of the material and
its changes with pressure. Particularly for the critical-point
oscillator at E1, the reduction or enhancement of its oscillator
strength is directly related to a pressure-induced reduction
or enlargement of the Brillouin-zone segment along which
valence and conduction band run parallel to each other.

V. SUMMARY

In summary, we have determined the dependence on
pressure of both the ordinary and extraordinary refractive
indices of the three wide-gap, strongly polar materials ZnO,
GaN, and AlN at room temperature and pressures up to 8 GPa,
using the alternative bisected-beam interferometric method.
For all three semiconductors the refractive indices decrease
monotonically with increasing pressure, whereas their dielec-
tric anisotropy remains essentially unchanged. The electronic
part of the static dielectric constant ε∞ was extrapolated to zero
energy from the refractive index dispersion using an empirical
critical-point/oscillator model. The volume dependence of

the static dielectric constant has been described by a single
scaling coefficient r = d lnε∞

d lnV
and compared to that of the other

eleven semiconductors with different bond ionicity. Results
were interpreted in terms of the pressure dependence of the
electronic band structure and the concomitant changes in the
optical properties of each material. In this way, we have
provided deeper insight into the problem of the variation at
reduced volume of charge-screening effects in semiconductors
and insulators.
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[26] A. R. Goñi and K. Syassen, Semicond. Semimetals 54, 247
(1998).
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94, 251 (1995).

[37] Z. X. Liu, K. P. Korona, K. Syassen, J. Kuhl, K. Pakuła, J. M.
Baranowski, I. Grzegory, and S. Porowski, Solid State Commun.
108, 433 (1998).

[38] Strictly speaking, the exciton oscillator strength is proportional
to the product A · γ , but since we have fixed γ to a value
independent of pressure, the following argument also holds as
well for the Lorentz oscillator amplitude A alone.

[39] R. J. Elliott, Phys. Rev. 108, 1384 (1957).
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