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Orbital magnetization in dilute ferromagnetic semiconductors
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The relationship between the modern and classical Landau’s approach to carrier orbital magnetization is studied
theoretically within the envelope function approximation, taking ferromagnetic (Ga,Mn)As as an example. It is
shown that while the evaluation of hole magnetization within the modern theory does not require information on
the band structure in a magnetic field, the number of basis wave functions must be much larger than in the Landau
approach to achieve the same quantitative accuracy. A numerically efficient method is proposed, which takes
advantages of these two theoretical schemes. The computed magnitude of orbital magnetization is in accord with
experimental values obtained by x-ray magnetic circular dichroism in (III,Mn)V compounds. The direct effect of
the magnetic field on the hole spectrum is studied too, and employed to interpret a dependence of the Coulomb
blockade maxima on the magnetic field in a single electron transistor with a (Ga,Mn)As gate.
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I. INTRODUCTION

The last decade has witnessed the discovery of striking
phenomena associated with geometric and topological aspects
of the band structure, brought about by the presence of
spin-orbit coupling and the breaking of spin rotation symmetry
[1,2]. In the case of ferromagnets the Berry curvature of
bands hosting spin-polarized carriers was found to result in
sizable contributions to transport coefficients, such as the
anomalous Hall conductance [3,4]. It has been suggested
more recently that the Berry curvature also describes the
orbital part of carrier magnetization coming from delocalized
circulation [5–10]. This recent development is particularly
worthwhile, as it has delivered formulas for carrier orbital
magnetization in the form that can be directly implemented
into ab initio methods, allowing us to interpret theoretically
experimental values of the orbital magnetic moment provided
by, for instance, x-ray circular magnetic dichroism (XMCD)
[11,12]. The verification of the modern theory in this way is es-
pecially meaningful since, compared to transport coefficients,
thermodynamic properties are less sensitive to scattering and
localization.

In this paper, we examine quantitatively magnetization
of spin-polarized valence band holes in dilute ferromagnetic
semiconductors (DFSs) [13]. A particular versatile method
to model semiconductor properties and devices is the Kohn-
Luttinger (KL) envelope function approximation [14], whose
six-band version has been exploited to describe various
thermodynamic [13] and transport data in DFSs, including the
anomalous Hall effect [3,4]. Within this scheme, we compare
carrier magnetization obtained from the modern approach
[5–10] and determined [15–17] employing the time-honored
Landau theory [18].

According to the combined KL and Landau’s method, the
spin-orbit interaction generates two contributions to orbital
magnetization Morb in DFSs [15]. The first one, ML, stems
from Landau’s quantization. The second contribution MI

is proportional to the orbital angular momentum operator
Î. As we demonstrate here, only ML is reproduced by the
modern approach, but the second term emerges within the

modern approach if the set of the basis of the Bloch wave
functions {un} is enlarged. Furthermore, we show that both
contributions have to be taken into account to describe quan-
titatively experimental results on XMCD [19,20], and on the
dependence of the chemical potential on the magnetic field in
(Ga,Mn)As [21].

II. LANDAU THEORY WITHIN THE ENVELOPE
FUNCTION APPROACH

Within the KL method and neglecting the lack of inversion
symmetry, the six-band Hamiltonian of holes in a magnetic
field B and in the presence of Mn magnetization M consists
of three terms in DFSs [15]: (i) HL that describes Landau’s
quantization of the valence band in terms of the Luttinger
band structure parameters γ1, γ2, and γ3; (ii) the Zeeman-like
contribution HZ, and (iii) Hpd accounting for p-d coupling
between hole and Mn spins. In the basis employed previously
[14,17,22],

HZ = −(1 + 3κ)μB Î · B + g0μB ŝ · B, (1)

where κ is one more Luttinger parameter [14,23,24], the
free electron Landé factor g0 ≈ 2.002, and the dimensionless
angular-momentum tensor operators Î and ŝ are given by

Î =
(

2
3 Ĵ Û

T̂ 2
3 σ̂

)
, ŝ =

(
1
3 Ĵ −Û

−T̂ − 1
6 σ̂

)
. (2)

Following Ref. [22], we denote by σ̂ the Pauli matrices, by
Ĵ the set of spin-3/2 angular-momentum matrices, and by Û,
T̂ the sets of matrices for the cross space. In Eq. (1), besides
the ordinary Pauli spin part g0μB ŝ · B, there is an orbital term
HI = −(1 + 3κ)μB Î · B. This contribution is brought about
by coupling of the six valence subbands to remote bands
in the presence of an external magnetic field. That is, HI

accounts for an admixture of the orbital magnetic moment
to the carrier effective Landé factor [24]. Finally, the p-d
coupling to the spin-polarized Mn ions is taken into account in
the virtual-crystal and molecular-field approximations, leading
to additional giant spin splitting of Landau levels, described
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by the Hamiltonian Hpd = (�v/M)M · ŝ, where �v is the p-d
exchange splitting of the valence band top [3,15,17].

Within Landau’s method [18] the carrier magnetization
Mc(T ,B) is given by the derivative of the grand thermodynamic
potential,

�c = −μBBkBT
∑

j

∫ ∞

−∞

m0 dk3

2(π�)2

× ln{1 + exp(−[Ej (k3) − μ]/kBT )}, (3)

with respect to the magnetic field, Mc = −∂�c/∂B, where
m0 in Eq. (3) is the free-electron mass. Here, Ej (k3) is
the j th eigenenergy of HL + HZ + Hpd for a carrier with
the k component along the direction of the magnetic field
denoted as k3, and μ is the chemical potential. The values
of Mc computed in this way for (Ga,Mn)As were reported
previously [17].

This approach allows us to evaluate orbital parts of carrier
magnetization, ML and MI , associated with HL and HI,
respectively, at a given p-d exchange splitting of bands
described by Hpd . The key question we address in this
paper is how these two contributions are related to orbital
magnetization Mmod obtained from the modern theory. A
formulation of the modern theory within the KL method is
discussed in the subsequent section.

III. MODERN THEORY OF ORBITAL MAGNETIZATION

Within the modern approach the orbital part of Mc at B = 0
for N bands is given by

Mmod = μB

∫
d3k

(2π )3

N∑
n,n′=1

MT (En′k,Enk)

× Im[m0〈unk|v̂|un′k〉 × 〈un′k|v̂|unk〉], (4)

where unk is the Bloch function corresponding to the eigenen-
ergy Enk of the KL Hamiltonian Hk at B = 0 including Hpd ;
�v = ∂Hk/∂k and

MT (En′k,Enk) = M[(En′k −μ)/kBT ,(Enk −μ)/kBT ]/kBT ,

(5)

where the dimensionless function M reads

M(xn′ ,xn) = 1

xn′−xn

[
f (xn′ )+f (xn)

2

+ ln[1+ exp(−xn′ )]− ln[1+ exp(−xn)]

xn′ − xn

]
, (6)

with the Fermi-Dirac distribution function f (x) = [1 +
exp(x)]−1 (notice that the cross product of velocity matrix
elements is purely imaginary).

The contribution coming from the first term in Eq. (6)
corresponds to magnetization of the carriers’ wave packets
[25], whereas the second is proportional to the Berry curvature.
The definition of x implies that x = 0 for states at the
Fermi level, whereas x > 0 and x < 0 correspond to the
empty and occupied states, respectively. Since the formula for
magnetization involves a symmetric summation over a pair
of indices running over the same set of bands, and the cross
product is antisymmetric, we have adopted M(x1,x2) in an

FIG. 1. Plot of the functions M(x1,x2) that appear in the formula
[Eq. (6)] for orbital magnetization.

antisymmetrized form that allows us to tackle better with a
possible divergence at x1 = x2. As seen in Fig. 1, M(x2,x1) =
−M(x1,x2), and M vanishes rather than diverges at the band
crossings, M(x,x) = 0, as required for degenerate bands.
The functionM(x1,x2) also obeysM(−x1,−x2) = M(x1,x2)
(electron-hole symmetry) and M(x,−x) = 0. Furthermore,
according to Fig. 1, M(x1,x2) decays exponentially to zero
with inverse temperature in the first and third quadrant,
i.e., when x1 and x2 have the same sign (either positive or
negative, corresponding to pairs of empty or pairs of occupied
states, respectively). This formulation substantiates a picture
in which orbital magnetization is described by a sum over
pairs of subbands, with significant contributions only from
empty-occupied states.

IV. COMPARISON OF THE TWO APPROACHES

We first compare hole orbital magnetization determined
within the KL method from the modern approach, Mmod

[Eq. (4)] to ML determined from the grand thermodynamic
potential [Eq. (3)] in the limit B → 0. In order to evaluate ML,
i.e., orbital magnetization resulting from Landau quantization
of the hole spectrum, we assume HZ = 0, i.e., neglect the
contribution MI to orbital magnetization. For Ga1−xMnxAs,
in the explored parameter space (T = 10 K, 5 × 1019 �
p � 1021 cm−3, and �v = −180 meV, i.e., x � 0.05), the
relative difference between the data obtained by these two
methods is within our numerical uncertainty of 10−5. This
finding highlights a major progress provided by the modern
approach that allows one to circumvent the computational load
associated with the determination of Landau level energies for
complex band structures.

However, quantitative agreement between the Landau
and modern approach to orbital magnetization is obtained
neglecting MI . This indicates that the term arising from the
coupling to remote bands, −(1 + 3κ)μB Î, is not taken into
account within the modern approach. The magnitude of the
missing magnetization MI can be evaluated from the grand
thermodynamic potential [Eq. (3)] with eigenenergies Enk
of the Hamiltonian Hk + HI . According to results presented
in Fig. 2(a), MI is quite sizable and, in fact, compensates
largely ML = Mmod provided by the modern approach. For
comparison, we also show the total hole magnetization Mc that
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FIG. 2. (Color online) Contributions to hole magnetization at 10 K computed within the six-band Kohn-Luttinger model of the valence band
for parameters of GaAs (γ1 = 6.85, γ2 = 2.1, γ3 = 2.9, κ = 1.2, �SO = 0.341 eV) and InAs (γ1 = 20.0, γ2 = 8.5, γ3 = 9.2, �SO = 0.39 eV,
κ = 7.60), and M ‖ 〈100〉 and the parameter of valence band exchange splitting �v = −180 meV, corresponding to the magnitude of saturation
magnetization in Ga0.95Mn0.05As. Orbital magnetization Morb in (Ga,Mn)As from Landau’s method (solid line) is decomposed into ML = Mmod

provided by the modern method and the remaining (missing) part MI (dashed and dotted lines, respectively) (a). Total hole magnetization Mc

(solid line) in (Ga,Mn)As (b) and (In,Mn)As (c) decomposed into Morb and the spin part Mspin (dashed and dotted lines, respectively). Inset in
(c) shows Morb for (In,Mn)As and (Ga,Mn)As in an expanded scale.

is seen to be dominated by the spin part Mspin, obtained from
Hk + g0μB ŝ · B, in both (Ga,Mn)As [Fig. 2(b)] and (In,Mn)As
[Fig. 2(c)].

V. DISCUSSION

The results presented in the previous section point to dis-
agreement between the two theories of orbital magnetization.
A question then arises whether MI is an artifact of the Landau
approach or rather it is the modern theory that disregards the
quantitatively important contribution MI .

In order to address this issue we note that the modern
approach requires information on both eigenenergies and
eigenfunctions. In contrast, the Landau method is developed in
terms of eigenenergies only. Within the KL method, the second
order perturbation theory serves to determine the contribution
to carrier eigenenergies of bands beyond the valence band
states. However, no effect of the remote bands on the
eigenfunctions unk is considered within such an approach. This
suggests that by taking into account a contribution of remote
bands to unk, either perturbatively or by enlarging the basis
{un} of the KL scheme, the accuracy of the modern approach
can be improved. To verify this hypothesis we have computed
the magnitude of orbital magnetization within the eight-band
model that incorporates the conduction band states to {un}
[14].

Within the six-band model the grand thermodynamic
potential has been derived in the hole picture. Since in
the eight-band model the energies are bound neither from
below nor from above, it is necessary to use the electron
picture in order to describe the states residing above a
fixed energy in the band gap. That is, we exploit the
identity − ln(1 + e−x) = − ln(1 + ex) + x to split the grand
thermodynamic potential into a sum of the hole contribu-
tion and a hole-concentration independent shift. The shift
describes the magnitude of orbital magnetization for the fully
occupied valence band brought about by transitions to the
conduction band, and it vanishes in the absence of band spin
splittings.

Within the modern approach, an equivalent approach is to
decompose M(xn′ ,xn) as follows:

M(xn′ ,xn) = 1

xn′ − xn

[
f (xn′) − f (−xn)

2

+ ln(1 + e−xn′ ) − ln(1 + exn )

xn′ − xn

]

+ 1

2

xn′ + xn

(xn′ − xn)2
. (7)

As can be shown by inspection, also here the second term
leads to a shift independent of the hole concentration but
dependent on band spin splittings; it assumes a nonzero value
if spin splittings of the valence and conduction bands differ,
�v 
= �c. Since it provides just an additional contribution to
the magnitude of orbital magnetization coming from fully
occupied bands, a comparison between the two approaches
is still meaningful even if we disregard the shift.

As shown in Fig. 3, within the Landau theory there is a
minor change in the magnitudes of Morb on going from the six-
to the eight-band model, as eigenenergies are fairly accurately
provided by either of these two KL schemes. In contrast, there
is a considerable difference between magnetization values for
these two KL implementations within the modern approach,
as seen comparing the data in Figs. 2 and 3. This demonstrates
that the enlargement of the set {un} has a substantial influence
on the magnitude of Mmod. However, according to the data
in Fig. 3, Mmod obtained in this way still disagrees with Morb

from the Landau method. Actually, according to the results in
Fig. 3, the modern method is in accord with a truncated variant
of the eight-band Landau method, in which the coupling to
bands beyond the eight-band manifold is disregarded (i.e.,
κ ′ = −1/3 in the notation of Ref. [14]). This indicates that for
the modern approach the eight-band basis is still too small for
obtaining accurate values of orbital magnetization.

Altogether these findings imply that it is possible to
determine orbital magnetization without referring to carrier
spectrum in the magnetic field, but to achieve the same
quantitative accuracy the set of basis wave functions {un} must
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FIG. 3. (Color online) Orbital magnetization Morb of (Ga,Mn)As
computed by the Landau method within the eight- and six-band
models (solid and dashed lines, respectively). These results differ
substantially from the outcome of the eight-band modern model (the
dotted line). However, the modern model (except for a concentration-
independent shift describing magnetization of the fully occupied
band) agrees with the truncated eight-band Landau model (no
coupling to remote bands; dash-dotted line). The computations have
been carried out for splitting of the valence and conduction bands,
�v = −180 meV and �c = 30 meV, respectively.

be much larger in the modern approach than needed within the
Landau theory. However, there exists an efficient method to
compute Morb at B = 0 exploiting advantages of these two
theoretical schemes. The hybrid method we propose consists
of evaluating orbital magnetization as Morb = Mmod + MI ,
where both Mmod and MI are to be computed within the
minimal KL scheme for the problem at hand (typically
either six- or eight-band model). Thus, the hybrid method
requires only a small set of basis wave functions {un} and
supplies accurate values of Morb without computing Landau
level energies. Below, we compare experimental data for
(Ga,Mn)As to our theoretical results obtained by the hybrid
procedure within the eight-band KL scheme.

VI. COMPARISON TO AVAILABLE
EXPERIMENTAL DATA

Figure 4 presents the orbital moment of As 4p states
determined by XMCD for (Ga,Mn)As and (In,Ga,Mn)As
films with different saturation magnetizations MSat and Curie
temperatures TC [20]. Since the orbital moment of cations
appears to be much smaller [19,20], we compare these data
to our theory, evaluating �v and hole concentrations p

from MSat and TC within the eight-band sp-d Zener model
[14,26]. As seen, our theory explains both the sign and the
small magnitude of morb = Morb/N0 observed experimentally,
where N0 is the anion concentration. Since contributions to
morb coming from the cations and fully occupied bands have
been neglected, we may expect an additional term proportional
to �v. Furthermore, experimental data were taken in 2 T. This
may lead to a diamagnetic shift of Morb, which should weakly
depend on �v. Accordingly, we supplement the theoretical
values of morb with �morb = a�v + b. The fitting procedure
implies a = −14.8 × 10−3 μB/eV and b = −1.59 × 10−3
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FIG. 4. (Color online) Orbital magnetization of As 4p states
determined experimentally at ∼10 K and in 2 T by Wadley
et al. (Ref. [20]) as a function of saturation magnetization MSat

for (Ga,Mn)As (open circles) and (In,Ga,Mn)As (open squares)
compared to theoretical values of orbital magnetization Morb obtained
from the hybrid method within the eight-band KL model for
(Ga,Mn)As directly (empty diamonds) and including a possible
contribution �morb = a�v + b, where a and b are fitting parameters
(full squares).

μB. Although the quality of the fit is excellent, such a large
value of the offset b calls for further attention.

Another relevant experiment concerns variations of the
chemical potential μ with the magnetic field B, as provided
by studies of an Al single electron transistor (SET) with a
(Ga,Mn)As gate [21]. Figure 5 shows μ(B) determined from
the field-induced shift of Coulomb blockade peaks for a SET
with the Ga0.97Mn0.03As gate in respect to the shift in a
control SET with an Au gate [21]. We are interested in the
region B � 7 T, in which the Mn spins become saturated but
nevertheless μ varies with the magnetic field.

FIG. 5. (Color online) Chemical potential determined experi-
mentally for Ga0.97Mn0.03As at 0.3 K (squares) by Ciccarelli et al.
(Ref. [21]). Slopes of dashed and solid lines are computed for
interstitial concentrations xI = 0 and 0.5%, respectively.
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In order to explain these data we make use of rela-
tions μ = ∂�c/∂p and Mc = −∂�c/∂B, which lead to the
thermodynamic identity

∂μ

∂B

∣∣∣∣
p

= ∂2�c

∂B ∂p
= −∂Mc

∂p

∣∣∣∣
B

, (8)

implying ∂Mc/∂p = −∂μ/∂B, which relates the derivative
of the carrier magnetization (with respect to carrier concen-
tration) to changes of the electron’s chemical potential in an
external magnetic field.

Because of virtual cancellations between Mmod and MI ,
the total hole magnetization Mc is dominated by the spin part
[see Fig. 2(b)] that is isotropic. This explains why μ(B) was
independent of the field direction in respect to crystallographic
axes [21]. In order to evaluate ∂Mc/∂p information on
saturation magnetization and hole concentration are needed,
which at given x depend on density of Mn interstitials xI [13].
As shown in Fig. 5, theoretical results obtained for xI = 0 and
0.5% are consistent with the experimental data.

VII. CONCLUSIONS

In summary, we have proposed a numerically efficient
method that combines advantages of the modern and Landau
approach to carrier orbital magnetization. The computed hole
magnetization within the formalism developed here explains
the magnitude of orbital and spin magnetizations implied by
experimental studies of XMCD and the Coulomb blockade in
(Ga,Mn)As. A timely question arises about implications of our
findings to the theory of anomalous and spin Hall effects in
semiconductors.
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