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Anisotropic multipolar exchange interactions in systems with strong spin-orbit coupling
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We introduce a theoretical framework for computations of anisotropic multipolar exchange interactions found
in many spin-orbit coupled magnetic systems and propose a method to extract these coupling constants using
a density functional total energy calculation. This method is developed using a multipolar expansion of local
density matrices for correlated orbitals that are responsible for magnetic degrees of freedom. Within the mean-field
approximation, we show that each coupling constant can be recovered from a series of total energy calculations via
what we call the “pair-flip” technique. This technique flips the relative phase of a pair of multipoles and computes
the corresponding total energy cost associated with the given exchange constant. To test it, we apply our method
to uranium dioxide, which is a system known to have pseudospin J = 1 superexchange induced dipolar, and
superexchange plus spin-lattice induced quadrupolar orderings. Our calculation reveals that the superexchange
and spin-lattice contributions to the quadrupolar exchange interactions are about the same order with ferro- and
antiferromagnetic contributions, respectively. This highlights a competition rather than a cooperation between
them. Our method could be a promising tool to explore magnetic properties of rare-earth compounds and

hidden-order materials.
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I. INTRODUCTION

Solid-state systems with strong spin-orbit coupling have
been a research frontier for decades due to their rich mag-
netic phases that cannot be explained by simplified model
Hamiltonians. Among their peculiar properties, the existence
of multipolar moments may be one characteristics most
inaccessible to experimental investigation [1]. Interactions
between such moments not only induce complexity in high-
rank magnetic order as observed in LaFeAsO [2,3], PrFe4P,
[4,5], UPts [6], YbRu,Ge; [7], UO, [8-12], and many other
compounds [13,14] but also exhibit the phenomena of hidden
order phases as observed in NpO, [15-17], Ce;_,La,Bg [18],
and URu,Si, [19-23]. Because of the active orbital degrees
of freedom, the conventional S = 1/2 Heisenberg model [24]
is no longer adequate to describe their magnetic moments
and, instead, high-rank tensor operators are required to form
a complete basis [1]. The introduction of multipolar moments
makes the exchange interactions complicated, with a great
number of coupling constants, and makes their computation a
difficult problem in condensed matter physics.

Earlier studies of the exchange interactions in spin-orbital
systems have been developed by Coqgblin and Schrieffer.
They implemented the Schrieffer-Wolff transformation on a
spin-orbit coupled Anderson lattice model and transformed
it to a Kondo lattice problem so that the RKKY interaction
could be deduced [25-29]. Unlike conventional S = 1/2
Heisenberg model where the RKKY interaction is isotropic
[30], the RKKY interaction for the spin-orbital model has an
intrinsic anisotropy even in a homogeneous system. In the
80’s, Cooper et al. solved the Cogblin-Schrieffer Hamiltonian
for 4f! cerium monopnictides and explained their many
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unusual properties that conventional exchange models failed
to reproduce [31-36]. In the 90’s, they further suggested a
first-principles scheme to calculate the coupling constants of a
few simple materials and obtained satisfactory results [37—41].
Although we now have a better understanding about the
multipolar exchange interactions nowadays, a comprehensive
physical picture remains lacking. Most of the models and
computational schemes are either based on the knowledge
of specific exchange mechanisms or they are too complicated
to apply for materials. In this paper, we propose a method to
compute the multipolar coupling constants using a total energy
electronic structure calculation based on density functional
theory (DFT) in its local density approximation (LDA) or
using an LDA 4 U approach [42]. A short account of the
present work has appeared already [8].

We begin with a quick review of the RKKY interaction
in spin-orbital systems in Sec. II. These works were mostly
contributed by Cogblin, Schrieffer, and Cooper and we
emphasize the mechanism that induces the intrinsic anisotropy
of the exchange interactions. The formulation of multipolar
tensor operators is given in Sec. III. The language of multipolar
tensor operators is the most natural one to describe spin-
orbit coupled systems. Using this language, density matrices
can be split into scalar, dipolar, quadrupolar, and higher
multipolar components based on their rotational symmetry.
The complicated exchange coupling matrix may become
simplified and even diagonal when expressed in this tensor
space. In Sec. IV, an efficient method to deduce coupling
constants using the LDA 4 U electronic-structure calculation
is introduced. We call this method the “pair-flip technique”
because it relates every coupling parameter to a series of total
energy calculations by flipping the relative phase of a multipole
pair. Application to uranium dioxide (UO,) is discussed in
Sec.V. UO, being famous for its important applications in
nuclear energy industry, is known to have pseudospin J = 1
ground state, with both dipolar and quadrupolar moment
orderings, and therefore is a good candidate to test our method.
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We find the superexchange contribution in UO; tends to be
ferromagnetic, which is very different from past studies. We
conclude in Sec. VI by speculating that our method could be
a promising tool to explore other spin-orbit coupled systems
and materials with the hidden order.

II. SPIN-ORBIT COUPLED EXCHANGE INTERACTIONS
A. Exchange interactions

Exchange interaction appears in an effective model for an
Anderson lattice Hamiltonian in its low excitation limit where
the particle fluctuation is frozen and only transitions among the
internal degrees of freedom, i.e., the degenerate single-particle
states, are allowed. The Anderson lattice model [43,44] is given
by

H = Zekackgcka + Z(Gdnd + Unaynay)
ko

+ Z(deckgcda + H.c.), (1)
kdo

where d is the localized correlated state, €; is the on-site
energy of the localized d orbital, k is the crystal momentum,
o is the spin index, U is the Hubbard interaction, V is the
coupling between a conduction electron and a localized d
state. Let us denote the first two terms as Hj and the last one
as H;. In the Kondo limit U >> ¢,, charge transfer is frozen
and the Anderson lattice model becomes the Kondo lattice
model. In the 60’s, Schrieffer and Wolff suggested a procedure
to eliminate the charge fluctuation effects [25] (high-order
perturbation of H;) by introducing a unitary transformation
that keeps H to O(H,) only, H =e'He™* ~ O(H)). It
requires [Hy,s] = H, and H = Hy+ %[S,Hl]. Cogblin and
Schrieffer implemented this transformation to a spin-orbit
coupled J = 5/2 cerium (4 f!) system and derived the spin-
orbital version of RKKY interaction, which describes the
exchange interaction between the two local moments [26,27].
A general form of the two-ion exchange interaction in a
spin-orbit coupled lattice system can be written as [1]

Y ¥ GhGDelseiyelycia, ©)

ij afysd

H(J) =

where i, j are site indices, «, 8,y,8 are labels of the degenerate
states, which range from —Jto J, J being the quantum number
of the total moment. The physics of this Hamiltonian is easy
to understand (see Fig. 1). It describes the transition from

— — +5/2

+3/2

-3/2 *3/ 2.45/2 -3/2

FIG. 1. (Color online) The RKKY mechanism of a J =5/2
system: an incoming free electron with crystal momentum & interacts
with a local moment and induces a transition between the degenerate
states —3/2 to 3/2. Then it leaves with ¥ and induces another
transition 5/2 to —3/2 at a neighboring site. These transitions are

coupled by the exchange constant G*;g 5 /32/ %
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o to B at site i and another transition from y to § at site
Jj . These transitions are coupled by a constant Gif;(i, J)-
There are many mechanisms to induce these transitions, e.g.,
RKKY (interaction with conduction electrons), superexchange
(interaction with neighboring nonmagnetic atoms), and spin-
lattice coupling (interaction with lattice vibrations) [30].

B. Anisotropy

A major feature of the spin-orbit coupled exchange in-
teraction is its anisotropy. To show this, let us consider a
simple but still realistic model (e.g., cerium compounds) that
each site has f! configuration with J = 5/2 ground state. As
given by Ref. [32], the coupling matrix induced by the RKKY
mechanism has the following form:

H = ZE(IrUI)Z B%(0.¢)L}, L. 3)

afys
with
35/3 0,9) = e O—r+B—a)¢

1
x Yy <d5M 0)dym(0) — 5MM,55V>
MM'=%1/2

1
(dﬁM(9) GO 5ﬂa) @

where Ly, =|8')(y’| is the transition operator, which is

the single-particle version of cj,sciy, dgm(0) is the quantum
mechanical rotation matrix of J = 5/2. Some matrix elements
of the function B‘Sﬁ ~(6,¢) as a function of angle are shown in
Fig. 2.

Unlike conventional S = 1/2 RKKY where the coupling
matrix has only E(|r;;|) dependence [30], one can immediately
find that all the matrix elements are highly anisotropic for the
spin-orbit coupled systems. For example, transitions [% —
—%] and [—% — %] are strongly coupled only when two ions
have relative angle & = 0 or 7 and become almost decoupled
when 6 = /4 ~ 7 /3. The physical origin of the intrinsic
anisotropy comes from the spatial dependence of atomic
orbitals. In Fig. 3, we consider an exchange problem in a

0.81

0.61

0.41

0.21

FIG. 2. (Color online) The angular dependence of the coupling
constants BJf,(6,¢) as a function of 6 (in unit of ) with ¢ = 0.
Anisotropy can be found in all transitions.
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FIG. 3. (Color online) Anisotropy of exchange interactions. The
blue arrows are local moments and the yellow ellipses are orbitals.
(a) §=1/2 in a homogeneous background (b) S = 1/2 in an
inhomogeneous background. The anisotropy can be induced by many
factors, e.g., crystal structure, electronic structure, and external fields.
(¢) J =5/2 in a homogeneous background. In (d)—(f), we use a
cage around the moment to represent the relation between the back-
ground and the local moment as described by (a)—(c), respectively.
(d) Transition of the spin moment in a homogeneous background
will not change anything; the exchange interaction is isotropic.
(e) Transition of the moment in an inhomogeneous background gives
a different configuration; the exchange interaction is anisotropic.
(f) Transition of a spin-orbit coupled moment in a homogeneous
background. Although the background has no directional dependence,
due to highly anisotropic shapes of the orbitals exchange interaction,
becomes directionally dependent.

homogeneous and in an inhomogeneous system. In (a) and
(d), since the background (for RKKY, the background is the
sea of conduction electrons) and the transition (varying the
spin) are both homogeneous, so the exchange interaction is
isotropic. In (b) and (e), the background is inhomogeneous,
so a homogeneous transition still feels its environmental
anisotropy. In (c) and (f), even though the system is homo-
geneous, the transition (e.g., —3/2 to 1/2) itself is always
anisotropic due to its coupling with the spatial wave function
(recall that f orbitals have highly anisotropic shapes). The
anisotropy induced by the active orbital degrees of freedom
distinguishes the nature between a spin-only and a spin-orbit
coupled exchange interaction and makes the calculation of
the exchange matrix difficult due to the presence of many
off-diagonal matrix elements.

III. MULTIPOLAR TENSOR OPERATORS

In the following, we use a single-particle description while
extension to a many-body version can be achieved by replacing
the ket and bra vectors by creation and annihilation operators.

A. Superbasis

A unit transition tensor operator in the total moment J
Hilbert space is defined as

Lsy (J) = [8){y |,

where 8,y are the magnetic moment states, which range from
—Jto +J. A matrix defined in the same Hilbert space can
be expressed in terms of the above operators with expansion
coefficients obtained by using the trace inner product : M =
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> sy sy Lsysasy = Tr(MLZ;V). It shows that {Ls,, (J)} forms a
basis for quantum operators. In the following, we name a basis
set that expands operators defined in the J Hilbert space with
trace inner product as a “superbasis” to distinguish from the
commonly used vector basis {|§)}. The transition superbasis is
not the only option. A spherical harmonics superbasis can be
generated by [1]

Yo =Y (=" Mek +1y

MM

J J K ,
X<M' M Q)IJM)UMI, ®)
where the parentheses denote a 3 j symbol; K is the rank, which
ranges 0 ~ 2J; Q is the projection index of rank K, which
ranges from —K to +K. Similarly, a matrix defined in the J
Hilbert space has the property M(J) =Y 0 alg Y I?(J ) and

the expansion coefficients can be calculated ag =Tr(MY, ,T(Q).
One can easily verify that there are (2J + 1)> members in the
spherical harmonics superbasis, which is exactly the number of
matrix elements (also the number of members in the transition
superbasis) in the J Hilbert space.

For J = 1/2, the spherical harmonic superbasis is actu-
ally the unit, the z projection, and the ladder (raising and
lowering) operators with appropriate normalization constants:
YO~1, YY) ~o%, Y ~o* +io?, Y[' ~o* —ic”. The
name “spherical harmonic superbasis” is given because it
follows exactly the same rotational symmetry as the spherical
harmonics. Y behaves like an s orbital; ¥,”', ¥?, and ¥,
behave like p~!, p°, and p*! orbitals.

In group theory, these operators are named after their
ranks: K = Oscalar, K = 1dipole, K = 2 quadrupole, K = 3
octupole, etc. We have to emphasize that the multipoles in
this framework are different form those in the theory of
electromagnetism, where the multipoles refer to the spatial
distribution of charge p(r) or magnetization m(r) expanded
by multipolar functions ¥;"(6,¢). Here, the multipoles do not
refer to any spatial distribution but to the rotational properties
of a matrix, or more precisely, to the transitions of magnetic
moments. Although they follow the same algebra, they do not
correspond to the same physical meaning.

Similarly, we can also define the cubic harmonic superbasis,
where all the operators are Hermitian [1]:

1
V2

T o0 = %[Y,;Qw — (=D2y2W).

For J = 1/2 case, these are Pauli matrices: Té) ~ 1, Tl+1 ~
oy, T ~ o, and T ~ o,. Also, this basis follows the same
symmetry as cubic harmonics: s, p*, p”, and p*. Therefore
instead of using abstract (K, Q) indexes, we will label these
tensor operators using their symmetry: 7°, T, T, T*, T*,
T, T¥,. .., etc.

It is straightforward to rewrite Eq. (2), the spin-orbit cou-
pled exchange interaction by using different superbases. The
couplings among multipolar operators now appear naturally,
and the coupling matrices in different superbases can be linked

T8 = —=[(=DY2() + Y %),

(6)
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by using unitary transformations. Obviously, one can define
other superbases by making different linear combinations of
them and the coupling matrices may become block diagonal or
even completely diagonal when using appropriate symmetry.

B. Physical pictures

To illustrate the physics of multipolar tensor operators, let
us focus on the spherical harmonics operators for J = 1. In
this case, we have nine linearly independent tensor operators
as shown in Fig. 4. We also display the shapes of s, p, and
d spherical harmonics functions to represent their analogy.
Because the rotational properties of those tensor operators
are the same as the original spherical harmonics, we can
“visualize” these matrices by this way.

Let us discuss the scalar term first. The scalar term is
exactly an identity matrix and invariant under rotations. An
important feature of the scalar term is its relation to the total
charge. If we expand the density matrix p = > ¢ ,, a,g Y,? , the
total charge of the system is proportional to the coefficient
ag. As for the dipole terms, the matrices are no longer
unchanged under rotation: Y~ Yand Y h ! describe time-reversed
transition processes, which change a single quantum of the
angular momentum. Y} is another diagonal matrix, which
induces no change of moment. Similar descriptions also hold
for quadrupoles: Y[Z and Y, 2 change two moment quanta;
Y2_l and Y;r ! change one moment quantum; Y20 changes no
moment. Note that although ¥:*' and Y;*' both change one
moment quantum, they are essentially different. The nonzero
matrix elements of Y2il have a sign difference but Y lil have
no such term, which means if single quantum transition
channels are in-phase, it is a dipole; if they are out-of-phase,
it is a quadrupole. Similar analysis can be applied to other
superbases. A diagrammatic interpretation of the dipole-dipole
and quadrupole-quadrupole RKKY exchange interactions is
shown in Fig. 5.

Scalar Quadrupole
w-k(iid) @ wo(i01)
CvB\o o0 1 ’ 000 "

Dipole Y;li(g Bl rl)) s
oo V2lo 0 o
H(0rl) @ cu(isl) @
R VElo o 1
a(vit) 8

Y;flzi (1) 8 g
V2 0 -1 0
1 0 0 0
Ylﬁ-lzE -1 0 0 ‘ ‘ 0
0 -1 0 Y2+2: 0
1

FIG. 4. (Color online) The spherical tensor operators of J = 1
and the real part of analogous spherical harmonics. States to expand
the matrices are ordered by |—1), |0), and |+1). Each member has
its analogous spatial function as s, p~', p°, p*',d~2,d7', d°, d*',
and d*? spherical harmonics, which follow the same symmetry under
rotation.

o O O
o O o
S——
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quadrupole-quadrupole exchange

FIG. 5. (Color online) Dipole-dipole and quadrupole-
quadrupole exchange interactions. An incoming conduction
electron with momentrum k& interacts with a J = 1 local moment,
induces a ¥, (¥})) transition and leaves with momentum k  inducing
a ¥;! (¥;%) transition on a neighboring site. The blue transition
arrow for ¥, means a negative phase compared to the red one.

IV. METHOD OF COMPUTING COUPLING MATRIX

Here, we introduce an efficient method to calculate the
coupling matrix of a multipolar exchange interaction using
total energy electronic structure calculation, such as LDA or
LDA + U [42]. The discussion is based on a specific total
moment J, therefore labeling by J will be omitted.

A. Energy variation

Consider a multipolar exchange interaction within the
mean-field approximation, and the ground-state energy Ey:

B )
ij
N2ZZCQ!Q' Q,i>

ij KQ

(7
Ep =

The formula for the ground-state energy is exactly the classical
version of the multipolar exchange interaction. In this case,
the multipolar moments are no longer quantized and can vary
continuously. If we introduce variations for a particular pair
of multipoles at different sites, (Tgi") — (T, ) +48(T, ) and

(Té(/f) — (ngj) + 8(ng’). Plug them into the formula for Eo,
we obtain
QlQ/
i 1 &E Ex k,
Cioi, (i) = 55l ®
8T )8(Tx) )
where 2 Eg ' = OEg ¢ —SEZ —8EY), 8EZ = EZ' —

Ey, and E¢ Qi is the new energy associated with a variation

8Ty ) of (Ty ) multipole. Therefore, in order to calculate a
multlpolar exchange constant we need to obtain three energies:

the energy cost of making a variation on site i, the energy cost
of making a variation on site j, and the energy cost of making
the same variations on both sites. If the multipoles TQKI "and Tg/ /
are not coupled, the energy cost of varying both will be simply
the sum of two independent variations on each site. However, if
they are coupled, varying both sites simultaneously will induce
an extra exchange energy which is proportional to the exchange
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FIG. 6. (Color online) The meaning of each term in computing
coupling constants. Here we use 77 to represent the multipoles.

constant as shown in Fig. 6. Therefore, if one can compute
these energies using advanced electronic structure calculation,
one is able to obtain the effective exchange interaction.

To perform a variation on the multipoles in a realistic
calculation, we have to use the trace inner product theorem.
Consider the local density matrices of each correlated site. The
local density matrices can be expanded by a superbasis defined
on that site: p; = . . a Y 2 We intentionally choose
a superbasis where all the tensor operators are Hermitian,
e.g., cubic harmonics, so we also have: (TKQ’,") = Tr(,oTKQ’_’) =
Tr(,oT,ZI_Q") = aK" It means (TQ") (TQ") + S(TQ") isessen-

tially ag’ — a? k, T dag'. Therefore we can vary a multipole
by changlng its correspondmg expansion coefficient.

B. Pair-flip technique

When mapping the exchange model Hamiltonian to a
series of total energy calculations using our method, it is
necessary to make sure the total energies only contain the
contributions from exchange interactions. This is not very
straightforward. Recall that, in S = 1/2 Heisenberg model,
we relate the exchange constants to the new total energy of
the meta-stable state with one or more spin moments flipped.
Therefore when calculating the total energy, one should not
perform any self-consistent calculation of the tensor flipped
configuration else the system may evolve and go back to its
ground state. To avoid the latter, we use the Anderson force
theorem [45] and read the band energy differences only, i.e.,
the energies associated with occupied single-particle states.
We also apply several constraints on the variations: (1) keep
the total charge conserved; (2) keep the symmetry to avoid
crystal field effects; (3) keep the magnitude of the multipolar
moments fixed; (4) enforce the hermicity of the density matrix.
Combining these constraints, the only possible choice is to
add a phase on the expansion coefficients a,%’ of the density
matrix p; =

=2k Ql a? Y,?" and the simplest one is a minus
Qi

sign: ag — —a,( When this is done, dag’ = —2ay . This
is similar to the way we calculate the exchange constants
in the conventional § = 1/2 Heisenberg model, i.e., relating

PHYSICAL REVIEW B 90, 045148 (2014)

o

FIG. 7. (Color online) Phase flip of multipoles. A phase flip is
different form the axis flip. For 7%, it is a /2 rotation along the x
axis. For T3, it does not correspond to any rotation. Only dipoles fit
the concept of flipping their axes.

the exchange constants to the energy cost of flipping a spin
moment (changing the sign of the z-axis spin projection).
However, the term “flip” has a different meaning in the
language of multipolar exchange interactions from the case
of § = 1/2. In the conventional S = 1/2 Heisenberg model, a
“flip” means the flipping of the local axis of a spin moment. For
most multipoles, such a flip is meaningless because it generates
no change. Instead, the most general concept of a “flip” is to put
a minus sign on their expansion coefficients or, equivalently,
flip their phase (a 7 phase gives us ¢ = —1). In Fig. 7,
we show the pictures of a “phase flip” for cubic harmonics
tensor operators via changing the sign on their corresponding
functions. For dipoles, it is indeed equivalent to flipping its
local axes. However, for quadrupoles, a phase flip of 7%,
T, T, and T is actually a 7r /2 rotation along different

E@cm)
10000
8000

(b) 6000

4000

2000

0 —|_5(3)

FIG. 8. (Color online) (a) Magnetic moments of dipoles (arrows)
and quadrupoles (disk) in the 3-k structure. (b) The energy splitting
of low lying states in UO, [10]. The *H and °F states of free U**
ion are split into *H, multiplets and other excited states by spin-orbit
coupling and further split into the I's triplet ground state by crystal
fields. Their degeneracy is shown inside the parentheses.
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axes, and for T3zz, it cannot be characterized as a rotation.
Therefore, when we say “antiferromagnetic” T>* quadrupolar
ordering, it actually means the 7*° quadrupoles are ordered
by a 7/2 rotation alternatively [9] or, more precisely, by a &
phase change.

Now, we summarize how to calculate the exchange
constants using the pair-flip technique: (1) calculate the
ground state of the system using advanced electronic structure
calculation, such as LDA or LDA + U. (2) Generate an
appropriate superbasis that is consistent with the symmetry
of the system. (3) Expand the local density matrices of the
magnetic orbitals in this superbasis. (4) Pick a pair of tensor
components on different sites, flip their phases separately and
simultaneously and recombine them into new local density
matrices (make sure they are still Hermitian). (5) Calculate
their corresponding band energies (making sure not to do any
self-consistent calculation on these metastable states) and read
the band energies to obtain exchange coefficients.

V. APPLICATION TO URANIUM DIOXIDE
A. Model Hamiltonian

To test our method, we use uranium dioxide (UQO;) as
a benchmark material due to the presence of dipolar and
quadrupolar order in its ground state. UO, has been one of the
widely discussed actinide compounds due to its applications
in nuclear energy industry. It is a Mott insulator with cubic
structure and well-localized 5 f2 electrons (uranium valence
is U*" by naive charge counting). Below Ty = 30.8 K, it
undergoes a first-order magnetic and structural phase transition
where a noncollinear antiferromagnetic (AFM) phase with
transverse 3-k magnetic ordering accompanied by the coop-
erative Jahn-Teller distortion occurs [11]. The two-electron
ground state forms a I's triplet, holding pseudospin J =1
rotation symmetry as shown in Fig. 8 [10]:

|+>=\ﬁ|+3>—\/1|—1>; (+
8 8
10) = ﬁm) —J3-2: (0110 =0,
2 2 N
N S P S VA
8 8 ; 2

The numbers in the kets of the right-hand-side label the m
of the  Hy configuration. It makes UO, a good choice to test
our method, as it is a minimal challenge beyond S = 1/2
Heisenberg model.

As discussed in the previous sections, the description of
a spin-orbit coupled J = 1 system requires the existence of
dipolar and quadrupolar moments. It is commonly believed
that there are two major mechanisms to induce exchange
coupling in this system: (1) superexchange (SE) and (2)
spin-lattice interaction (SL). The former contributes to both
dipole and quadrupole and the latter contributes to quadrupole
only due to the symmetry of structural lattice distortion. The
dominance of SE or SL in affecting the quadrupole exchange
remains a controversial issue [9-12]. Since our method is
based on a static electronic structure calculation, we do
not explore dynamical effects in all their details. Therefore

5
+ =3

J: ,
2

Z
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separate calculations using the coupled frozen-phonon and
frozen-magnon techniques were performed to extract the SL
coupling constants.

Since UO; is a cubic system, it is natural to take cubic
harmonics as our superbasis: T forrank 0; T, 77, T* for rank
1 (dipole); T*Y, T>*, T*, sz‘yz, 737 for rank 2 (quadrupole)
[1,9,11]. The ground-state local density matrix of an U ion can
be expanded by p; = Y, a/"T!", where i is site index, m is
the projection index for cubic harmonics, and a" = Tr(p; Tﬁ’")
is the expansion coefficient. Since the triplet degeneracy of I's
is further split below Ty, we can approximate the ground state
as |GS) = |—1), the lowest energy state of an isolated U ion
in the 3-k magnetic phase. 3-k ordering requires the four U
sublattice moments to point in inequivalent (1,1, 1) directions,
which means the |—1) states are defined in different local
coordinates for each U sublattice [10]. Thus we need to make
a rotation on each site to ensure everything is in a global
coordinate system.

In the local coordinate system (i.e., quantization axes are
defined along the direction of the magnetic moments of
each site), the expansion of density matrices has the same
tensor expansion coefficients: p; = |—=1)(=1| =T} /3 —

T?/ V2 + szz /+/6. When converting to global coordinate
system (i.e., quantization axes are the same for each site),
one has to apply a rotation matrix D(6; ,qbi,wi)Jf i D(6;,¢:,%;)
using different Euler angles (6;,¢;, ;) for each site. Then, the
nonvanishing components of the ground state 3-k quadrupolar
orderares, x, y, Z,xy, yz, and zx. Thus the model Hamiltonian
of nearest-neighbor exchange interaction between magnetic U
atoms is assumed to be (in the global system)

hEX — hSE + hSL — Z Cln]mTlmij + Z Klr;n Tin Tjn’
mij nij

m € X,y,2,Xy,¥Z,2X; N € Xy,yZ,2X, C)]

where (i, j) are the nearest-neighbor site indexes and (Ci’;?’”,
K l.”j”) are the exchange constants from SE and SL, respectively.
Couplings between tensor operators with different symmetry
indexes are prohibited by cubic symmetry. This fact demon-
strates the importance of choosing an appropriate superbasis.
The originally unknown 9 x 9 = 81 superexchange coupling

constants now become only six.

B. Superexchange coupling

Due to the 3-k symmetry, one can perform the pair-flip
technique on an arbitrary pair of uranium atoms in the four
sublattices and all other exchange constants can be obtained
by permuting their corresponding x, y, z coordinates. There
are four equivalent bonds for a pair of uranium sites (i, j), so to
eliminate double counting one should also divide the obtained
exchange energies by 4 as well as account for any geometric or
trigonometric factors due to the noncollinear order. Since |I's)
ground state is defined in the pseudospin J = 1 space, we shall
introduce the reduced density matrix (RDM) as a useful single-
particle approximation to make it compatible with the single-
particle based electronic structure calculation. However, the
self-consistent ground state of the UO, may be close to but
not equal to the RDMs of the prefect |I's, — 1) state, so we
keep all the calculated results unchanged but replace the local
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FIG. 9. (Color online) Calculated exchange energies using the
LDA + U method with U = 4.0eV and J = 0.7 eV. The ground-state
energy (when nothing is flipped) is set to zero. Blue bars correspond
to the sum over the energies of flipping a multipolar moment on site
i and j individually. Red bars correspond to the energy of flipping
the multipolar moments on site i and j simultaneously. Exchange
energies are the differences between the red and blue bars (can be
positive or negative).

density matrices of the correlated orbitals by prefect |[I's, — 1)
RDMs to make our system a well-defined |I's) problem. We
assume that the multipolar exchange Hamiltonian in the J =
5/2 @ 7/2 single-particle space is built by replacing all tensor
operators, density matrices, and mean values in J = 1 space
to their corresponding single-particle RDM: (T") — (7"},
(i) = (Z;). The single-particle exchange Hamiltonian shares
the same exchange constants as the J = 1 two-particle version.
Two things to notice here are that (1) the RDM exhibits J =
% @ % symmetry instead of J = 1 and this means the rotation
from local coordinates to the global coordinates has to be made
in J = 1 space, else the pseudospin quasiparticle description
will be violated, and (2) the RDM replacement will rescale the
length of an operator, i.e., Tr[.7.7 1] # Tr[T TT]. Therefore
(™) =T(2.Z™) is different from (T") = Tr[pT,"]. So
one has to be cautious when using Eq. (9).

In Fig. 9, we have plotted the total energies obtained from
our LDA + U calculation. The blue bars are the sum of flipping
the multipolar moment at site i and j individually and the red
bars are obtained by flipping both of them simultaneously.
The exchange energy E£X = 82E,g1% = BEg‘,% - (SE%' -
8 EI% is just the difference between the two bars. One may
notice that the exchange energy of the quadrupoles is much
smaller than the one of the dipoles. This is because the
multipolar moments (.7;") are about an order smaller than the
dipoles. Once we include this factor, the exchange constants
obtained using Eq. (9) are not necessarily small.

The coupling constants can be simplified by symmetry
to the form C/2" = C"™(R) = Cg/*[1 — 21 — x' )17 18un-
where d/q means dipole or quadrupole and T = R/R is the
direction vector between (i, j). These constants are shown in
Table I, where the isotropic and anisotropic parts are described
by CJ/? and x'?, respectively [9]. With the comparison to
other studies, the dipolar part is similar, but the quadrupolar
part gives the opposite result to the past calculations obtained
by best fit to experiment [11,12]. Not only the anisotropy effect
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TABLE I. Comparison between our calculated exchange interac-
tion parameters using the LDA + U method with U = 4.0 eV and
J =0.7 eV and the existing experimental fits. C§, Cg, K are in
units of meV, others are dimensionless. Because all the works use
different models to simulate the SL part, there are no appropriate
values for them (labeled by *). Reference [12] obtained SL via a
fully dynamic calculation. Note also that Ref. [9] assumes that the
quadrupolar coupling only comes from SL with a real space exchange
constant of the 3-k symmetric form: K; = Koe'9r®i~R), Reference
[10] only calculates the SE part. Their parameters were obtained
via the integrals of Coulomb interaction directly and have no simple
anisotropy form. (Note: the definition of tensor operators is slightly
different for each work, so we have converted their values to fit our
definition.)

Ref. Cg Xc‘l Cg xJ Kg e
our work 1.70 0.3 -3.10 0.90 2.6 1.18
[12] 3.1 0.25 1.9 0.25 * *
9] 1.25 0.8 0 0 0.33 *
[10] ~1 * ~0.1 * X X

is much smaller, but the sign is also different, which means the
quadrupoles tend to be ferromagnetic. It also means that the
SL effects must be as important as SE and their combination
makes the whole system antiferromagnetic.

C. Spin-lattice coupling

To explain the behavior of the quadrupolar part, we need
to include the effect of dynamic contribution from SL. The
coupling between spins and optical phonons can be written as

Hs =Y V"(q,)T"(Qu(q, ),
qnj

(10)

where  T7(q) = Y g T"(R)e'™,  u(q.j) =[p'(=q./) +
p(q,j)], and p'(q,j) is the creation operator of a phonon with
wave vector ¢ in mode j. Using the virtual phonon description,
the SL exchange constant of 425" can be approximated as

Vi(q,j 2
K~ Y @D an
J

ha(q. j)

where w(q,j) is the phonon frequency and &y is the on-site
exchange energy that should be subtracted [9]. The variables
u(q,j) and w(q, j) have been calculated in one of our earlier
works [46] and can be fitted to the entire Brillouin zone using
a simple rigid-ion model [47]. If we further assume that the
quadrupoles only couple to 73, and té’g quadrupolar distortions
of the O cage around each U ion, the coupling constants are as-
sumed to have the form V"(q, ) = yv.¥}(q,j) + v»¥;(q, ),
where y,;, are the parameters to be determined, ¥ ,(q, j) are
the inner product (projection) between the phonon distortion
u(q,j) and tzaéb distortion, and u(q,j) can be regarded as
the distortion due to a phonon mode [48]. We estimate
the parameters y,;, by using a coupled frozen-phonon and

frozen-magnon technique: (1) make a #5, é{h distortion of the O
cage around a U ion; (2) flip a particular tensor component
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FIG. 10. (Color online) Magnetic excitation spectrum for UO,
along two symmetry directions calculated by scanning the color map
of the real part two-ion susceptibility of our model Hamiltonian [9]
with (a) parameters shown in Table I. (b) The same calculation
made by requiring the overall quadrupole coupling to have 3-k
symmetry: K[} = Koe'9r®~R) with Ky =0.5 meV [9] in which
case the anisotropy gap is greatly reduced. Bottom inset: data from
inelastic neutron scattering experiments plotted in the same x-y scale
[49]. Triangles (yellow) are measured in a direction set by a reciprocal
lattice vector [50]. Rhombi (orange) are weaker cross sections.

of the single-ion RDM on a particular site; (3) calculate
the correlation energies: 8*E,Y, = [SE}), — SEQ}, — SE™],
where the first superscript is the symmetry index of the
quadrupole and the latter index is of tg/ b So SZEZ’/"b is
the extra energy of making “flip+frozen phonon distortion”
simultaneously compared to the energies of individual “flip”
plus individual “frozen phonon distortion;” (4) then the
parameters are, roughly, y, ~ 82EZ1"/\/§(T’")1//;' and y, ~
SZE,’,”"/(T’")M}. There is a factor /2 in y, because when we
make the same displacement of each coordinate component,
the length of the total displacement is /2 larger than tfg. By

assuming the unit of phonon vibration about 0.014 A (asis the
static Jahn-Teller distortion [10]) and making the ,, distortion
to be 3% of the lattice constant, we have y, = 34 meV and
y» = 48 meV. We can access nearest-neighbor constants by
calculating K™"(q,j) at q = [0,0,0] and q = 27”[1,0,0], and
by a subsequent fit to a cosine function with the on-site
exchange energy assumed to be the average of the curve [9].
We then have K}i" = K""(R) = KJ1—2(1 — Xt Tuldmn

with K = 2.6 meV and x/ = 1.18.
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D. Magnetic excitation spectrum

Combined with the superexchange contribution and using
the Green function method with random phase approximation
[9], we calculate the magnetic excitation spectrum of UQO,,
which is shown in Fig. 10. We find that the values and
the characteristics of our results are basically in agreement
with experiment. The major difference is the disappearance
of anticrossing at a few q points and much larger anisotropy
(gap) at the X point. The disappearance of the anticrossing
is reasonable because it comes from the coupling between
magnon and phonon branches. As for the overestimated
anisotropy at the X point, it is believed to come from the
oversimplified SL model in our calculation. We have plotted
the spin/quadrupolar wave spectrum by enforcing the overall
quadrupole coupling to have 3-k symmetry as Ref. [12] with
the parameter Ky = 0.5 meV (which is almost the same value
as our isotropic part) and it gives a much smaller gap, which
fits the experiment well (see Fig. 10). It demonstrates that an
SL model, which makes the whole quadrupolar coupling to
have 3-k symmetry, will be helpful in fitting the experiment
but, in this case, the simplified form of our model will be also
lost.

VI. CONCLUSION

In conclusion, we have introduced the framework of mul-
tipolar operators and the benefits of using them as a language
to describe the exchange interactions in spin-orbit coupled
systems. We have also developed a method to calculate the
exchange constants via a density functional based total energy
calculation. With its application to UO;, the superexchange
tends to have ferromagnetic quadrupolar coupling rather than
antiferromagnetic one, which is very different from the past
reports using best fits to experiments. It demonstrates that
our method has the potential to explore magnetic spin-orbit
coupled systems in more details. As for the spin-lattice
interaction, we have performed a very similar calculation to
estimate their couplings and the overall behavior is accounted
for by the competition between the superexchange and spin-
lattice counterparts. An accurate description of spin-lattice
interactions and applications to hidden order systems would
be beneficial for future work.
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