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Long-range electron-electron interactions in graphene make its electrodynamics nonlocal
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Graphene, a one-layer-thick hexagonal array of carbon atoms, when undoped, exhibits a curious mixture of
properties pertinent to either metals or insulators. On the one hand, despite near absence of both charge carriers
and impurities, it has a finite conductivity like a metal. On the other hand, the Coulomb interaction between
electrons is unscreened like in a dielectric and hence is long range. The chemical potential is pinned right between
the conical valence and conduction bands causing quasiparticles to move like massless relativistic particles. We
demonstrate at small coupling that the electrodynamics of graphene exhibits nonlocality on a macroscopic level
due to the combination of the long-range interactions and the linear dispersion relation. The frequency and wave
vector k-dependent conductivity tensor, in addition to a local pseudo-Ohmic part σT δij , possesses a nonlocal
contribution σnlkikj /k2. While the coefficient of the local part is σT ≈ e2/4�, the coefficient of the nonlocal
part is proportional to the Coulomb interaction strength α, σnl = σT α. This leads to several remarkable effects
in transport and optical response. In particular, the resistance of the graphene flake depends on the location and
the geometry of the source, drain, and probes. A voltage perpendicular to the current appears in a time-reversal
symmetric situation and the polarization of reflected and transmitted light is modified, without either the magnetic
field (like in the Faraday effect) or anisotropy.
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I. INTRODUCTION

One of the basic assumptions of the electrodynamics in
electrically active media is that the effect of electric fields
can be described macroscopically by constitutive relations
connecting the “induced” charges and currents to the electric
field. For Fourier components for frequency ω and wave
vector k, these relations (within linear response and neglecting
magnetism) generally read

4πρ ind(ω,k) = i(1 − ε(ω,k))kiEi(ω,k);

Ji(ω,k) = σij (ω,k)Ej (ω,k). (1)

Usually the electrodynamic response of a medium is local, so
that the long-wavelength limit exists. The dielectric constant
then can be approximated by ε(ω,k = 0) ≡ ε(ω), while the
conductivity tensor in an isotropic time-reversal invariant
material takes a simple form:

σij (ω,k) = δij σT (ω) + O(k2). (2)

The microscopic origin of the locality depends on the nature
of the long-wave excitations and presence of long-range
interaction between them. In an insulator (or semiconductor
at low temperatures), the electronic excitations are gapped, so
the locality is simply a result of absence of gapless charged
excitations. In the free-electron gas model of a metal, i.e.,
neglecting both disorder and electron-electron interactions,
there is no energy gap, so that the locality is not ensured.
The conductivity tensor can be decomposed into a transversal
and a longitudinal part (assuming time-reversal invariance and
isotropy):

σij (ω,k) =
(

δij − kikj

k2

)
σT (ω,k) + kikj

k2
σL(ω,k)

= δij σT (ω,k) + kikj

k2
σnl(ω,k). (3)

Yet, the direct calculation [1] shows that the differ-
ence σnl(ω,k) = σL(ω,k) − σT (ω,k) = O(k2), thus leading to
Eq. (2) with the corrections being analytic when k → 0,
namely, local.

Impurities define a scale, the mean free path, that effectively
makes the excitations “massive” in terms of their dispersion
relation. Composite excitations like diffusons can in principle
have zero modes, but they are “soft” enough to cause the so-
called “infrared divergencies” that could make the long-wave
limit singular. In a very clean electron gas, the nonlocality can,
in principle, arise due to long-range Coulomb interactions.
However, the long-range interactions exist only in insulators.
In a metallic state, the nonlocality is prevented by the screening
of the Coulomb force that becomes effectively short-range and
unable to cause infrared divergencies.

All the above three reasons leading to locality, namely,
direct energy gap, significant disorder, and screening of the
Coulomb interactions, are inapplicable to graphene. The nov-
elty of the physics of the undoped graphene is mostly due to its
spectrum of the elementary excitations. The dispersion relation
at small momentum is linear [2], εk = vk (with v ≈ c/300
being the Fermi velocity) and resembles massless relativistic
fermions despite the fact that effects of static interactions
make the dynamics nonrelativistic. The low-energy excitations
belong to two conical bands joined in one of two “Dirac
points.” The chemical potential is pinned exactly at these
points. Therefore there is no finite energy gap to ensure locality
as in insulators.

The disorder also cannot ensure the locality in best graphene
samples. In fact, graphene is one of the purest electronic
systems. The scattering of charge carriers in suspended
graphene samples of submicrometer length is so negligible that
the transport is ballistic [3,4]. Consequently, the elementary
excitations are still “massless” at long wavelengths. The third
reason, interactions, also does not apply. If the interaction
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between the quasiparticles was short range, one would still
get a local electric response, but it turns out that the
undoped graphene is apparently unable to screen the Coulomb
interactions. So that there is no good reason to exclude the
possibility that the long-wave electric response of graphene in
the presence of strong interactions is nonlocal.

In this paper, we show that this is indeed the case and
point out several consequences of that fact. The nonlocal part
is proportional to the electron-electron interaction strength
(when perturbation theory in interactions is valid):

σnl(ω,k) = − e2

4�
α + O(k2), (4)

where the coupling is α = e2/ε�v with ε being the dielectric
constant of the substrate, if present. This is the main result of
the paper. The nonlocality of graphene, or more generally 2D
(or even 3D [5]) electronic systems with similar band structure
possessing a pointlike Fermi “surface”—nowadays termed
Weyl semimetals—constitutes therefore the first example of
the nonlocal electrically active medium.

The paper starts with the analysis of the linear response in
free and continues to interacting electron-hole plasma focusing
on the locality, derived in Eq. (4). Further, we point out
two immediate experimental consequences: dependence of the
conductance in finite samples on the location of the source,
drain, and probes and a peculiar polarization dependence of
the light reflection (transmission) off a graphene flake.

II. NONINTERACTING VERSUS INTERACTING
NEUTRAL ELECTRON-HOLE PLASMA IN GRAPHENE

Due to its atomic structure, the tight-binding model is a
valid starting point in the description of graphene. At energies
well below 1 eV, one typically replaces it by an effective
Dirac (Weyl) model “near” its two Dirac points constituting
the Fermi “surface” of undoped graphene. Neglecting the
electron-electron interactions, the linear density-density and
current-current response is still local [6,7]:

χ (ω,k) = σ0k
2

√
v2k2 − ω2

= k2

iω
σ0 + O(k4),

σij (ω,k) = iσ0

ω
√

v2k2 − ω2
[δij (ω2 − v2k2) + v2kikj ]

= σ0δij + O(k2), (5)

where σ0 = e2/4� is the noninteracting value of conductivity,
which is independent of frequency and manifestly local:

σT (ω,k) = σL(ω,k) = σ0 + O(k2). (6)

Of course, due to charge conservation, the transverse conduc-
tivity is proportional to the susceptibility [1]:

σT (ω,k) = iω

k2
χ (ω,k). (7)

The locality is a bit fortuitous since it follows not just
from the charge conservation, but in addition, utilizes the
pseudorelativistic invariance as well. In a relativistic system,
the charge and the current correlators are parts of the polariza-
tion tensor �ν

μ(k) = 〈Jμ(k)J ν(−k)〉. Here, Jμ = {vρ,J} is the
2 + 1 current vector. Pseudo-Lorentz transformations relate
the current-current part to the density-density components of

the tensor. Indeed, the Lorentz invariance together with charge
conservation ensures transversality,

�μν(k) =
(

gμν − kμkν

kρkρ

)
A(k), (8)

with g00 = 1,gij = −δij . The Kubo formula then gives

σij (k) = − 1

iω

(
δij + v2kikj

ω2 − v2k2

)
A(k), (9)

and consequently comparing with Eq. (3),

σT = − A

iω
; σL = − A

iω

ω2

ω2 − v2k2
. (10)

In noninteracting graphene A = σ0ω
2/

√
v2k2 − ω2 and

Eqs. (5) and (6) follow.
Coulomb interactions break the pseudorelativistic invari-

ance, so one has to calculate σT (or equivalently the density-
density response) and σL separately. Assuming a small
coupling, the natural approach is to calculate the leading effect
of interactions perturbatively [8–12] in α and then supplement
it by certain resummations like the random phase resummation
(RPA) [7].

To the leading order in α, the results are still fre-
quency independent (see current-current correlator diagrams in
Fig. 1 ),

σT
1 (ω,k) = C2σ0α + O(k2), (11)

σL
1 (ω,k) = (2C1 − C2)σ0α + O(k2), (12)

where C1 = 25/12 − π/2 ≈ 0.51 and C2 = 19/12 − π/2 ≈
0.01 � 1. The constants C1 and C2 were actually obtained
in the continuum Dirac theory some time ago and were a
subject of a long controversy. This note is devoted also to a
further clarification of this point. The general belief apparently
was that there should be a single value of the coefficient C

determining the whole conductivity tensor due to locality,
σxx = σyy = σL = σT . The current-current correlator 〈JxJx〉
calculation utilizing a sharp momentum cutoff  regulariza-
tion of the Dirac model by Herbut, Juričič, and Vafek [8]
can be interpreted as Eq. (12) using a local combination
(trace) σ 1

xx + σ 1
yy = σT

1 + σL
1 = 2C1σ0α. It is important to

calculate this combination, since σxx is ill defined in the
kx,ky → 0 limit according to Eq. (3). We have recalculated this

FIG. 1. Leading order diagrams for the interaction corrections
to both the current-current (μ = 1,2) and density-density (μ = 0)
correlators. Left: the vertex part; right: the self-energy part.

045137-2



LONG-RANGE ELECTRON-ELECTRON INTERACTIONS IN . . . PHYSICAL REVIEW B 90, 045137 (2014)

calculation using the tight-binding model [13] with the same
result, see Ref. [14]. The use of the sharp momentum cutoff
was criticized by Mishchenko [9], who employed a “soft”
momentum cutoff regularization, a  dependent modification
to the Coulomb potential. In addition to the current-current
correlator, he calculated the density-density correlator which,
using charge conservation (7), leads to Eq. (11). He supported
this choice of regulator by demanding the aforementioned
“consistency” between the 〈ρρ〉 and the 〈JJ 〉 calculation via
a local version of charge conservation, k2σxx = iωχ, instead
of the exact one, kiσij kj = iωχ, which is valid for nonlocal
electrodynamics as well (and in addition to the kinetic equation
approach). We have performed the tight-binding calculation
of 〈ρρ〉 and found the same value (that was also obtained by
other groups in continuum [11,12]), but the 〈JJ 〉 calculation
is inconsistent with the tight-binding result, see Ref. [14] for
details. Thus the two different values of C do not contradict
each other, but rather demonstrate nonlocality of the graphene
electrodynamics.

The tight-binding calculations are quite tedious and there-
fore one would like to formulate a consistent cutoff procedure
within the continuum Dirac model. An attempt to formulate
such a condition for a regularization of the continuum model
consistent with the tight-binding model is done in Ref. [15],
where several calculations inconsistent with it are analyzed.
Having established Eqs. (3), (11), and (12), let us turn to the
observable effects of the unconventional nonlocal component
of the conductivity in electric transport and optics.

III. EFFECTS OF NONLOCAL ELECTRODYNAMICS
IN TRANSPORT

The nonlocal term in the conductivity of graphene renders
the electrodynamics rather unusual. Transport experiments
on cleanest samples (ac conductivity in optical and near
infrared range [16,17] in graphene on substrates and dc
conductivity measurements in suspended graphene and on
NiB2 substrates [4]) indicate that the deviations from the
noninteracting conductivity value σ0 is very small. It has
been pointed out by Sheehy and Schmalian [18] that the
“accidentally” small value C2 = 0.01 is consistent with the
experiments, while C1 = 0.51 is not. Consider stationary
situations.

Generally, a vector field decomposes (for a simply con-
nected flake) into an irrotational and a solenoidal vector field,
so that the two-dimensional current density can be expressed
in terms of two scalar fields u and h,

Ji(r) = J irrot
i + J sol

i = ∂iu(r) + εij ∂jh(r), (13)

where εij is the two-dimensional Levi-Civita symbol. The
electric field created by the current is Ei = ρijJj , with the
resistivity tensor obtained by inversion of Eq. (3),

ρij (ω,k) = ρT δij + ρnl
kikj

k2
, (14)

with ρT = σ−1
T and ρnl = σnl/σT (σT − σnl) 	 α

σ0
. In terms of

the “potentials” of Eq. (13) the electric field is written as

Ei = ρT Ji + ρnl∂iu, (15)
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FIG. 2. (Color online) (a) A typical transport measurement in
graphene. The current enters and leaves via the leads, while the
voltage is measured between different points. (b) The location of the
voltage probes: A = 0,0, B = L,0 for the source - to - drain direction
x; C = 0,W/2 and D = L,W/2 for the “off diagonal” direction y.

where the first term is the local, regular (pseudo) Ohmic and
the second term is the nonlocal contribution. The line integral
over the electric field inside the graphene flake V = − ∫

E · dl
(that does not depend on the contour in our case) is

V (r1,r2) = Vloc + ρnl[u(r2) − u(r1)]. (16)

The first term coincides with the voltage of a metallic flake
with resistivity ρT .

From the definition in Eq. (13) and from the (stationary)
charge conservation, it follows that u(r) obeys the Poisson
equation

∇2u(r) = ∂iJi(r) = −∂zJz(r,z)|z=0 ≡ s(r). (17)

More generally, the last term in Eq. (17) refers to the current
entering and leaving via the leads, see Fig. 2(a) . The source
or drain are either pointlike, linelike near the surface, or cover
an area like in suspended samples experiments. The solution
to Eq. (17) is

u(r) = − 1

2π

∫
r′∈flake

ln |r − r′|s(r′), (18)

and various shape dependencies are studied in Ref. [19].
Let us consider a simple example of application of that

nonlocal electrodynamics to a transport experiment with
boundary conditions leading to the homogeneous current
density shown in Fig. 2(a). For a rectangular flake with a
linelike source and drain (golden bars in Fig. 2), the resistance
between the points A = {0,0} and B = {L,0} has a nonlocal
correction:

RBA
nl = ρnl

[
2

πχ
arctan

(
χ

2

)
+ 1

2π
ln(4χ−2 + 1)

]
, (19)

where χ = W/L is the aspect ratio of a flake of length L and
width W . The shape-dependent factor vanishes as 1/χ for
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FIG. 3. (Color online) A graphene Corbino disk. (a) A radial
current enters and leaves via the leads. (b) The circular current
generated by a magnetic flux increasing linearly in time.

L � W and is still sublinear, − 1
π

ln(χ ), when L >> W . For
typical aspect ratio of χ = 1 (square), it is 0.55. This differs
from the nonlocal contribution when the probes are attached
at corners C = {0,W/2} and D = {L,W/2},

RDC
nl = ρnl

[
1

πχ
arctan(χ ) + 1

4π
(χ−2 + 1)

]
, (20)

which for the square sample is smaller, 0.31. The local
contribution is independent of the location along the leads. This
property can be used to isolate the nonlocal contribution. The
conductivity σxx deduced from such measurement depends
therefore on the aspect ratio and even on the location of the
probes. The interaction corrections might not be that negligible
as it would follow from the unnaturally small correction to
σ0 in the local part σT = σ0αC2 = 0.01σ0α. The nonlinearity
allows a direct determination of the interaction strength α.
Moreover, there is a voltage in the direction perpendicular to
current. Although the voltage drop from side to side vanishes
due to the reflection symmetry, the voltage between points A

and C near a lead is maximal:

RCA
Hall = ρnl

{
1

πχ

[
arctan(χ ) − 2 arctan

(
χ

2

)]

+ 1

2π
ln

(
χ2 + 1

χ2 + 4

)}
, (21)

for the square it gives RCA
Hall = −0.19ρnl.

A clear manifestation of the effect of geometry of leads
on resistance can be provided by a graphene Corbino disk
with internal and external radii r1 and r2, see Fig. 3 . While
the radial current, Fig. 3(a), leads to a nonlocal resistance of
Rnl = ρnl

2π
ln r2

r1
, the circular current, Fig. 3(b) (generated by a

magnetic flux increasing linearly in time threading the disk)
has no source and hence the correction vanishes.

The nonlocality becomes apparent in the optical response
of a graphene flake [20]. The reflectivities of the p and s

polarizations of electromagnetic waves scattered at angle θ ,
see Fig. 4 , are

rp(ω) = −π cos θ

c
(σT + σnl),

(22)
rs(ω) = − πσT

c cos θ + πσT

.

Ep Ep’’

k

k”

Ep’
k’

z

x

y

FIG. 4. (Color online) A typical optical reflection experiment.
For the shown p polarization the electric field lies in the plane of
incidence.

The derivations and assumptions are given in Ref. [21]. Note
that the reflectivities (and transmissivities) are independent of
frequencies below the visible range. Although the expressions
are given for zero temperature, the dependence on temperature
is not expected to be strong, unless phonons have an effect
at lower frequencies. The polarization dependence appears
despite the time reversal invariance (no magnetic field here,
unlike in the Faraday effect in graphene [22]), and absence of
anisotropy. There is no dramatic change in the equations for the
surface waves or plasmons [23], at least at zero temperature.

IV. CONCLUSIONS, DISCUSSIONS, AND POSSIBLE
GENERALIZATIONS

The calculation of the leading Coulomb interaction effect
on the electromagnetic response of undoped graphene reveals
that its macroscopic electrodynamics becomes nonlocal in a
sense that the wave-vector-dependent ac conductivity tensor
becomes nonanalytic at small wave vectors, see Eq. (3). The
origin of nonlocality is a combination of the long-range
(unscreened) Coulomb interactions and the ultrarelativistic
nature of the quasiparticles. Several distinct experimental
signatures of the nonlocal contribution to conductivity, Eq. (4),
were pointed out. The resistance of the graphene flake depends
on the location and the geometry of source, drain, and probes.
In some configurations like a circular Corbino geometry,
Fig. 3(b), void of sources or drains, the nonlocal voltages are
absent, while in others, like the radial current flow of Fig. 3(a),
they are maximized. In rectangular samples typically used
in transport experiments, a quite strong geometrical factor
complicates the analysis of the relation between resistance
and the two resistivities, ρT and ρnl, Eq. (14). Voltages
perpendicular to the current appear close to the source or the
drain in this time-reversal symmetric situation. The relation
between the dielectric constant and conductivity, Eq. (7), is
distinct from either a metal or an insulator. Nonlocality causes
a polarization modification of the reflected and transmitted
light proportional to the Coulomb interaction strength α,
without either the magnetic field, like in the Faraday effect,
or anisotropy in the optically active materials.
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The treatment is perturbative so let us discuss whether the
available graphene samples have sufficiently small coupling
for it to be reliable. A recent, rather confident measure-
ment [24] of the coupling in graphene on a h-BN substrate
(from velocity renormalization and scattering off impurities
at a controllable small chemical potential) gives α = 0.78.
We argue that this value is small enough to use perturbation
theory. The argument is a variant of the “Georgi’s loop
factor in quantum electrodynamics.” The real dimensionless
expansion parameter in perturbation theory is not α, but rather
α′ = a/G, where G is the geometrical factor, G2 = AD

2(2π)D+1 ,
where AD is the surface area of D-dimensional unit sphere. In
our case of D = 2, G = 2π , so that, at least, for α = 0.78,
α′ = 0.12 � 1. Note that there is a rather large dielectric
constant of the substrate εBN = 3–4; at this point, it is
not clear what is the coupling in suspended samples (the
corrections to the conductivity are small, no chiral condensate
is observed, and there is no substrate dielectric constant).
There has been an ongoing debate concerning the strength of
the interelectron interactions in undoped graphene. Although
naively the coupling α can be of order one in suspended
samples [7], there is evidence that the actual coupling is in
fact weak. If it were strong (of order 1), it would lead to the
chiral condensate [25], making the excitations gapped. This
was shown nonperturbatively by the lattice (tight-binding)
simulation [26] and recently reconfirmed by Refs. [27–29].
Experiments observe a rather strong renormalization of the
Fermi velocity, but no condensation [30].

There are several phenomena that might mask the nonlocal
electrodynamics effects. One could be disorder, another is a
nonzero chemical potential. One should distinguish the case
of homogeneous doping from puddles that appear naturally in
samples on substrates. If the homogeneous chemical potential
μ is so small that the screening length, v2

g�
2/e2μ, is of the

order of the sample size L, it can be ignored. For a typical
length of L = 0.1 to 1 μm and absolutely clean samples
(disorder reduces screening) this translates to μ = 3 meV =
35 K and 0.3 meV = 3.5 K, respectively. If the screening is
significant, our resistivity formulas should be applied only
within the skin depth of the flake. An important issue here is
to separate contributions between two channels, the interband
(which is the one considered in the present calculation and
generally quite insensitive to disorder [31], and the intraband

channel when one has quite an ordinary generally diffusive
motion of electrons in the conduction band. As mentioned in
Introduction, the diffusive motion of the “additional” electrons
obeys σT = σL, and thus does not contribute to the nonlocal
effects. It makes, however, the detection of these effects more
complicated since one needs to either subtract them or reliably
calculate them. The two channels are not completely separated
due to the Pauli blocking, this is, however, expected to be
insignificant for small chemical potential.

If the sample is not suspended (in suspended samples
charge “puddles” were not seen), one typically has a small
chemical potential due to the substrate, etc., even if the gate
voltage is tuned to the Dirac point. Suppose the puddles have
extent l and chemical potential of order μ (of both signs). Then
screening can be definitely neglected when l < v2

g�
2/(e2μ)

and even for larger l the disorder (puddles id the disorder)
makes screening less effective. How small can the screening
length be? In Ref. [32], graphene on a SiO2 substrate was
modeled. The case of the carrier density in a puddle of
n = 2.5 × 1011 cm−1 corresponds to μ = 13 meV = 150 K
and the screening length 20 nm is of the order of the puddle
l = 5 nm. So we do not expect that puddles in good samples
will interfere with nonlocal conductivity effects. Recently,
NB substrates are widely used and the problem is greatly
reduced there, see, for example, Ref. [33].

The 2D Dirac electrons appear also in other condensed
matter systems, for example, on the surface of a topological
insulator [34]. Note, however, that in order to prevent screening
on the scale of the sample size, the chemical potential should
be tuned precisely to the Dirac point and the sample should be
very clean. Nonlocal 3D conductivity is expected to occur also
in recently discovered 3D Dirac point materials like in Ref. [5].
Electron-electron interactions have been already studied there
theoretically [35,36].
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