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High-pressure effect on the superconductivity of YB6
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Pressure effects on superconducting properties of two YB6 samples (Tc = 5.9 and 7.5 K) were investigated
by measurements of electrical resistivity, magnetic susceptibility, and x-ray diffraction in the pressure range
up to 320 kbar. Magnetoresistivity measurements down to 60 mK and up to 47 kbar have shown a negative
pressure effect on Tc as well as on the third critical field Hc3 with the slopes dlnTc/dp = −0.59%/kbar and
dlnHc3/dp = −1.1%/kbar, respectively. The magnetic susceptibility measurements evidenced that the slope
of dlnTc/dp gradually decreases with pressure reaching a value three times smaller at 112 kbar. The lattice
parameter measurements revealed the volume reduction of 14% at 320 kbar. The pressure-volume dependence is
described by the Rose-Vinet equation of state. The obtained relative volume dependence dlnTc/dlnV analyzed
by the McMillan formula for Tc indicates that the reduction of the superconducting transition temperature is
mainly due to hardening of the Einstein-like phonon mode responsible for the superconducting coupling. This
is confirmed by the analysis of the resistivity measurements in the normal state up to T = 300 K performed at
pressures up to 28 kbar.
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I. INTRODUCTION

Among the large number of boron-rich binary compounds
MBx (x � 6) [1,2], superconductivity has been found in
only eight systems: MB6 (M = Y, La, Th, Nd) and MB12

(M = Sc, Y, Zr, Lu) [3,4]. Among these, yttrium hexa-
boride exhibits the highest transition temperature Tc reaching
8 K [5]. Here, YB6 crystallizes in the body-centered-cubic
(bcc) CaB6-type structure (space group Pm3m), in which
the B6 molecule has the octahedral form. In recent years,
properties of YB6 have been intensively investigated by
specific heat, resistivity, magnetic susceptibility, and thermal
expansion measurements [5,6], optical [7], nuclear mag-
netic resonance (NMR) [8], muon spin relaxation (μSR)
experiments [9], point contact spectroscopy [10], as well as
by means of electronic structure calculations [11,12]. An
important issue was to explain significant differences in Tc

between materials with otherwise very similar electronic and
lattice properties. A conclusion could be deduced that the
superconductivity of YB6 is mediated mainly by the very soft
phonon mode located at �7.5 meV [5,10] and originating
from the rattling motion of the Y ion in the spacious cage
of the B6 octahedron while the boron phonons are less
important.

Lattice compression can affect all important constituents of
superconductivity, namely phonon frequencies, the electron-
phonon coupling constant λ, as well as the electronic den-
sity of states (EDOS). To our knowledge, there has been
only a single experimental study of the pressure effect on
the superconducting properties of YB6 [13]. In particular,
the negative effect on the transition temperature Tc has
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been found for pressures up to 9.2 kbar with dTc/dp =
−0.055 K/kbar. The upper critical field was suppressed as
dHc2/dp = −4.84 mT/kbar showing an increase of the
coherence length. Since no pressure effect on the penetration
depth was observed, the Ginzburg-Landau parameter κ , which
is the ratio of the penetration depth and the coherence length,
was found decreasing and driving YB6 towards the type-I
superconductivity with increasing pressure.

Xu et al. [12] performed extensive ab initio studies of
the effect of pressure on the electronic, vibrational, and
superconducting properties of YB6 in a wide range of pressures
up to 400 kbar. Their calculations of the electron-phonon
interaction α2F (ω) show a dominancy of low-lying Einstein-
like vibrations of Y atoms at about 8 meV, which makes about
86% of the electron-phonon coupling. The pressure effect on
Tc is negative. At p = 400 kbar, the Y low-lying phonon
mode still determines the superconducting coupling, but due
to its hardening, the coupling constant λ and subsequently Tc

get significantly smaller. No experimental data in the very
high-pressure range have been available. Our study brings
results of such an experiment.

The paper is organized as follows. After the Introduction
and Experiment, Sec. III Results and Discussion follows.
Our results on the influence of a hydrostatic pressure on
magnetoresistivity up to 47 kbar are presented in Sec. III A
showing a negative pressure effect on Tc and Hc3. In
Sec. III B, the measurements of magnetic susceptibility
up to 112 kbar and lattice parameter up to 320 kbar
present how the Tc-reduction rate is slowed down at higher
pressures. The pressure versus volume dependence allows one
to estimate the volume changes of Tc and make an analysis.
Precise zero field resistivity measurements in the normal state
between 10 and 300 K and up to 28 kbar in Sec. III C were used
to reveal a significant mode of the electron-phonon interaction
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and its variations with increasing pressures, which lead to
suppression of superconductivity.

II. EXPERIMENT

Two single crystals with different transition temperatures
(sample 1 with Tc = 7.5 K and sample 2 with Tc = 5.9 K)
of YB6 were grown by the radio frequency heated floating
zone method in an atmosphere of argon at a pressure of 5 bar.
The residual resistivity ratio (RRR) of sample 1 = 4.3 with
the low temperature resistivity ρ(0) = 10 μ�cm, while for
sample 2 RRR = 2.5 and ρ(0) = 21 μ�cm. As shown by Lortz
et al. [5], the Tc value is related to the Y/B ratio, the higher
Tc corresponding to lower boron concentration with Tc =
7.6 K for YB5.7 and Tc = 6.6 K for YB5.9. The high-pressure
magnetotransport experiments were performed in a piston
cylinder cell (PCC; p � 28 kbar) and in a diamond anvil
cell (DAC; p � 30 kbar; Institute of Experimental Physics,
Košice). Daphne oil or liquid argon as pressure transmitters
and Pb or ruby fluorescence manometers were used in the PCC
and DAC, respectively. The actual pressure upon loading was
determined at room temperature, and the pressure change on
cooling is estimated to be less than 2 kbar. The temperature
and magnetic field dependences of the resistivity between 2
and 300 K were measured by means of a Physical Property
Measurement System (PPMS; Quantum Design) and in a
homebuilt dilution 3He-4He minirefrigerator below 2 K down
to 60 mK.

The ac magnetic susceptibility was measured in a DAC
using the technique described in Ref. [14], where a pick-up coil
consisting of about 10 turns of 12 μm diameter copper wire
is inserted in the sample chamber (Commissariat à l’Energie
Atomique Grenoble). The primary coil placed outside the
sample chamber produced an excitation field of about 1 Oe
at a frequency of 653 Hz. In this case, the pressure was varied
and determined in situ at low temperatures with an accuracy
better than 1 kbar.

The dc magnetic susceptibility measurements were per-
formed at the Centre for Science at Extreme Conditions in
Edinburgh, using a miniature high-pressure cell for a Magnetic
Property Measurement System (MPMS; Quantum Design)
with a superconducting quantum interference device (SQUID)
magnetometer with a dc field of 100 Oe [15]. Daphne 7373 oil
was used as the pressure-transmitting medium.

Pressure dependence of the lattice parameter of YB6 at
room temperature was obtained by x-ray diffraction experi-
ments up to 320 kbar at the ID09A beamline at the European
Synchrotron Radiation Facility in Grenoble. A Boheler-Almax
type of DAC with a Re gasket and He as the pressure transmitter
were used for the diffraction experiments [16].

III. RESULTS AND DISCUSSION

A. Magnetotransport experiments at pressure

On sample 1, the magnetization and specific heat measure-
ments in fields up to 1 T at ambient pressure were performed
previously, from which the lower critical field Hc1 = 36 mT,
the thermodynamical critical field Hc = 72 mT, and the
upper critical field Hc2 = 280 mT have been determined [6].
They are in very good agreement with the data of Lortz
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FIG. 1. (Color online) Temperature dependences of the third
critical field Hc3 at different pressures for sample 1. Lines represent
WHH fits. Inset: linear decrease of Hc3 and Tc with increasing
pressure.

et al. [5] obtained on an YB6 sample with very similar Tc =
7.2 K and RRR = 3.9. The Ginzburg-Landau coherence length
ξ = 34 nm is obtained from our upper critical field Hc2(0).
From the residual resistivity ρ(0) = 10 μ�cm within the free
electron model, the electronic mean free path of about 20 nm
follows. If the Pippard coherence length is calculated from
the ratio of the Fermi velocity vF ≈ 105 m/s [9] and the
superconducting energy gap 	 = 1.2 meV [10], one obtains
ξ0 = (�vF )/(π	) ≈ 20 nm of the same order as the mean
free path, indicating that the samples are close to the transition
between the clean and dirty limits.

Now the resistivity measurements in magnetic fields at
different pressures were performed on the same sample 1
in a configuration suitable to measure the third critical field
Hc3, i.e. with the current and voltage probes placed on the
surface of the sample parallel with the applied magnetic field.
The critical field Hc3 or the transition temperature Tc(H ) has
been determined from the magnetoresistive superconducting
transitions at its steepest slope, which is around 50% of the
normal state resistance during the temperature or field sweeps.
Representative resistivity measurements on sample 1 have
recently been presented in Ref. [17]. The obtained ambient
pressure zero-temperature value of Hc3(0) = 450 mT is to be
compared with Hc2(0) giving the ratio Hc3(0)/Hc2(0) = 1.6
which is quite close to the theoretical prediction of 1.695.
Again, our resistively determined third critical field at ambient
pressure is very close to the one determined by Lortz et al. [5].
As the third critical field is directly proportional to Hc2, in
the following we assume the same pressure and temperature
dependence of both quantities Hc3 and Hc2.

Figure 1 shows by different symbols the resulting temper-
ature dependences of Hc3(T ) at pressures of 4.5, 14, 22, 30,
and 47 kbar generated in PCC and DAC. The zero-pressure
and 9 kbar curves are not shown as they largely overlap with
the curves at closest pressures. The graph reveals a systematic
decrease of the zero-field transition temperature Tc as well as
of the zero-temperature value of Hc3 with increasing pressure.
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As documented in Fig. 1, the Hc3(0) values could
be extrapolated using the Werthamer-Helfand-Hohenberg
(WHH) fits [18]. The Hc3(T ) curves taken at differ-
ent pressures are not parallel, but their slope near Tc,
(dHc3/dT )T = Tc

, systematically decreases with increasing
pressure by d(dHc3/dT )T = Tc

/dp = −0.6 mT K−1/kbar.
This is related to the fact that pressure effect on the upper
critical field is significantly stronger than that on Tc. Both
quantities decrease linearly in the measured pressure range
(see the inset of Fig. 1). The linear fits give dTc/dp = −0.044
K/kbar. Note that this value is smaller than dTc/dp = −0.055
K/kbar obtained by Khasanov et al. [13] on a sample with Tc

= 6.6 K, but the latter was measured only up to 9.2 kbar,
and as we will show below, the effect of pressure on Tc

weakens at higher pressures. If we make a linear fit only to the
data points at pressures below 10 kbar, the resulting dTc/dp

slope is even closer to the value of Khasanov et al. [13]. The
relative change of the transition temperature with pressure
is dlnTc/dp = −0.59%/kbar. The linear fit of the pressure
dependence of Hc3 yields dHc3/dp = −4.64 mT/kbar and
the relative change dlnHc3/dp = −1.1%/kbar. The pressure,
at which the critical temperature should be suppressed to zero,
can be estimated pc � 170 kbar using the linear extrapolation.

The almost two times larger relative decrease of the
critical field with pressure (dlnHc3/dp = −1.1%/kbar) com-
pared to the relative decrease of the critical temperature
with dlnTc/dp = −0.59%/kbar and the relative decrease
of the temperature derivation of the third critical field at
Tc(0) with dln{(dHc3/dT )T = Tc

}/dp = −0.65%/kbar can be
explained as follows. The upper critical field is given by
the relation Hc2 = �0/(2πξ 2), where �0 is the magnetic
flux quantum and ξ the coherence length. The relative
pressure change of the upper critical field can be written
as dlnHc2/dp ∝ −2dlnξ/dp. The coherence length obeys
the relation ξ (0) = (�vF )/(π	) and 2	 ∝ kBTc, so then
dlnξ/dp = dlnvF /dp − dlnTc/dp. If the pressure change
of the Fermi velocity vF is negligible in comparison with
the change of Tc, we will get the relation dlnHc2/dp ∝
2dlnTc/dp in agreement with our experimental findings. In the
free-electron model the Fermi velocity vF ∝ V −1/3, where
V is the sample volume. The pressure change of the Fermi
velocity is related to the bulk modulus B0 as dlnvF /dp ∝
−1/3dlnV/dp = 1/3B−1

0 . The bulk modulus for YB6 is B0

� 1700 kbar (see Sec. III B), giving a relative change of
Fermi velocity dlnvF /dp = 0.02%/kbar, which is indeed
much smaller than the relative change of Tc. As has been
already stated by Khasanov et al. [13], in superconductors for
which dlnTc/dp � 1/B0, the relative pressure change of the
superconducting quantities such as Tc, ξ (0), Hc2, but also κ and
(dHc2/dT )T = Tc

are not independent but related to each other
as shown above. Our measurements have proven the validity of
this relation for YB6 in the pressure range up to almost 50 kbar.

Xu et al. [12], who performed extensive ab initio studies
of the effect of pressure on the electronic, vibrational, and
superconducting properties of YB6 up to 400 kbar, predict a
negative pressure effect on Tc with a coefficient of dTc/dp =
−(0.024 ÷ 0.027) K/kbar in the pressures up to 200 kbar,
which is approximately two times smaller than observed by
us. Above 200 kbar, the same theory predicts much slower
decrease of Tc with a steepness of dTc/dp = −(0.003 ÷
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FIG. 2. (Color online) (a) Temperature dependences of the ac
susceptibility up to 112 kbar for sample 2; and (b) phase diagram,
Tc versus p, for sample 1 [received from ρac(T ) and χdc(T )
measurements] and sample 2 [received from χac(T ) measurements].
Lines represent linear fits. Dashed lines are guides for the eye.

0.011) K/kbar. As shown above, the slope dTc/dp observed
up to 47 kbar in our study is smaller than that of Khasanov
et al. [13] found over a limited pressure range. All this indicates
that the pressure effect on Tc weakens at higher pressures.
To check this quantitatively, the measurements of Tc over a
broader pressure range were carried out.

B. Magnetic susceptibility experiments and lattice parameter
under pressure

Temperature dependencies of the magnetic susceptibility
χ (T ) were carried out on samples 1 and 2 by the dc method
(χdc) to 100 kbar and by the ac method (χac) up to 112 kbar,
respectively. The critical temperatures at various pressures
were associated with the steepest slope of χ (T ) appearing,
which is around 50% of the χ (2 K) value. Figure 2 depicts the
ac measurements. As seen from Fig. 2(b), the resulting pressure
dependences of the critical temperature Tc show clearly a
nonlinear behavior for both samples in the measured pressure
range. The ac measurements exhibited less scatter, which
allowed us to determine for both samples the initial slope of
dTc/dp = −0.044 K/kbar in the range below �50 kbar. In the
highest pressure range, above about 90 kbar, the slope changes
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sample 2 at room temperature and up to 320 kbar, where the solid
line represents the fit by the Rose-Vinet equation of state (see text).
(b) Relative volume dependence of Tc for the YB6 sample 2 (circles),
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up axis) representation. The solid line represents the linear fit with a
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the eye.

to dTc/dp � −0.015 K/kbar. Our measurements bring a
natural explanation of the higher dTc/dp values obtained by
Khasanov et al. [13] in the limited pressure range (see our first
three points on sample 2) and also support the calculations of
Xu et al. [12].

The results of the x-ray diffraction study of the lattice
parameter/volume and their development with the pressure of
sample 2 are shown in Fig. 3. The unit-cell volume is reduced
by 	V/V0 � 14% at 320 kbar with V0 being the volume of
the unit cell at ambient pressure. Over the extended pressure
range, one can observe a nonlinearity of the V (p) dependence.
It can be well fitted by the Rose-Vinet equation of state [19]

p = 3B0

(
1 − ν

ν2

)
exp

[
3

2

(
B ′

0 − 1
)

(1 − ν)

]
, (1)

where ν = (V/V0)1/3, B0 is the bulk modulus and B ′
0 its

derivative. The obtained value of the bulk modulus, B0 =
1659 kbar, is quite close to the value B0 � 1790–1900 kbar,
estimated from experiments in Ref. [20] or to those deduced
from band-structure calculations of YB6 [12,21].

With the p−V/V0 relation, we can construct the volume
dependence of the transition temperature Tc taking the data
from Fig. 2 for sample 2. As shown in Fig. 3(b) the Tc

dependence on volume still remains nonlinear (lower curve).
The relative volume dependence of the critical temperature
Tc can be read from the upper curve, giving an unusually
large number of dlnTc/dln(V ) = 14.25. Such a number was
predicted from the analysis of the temperature dependence
of the linear expansion coefficient [5], but it is directly
experimentally determined here.

With this information, we can try to analyze the origin of the
negative pressure effect on the transition temperature in YB6.
In most superconductors, the pressure suppresses Tc due to the
stiffening of the lattice which weakens the electron-phonon
interaction, but the changes in the electronic density of states
can in some cases increase Tc [22–24].

The superconducting critical temperature can be estimated
from the well-known Allen-Dynes modified McMillan for-
mula comprising the most important superconducting param-
eters [25]

Tc = ωln

1.2
exp

[
− 1.04 (1 + λ)

λ − μ∗ (1 + 0.62λ)

]
. (2)

The formula is valid for strong coupling superconductors
(λ �1) and connects the value of Tc with the electron-phonon
coupling constant λ, the logarithmically averaged phonon
frequency ωln, and the screened Coulomb repulsion parameter
μ∗.

Taking the logarithmic volume derivative of both sides of
Eq. (2) and neglecting the volume dependence of μ∗, which
has little sensitivity to applied pressure, we obtain the simple
relation [5,26]

dlnTc

dlnV
= −γph + f (λ,μ∗)

∂lnλ

∂lnV
, (3)

where γph ≡ −∂lnω/∂lnV is the Grüneisen parameter repre-
senting the anharmonicity of the lattice vibrations with the cir-
cular frequency ω and f (λ,μ∗) = 1.04λ[1 + 0.38μ∗]/[λ −
μ∗(1 + 0.62λ)]2. In the case of YB6 with λ ∼= 1.04, μ∗ ∼=
0.1 [5], f (λ,μ∗) is about 1.5. Lortz et al. [5] obtained the
Grüneisen parameter from their thermal expansion experiment
as γph � 9. Then, using this value with our dlnTc/dln(V ) =
14.25, we obtain ∂lnλ/∂lnV ∼= 15.5, which is again a very
large volume dependence of the electron-phonon coupling
constant.

If we express the electron-phonon coupling constant as
λ = η/Mω2, where η = NEF

〈I 2〉 is the Hopfield electronic
parameter (comprising the electronic density of states at the
Fermi energy NEF

and the mean square electron-ion matrix
element 〈I 2〉) and the ionic mass M , then it follows:

∂lnλ

∂lnV
= ∂lnη

∂lnV
+ 2γph, (4)

and we see that ∂lnη/∂lnV gives only a small contribution
(�−2.5) to the overall change of λ, which is mostly determined
by the Grüneisen parameter. Similarly, the relative volume
change of the superconducting temperature is approximately
dlnTc/dln(V ) ≈ 2 γph, meaning that the main reason for
decrease of Tc is indeed the hardening/unharmonicity of the
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relevant phonon mode. In the following section, we address
this issue experimentally.

C. Pressure effect on low-energy mode responsible for
superconducting coupling

Lortz et al. [5] exploited the normal state resistivity
measurements as a “thermal” spectroscopy to deconvolve the
spectrum of the electron-phonon interaction α2F (ω) and the
coupling constant λ in YB6. Such an approach was successful
because YB6 happened to be an example of a superconductor
with a dominant low-energy Einstein-like phonon mode,
which is well expressed in the temperature dependence of the
normal state resistivity, heat capacity, and thermal expansion
as a hump or peak at about 50 K. Obviously, the thermal
spectroscopy could not resolve the whole spectrum with
modes stretching to energies up to almost 200 meV, but was
capable of determining the most important low-energy part.
The deconvolved spectrum α2F (ω) has recently been verified
by our point-contact spectroscopic measurements at ambient
pressure [10], and we found indeed that the dominant mode in
the electron-phonon interaction mediating superconductivity
in YB6 is located at 7.5 meV. By employing point-contact
spectroscopy under pressure [27], it should be possible to
observe the shift of Y-phonon mode directly.

Here, we have used the same approach as Lortz et al. to an-
alyze temperature dependences of the normal state resistivity
of sample 2 measured at pressures 1 bar, 8 kbar, 17 kbar,
22 kbar, and 28 kbar. Figure 4(a) presents the raw data
measured between 10 and 300 K. As can be seen, the residual
resistivity ρ(0) = 21 μ�cm is almost invariable with pressure,
but the high-temperature resistivity is reduced. Figure 4(b),
where the temperature derivative of the resistivity at ambient
pressure is shown, makes the effect of low-energy modes of
the electron-phonon interaction more visible showing a clear
maximum. Figure 4(c) displays the changes of dρ/dT with
pressure. Unfiltered raw data lead to rather noisy derivative
plots. That is why only the dρ/dT data taken at 1 bar and 28
kbar are presented (symbols), while the fits by solid lines are
shown for all pressures. The main result is well documented,
namely that the maximum of dρ/dT is clearly shifting to
higher temperatures by several kelvins [see the insert of
Fig. 4(c)] at p = 28 kbar.

The temperature dependence of the resistivity in YB6

is described by the Bloch-Grüneisen (BG) theory of the
electron-phonon interaction [28]. Generally, the BG theory
predicts a ρ ∼ T 5 dependence at low temperatures and the
linear temperature dependence at high temperatures, but in
YB6, yet another specific feature is present, as documented
in Fig. 4(a). It is the negative curvature of the resistivity at
high temperatures. This phenomenon found in many systems
is usually attributed to the fact that the sample approaches
the Mott limit [29,30] at certain temperatures. In this case, the
electron mean free path becomes comparable to the interatomic
spacing. The effect is taken into account by introducing the
empirical “parallel-resistor” with ρmax to the formula for
resistivity ρ [31]

1

ρ(T )
= 1

ρBG(T ) + ρBG(0)
+ 1

ρmax
. (5)

0 25 50 75 100 125 150
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 50 100 150 200 250 300
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 50 100 150 200 250 300
20

25

30

35

40

45

50

0 5 10 15 20 25 30

37

38

39

40

41

T m
ax

(K
)

p (kbar)

from dρ/dT data
linear fit

(c)

1 bar, data
28 kbar, data
1 bar, fit
8 kbar, fit
17 kbar, fit
22 kbar, fit
28 kbar, fit

dρ
/d

T
(μ

Ω
cm

K
-1
)

T (K)

Einstein components

(b)
data
BG fit

k=3

k=1+2

dρ
/d

T
(μ

Ω
cm

K
-1
)

(a)

ρ
(μ

Ω
cm

)

1 bar
8 kbar
17 kbar
22 kbar
28 kbar

FIG. 4. (Color online) (a) Temperature dependences of the resis-
tivity at 1 bar, 8 kbar, 17 kbar, 22 kbar, and 28 kbar for sample 2
and (b) its temperature derivative for 1 bar with the resulting BG
fit, which can be decomposed into two dominant Einstein terms. (c)
Temperature dependences of temperature derivatives of experimental
data and corresponding BG fits for all pressures. In the inset of (c) is
shown pressure dependence of the temperature, at which maxima of
dρ(T )/dT versus T are observed.

For fits of the resistivity data, we have not used a standard
BG formula, but following the procedure used by Lortz
et al. [5], we decomposed the spectral electron-phonon
scattering function α2

trF (ω) into a basis of Einstein modes
each with a characteristic temperature θE,k (kBθE,k = �ωE,k).
Then, the discrete version of the generalized BG formula is

ρBG (T ) = 2π

ε0�2
p

∑
k

λtr,kθE,k

xke
xk

(exk − 1)2 , (6)
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where �p ≡ (ne2/ε0m
∗)1/2 is the unscreened plasma fre-

quency, λtr,k = (α2
trF )k/ωk is the partial contribution to

the electron-phonon coupling function λ (the dimensionless
constant), and θE,k (xk = θE,k/T ) is the Einstein temperatures
of the phonon mode k.

Lortz et al. [5] fitted their resistivity data by three modes
with θE,1 = 51 K, θE,2 = 90 K, θE,3 = 844 K, and λtr,1 = 0.18,
λtr,2 = 0.72, λtr,3 = 0.1, respectively, i.e. with a dominant
contribution of the Y vibration mode at 90 K (7.7 meV). In
the first step, we fitted our data at ambient pressure by the BG
formula with the same set of modes and our residual resistivity
ρ(0) = 21 μ�cm. The only fitting parameter was the resistivity
of the parallel resistor for which we got a value ρmax =
140 μ�cm. The resulting fit was of the same quality as the
fit to the data of Lortz (fig. 7 in Ref. [5]). In the following
fits at all pressures, we left the obtained value of ρmax fixed
to minimize the number of fitting parameters. A value of the
parallel resistor is related to the interatomic spacing or the
lattice constant, and since the latter parameter is changed by
less than 1% in the pressures up to 28 kbar [Fig. 3(a)], the
value of ρmax should not change significantly either.

To further minimize the number of fitting parameters, we
tried to fit our data by the BG formula with just two modes
of α2F (ω), one located at low and one at high energy. This
attempt was inspired by the point-contact spectra [10], where
we could resolve only a single peak of the α2F (ω) spectrum
located at 7.5 meV (θE = 87 K). Moreover, in the deconvolved
spectrum of Lortz et al. [5] near the main mode with θE,2 =
90 K and the weight λtr,2 = 0.72, only a small contribution was
found with θE,1 = 51 K and λtr,1 = 0.18. Although a similar
lowest energy contribution has also been found by the ab initio
calculations of the α2F (ω) spectrum at ambient pressure [12],
this mode is suppressed at higher pressure. Thus, we joined
the modes k = 1 and k = 2 into a single mode denoted as k = 1
+ 2. The resulting fit of the data at ambient pressure is shown
in Fig. 4(b). Besides the experimental points and the overall
fit (solid line), contributions to the dρ(T )/dT dependence
from the individual modes are also shown by the dashed
lines. Indeed, the position of the maximum of the derivative
dρ(T )/dT is fully determined by the low-energy mode(s).
The quality of the resulting fit is not worse than of the one
with three modes. This indicates limitations of such thermal
spectroscopy, which can certainly give qualitative information,
here for example, on the importance of the low-energy phonon
modes, but cannot provide an exact spectral function with
high-energy resolution. The fitting parameters in the two-mode
fit are θE,1+2 = 87.4 K and θE,3 = 844 K, and λtr,1+2 = 0.9
and λtr,3 = 0.1, respectively, for ambient pressure.

In the following, we fit the dρ(T )/dT data taken at higher
pressures. Since our main concern was the behavior of the
low-temperature maximum, i.e. its shift to higher temperatures
with increasing pressure, we let the values of θE,3 = 844 K
and λtr,3 = 0.1 be fixed, and the only fitting parameters were
θE,1+2 and λtr,1+2. The generated dρ(T )/dT curves fit the data
well, as demonstrated in Fig. 4(c) for the 1 bar and 28 kbar
results. The main mode undergoes a smooth shift from θE,1+2

= 87.4 K at ambient pressure to 102 K at 28 kbar, while
the particular coupling constant contribution decreases from
λtr,1+2 = 0.9 to 0.76. Those results can be compared with
the calculations of Xu et al. [12]. They have calculated the
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FIG. 5. (Color online) Pressure dependence of the main phonon
mode energy, together with theoretical data of Xu et al. [12] up to
400 kbar. The inset displays the detail of our measurements up to
28 kbar. Lines are guides for the eye.

Eliashberg function of the electron-phonon interaction α2F (ω)
in the energy range up to 200 meV. For our purposes, the
most important result is that, at ambient pressure, the low
energy part of the spectrum comprises the main peak at around
8 meV with a minor feature at around 7 meV. This spectrum
is stiffened at 300 kbar. The minor feature is completely
missing, while the main peak is shifted to about 14 meV,
i.e. to two times higher energy. In the linear response theory,
they calculated an increase of the logarithmically averaged
frequency of the overall phonon modes shifting from 7 to
18.5 meV and then 24 meV for the pressures of 0, 200, and
400 kbar, respectively. The overall electron-phonon coupling
λ shifts from 1.44 down to 0.44 between 0 and 400 kbar,
and with the Coulomb pseudopotential μ∗ = 0.1, it leads
to a reduction of Tc from 8.9 to 1.9 K between 0 and
400 kbar. Within the rigid-muffin-tin approximation, they have
also calculated the square root of the weighted mean square of
the phonon frequency from Y, 〈ω2〉1/2

Y which can be compared
with our low-energy phonon mode shift since it originates just
from the yttrium vibrations. The comparison is presented in
Fig. 5. Even if the pressure ranges are very different for our
data obtained from experiment and the calculations of Xu et
al. [12], one can see that the measured data fit quite well to
the faster stiffening of the yttrium phonon mode calculated
between 0 and 200 kbar. Later, the calculated 〈ω2〉1/2

Y yttrium
phonons shift to higher frequencies more slowly. This tendency
is in agreement with the changes of Tc, Hc3 and the sample
volume upon increasing the pressure as presented in Sec. III B
where initial faster change is gradually decelerated.

Within our simplified two-mode model of the electron-
phonon interaction, we also calculated the evolution of the
transition temperatures with the applied pressure by the
McMillan formula [Eq. (2)]. Taking μ∗ = 0.1 and the θE,k

and λtr,k values, we arrived at Tc = 7.64 and 7.12 K, for
1 bar and 28 kbar, respectively. The respective experimental
values are 5.9 and 4.8 K for these pressures. We can
conclude that, qualitatively, our analysis based on the thermal
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spectroscopy yields a proper explanation for the suppression
of superconductivity in YB6 under pressure, which lies in the
stiffening of the relevant yttrium phonon mode.

IV. CONCLUSIONS

Our results on the influence of hydrostatic pressure on
magnetoresistivity up to 47 kbar show a decrease of the
transition temperature dTc/dp = −0.044 K/kbar and the third
critical field dHc3/dp = −4.64 mT/kbar. The measurements
of magnetic susceptibility up to 112 kbar and lattice parameter
up to 320 kbar show evidence that the Tc-reduction rate
is slowed down at higher pressures. The pressure versus
volume dependence can be described by the Rose-Vinet
equation of state with the bulk modulus B0 = 1659 kbar. The
relative volume dependence of dlnTc/dlnV analyzed within
the McMillan formula for Tc indicates that the suppression of
the superconducting transition temperature in YB6 is mainly
due to hardening of the Einstein-like phonon mode responsible
for superconducting coupling. The precise zero-field resistivity
measurements in the normal state between 10 and 300 K and

up to 28 kbar used as “thermal” spectroscopy corroborated
that the low-energy Einstein-like phonon mode significant for
superconductivity in YB6 shifts to higher energy with pressure.
Therefore, a reduction of the electron-phonon coupling con-
stant leads to significant suppression of the superconducting
transition temperature.
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P. Samuely, in Proceedings of the Conference on Physics of
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