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We propose a scheme to generate pairs of time-reversal invariant parafermions. Our setup consists of two
quantum wires with Rashba spin-orbit interactions coupled to an s-wave superconductor, in the presence of
electron-electron interactions. The zero-energy bound states localized at the wire ends arise from the interplay
between two types of proximity-induced superconductivity: the usual intrawire superconductivity and the
interwire superconductivity due to crossed Andreev reflections. If the latter dominates, which is the case for
strong electron-electron interactions, the system supports Kramers pair of parafermions. Moreover, the scheme
can be extended to a two-dimensional sea of time-reversal invariant parafermions.
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I. INTRODUCTION

Topological properties of condensed matter systems have
attracted wide attention in recent years. In particular, lo-
calized bound states emerging at the interface between
different topological regions have been studied intensely
both theoretically and experimentally. Majorana fermions
(MFs), zero-energy bound states with non-Abelian braid
statistics, were predicted in several systems such as frac-
tional quantum Hall effect (FQHE) systems [1], topological
insulators [2—4], optical lattices [5,6], p-wave superconduc-
tors [7], nanowires with Rashba spin-orbit interaction (SOI)
[8—17], self-tuning RKKY systems [18-20], and graphenelike
systems [21-26].

Though MFs possess non-Abelian statistics, it is of Ising
type which is not sufficient for universal quantum computation,
in contrast to Fibonacci anyons [27]. The basic building
blocks for the latter anyons are parafermions (PFs), also
referred to as fractional MFs, which allow for more universal
quantum operations than MFs [28-38]. Similarly to MFs, PFs
are bound states that arise at the interface between two distinct
topological phases. In contrast to MFs, however, PFs owe their
peculiar properties to strong electron-electron interactions.
As a result, most proposals to host PFs invoke edge states
of FQHE systems, and to stabilize them at zero energy one
relies on particle-hole symmetry generated by proximity
to a superconductor [31-34,36,37]. However, while strong
magnetic fields are required for the FQHE, they are detrimental
for superconductivity, making the experimental realization of
such proposals challenging [36,39]. This has motivated us to
search for alternatives to generate PFs with superconductivity
but without magnetic fields. Indeed, we will show that by
taking advantage of time-reversal invariance it is possible
to construct Kramers pairs of PFs, which can be considered
as generalization of Kramers pairs of MFs studied before
[40—49]. We are also motivated to work with one-dimensional
systems where recent experiments have demonstrated
proximity-induced superconductivity of crossed Andreev
type [50-52], strong electron-electron interaction [53-56],
and high tunability of the chemical potential [11-16].
Moreover, the class of materials suitable for our scheme is
larger than for schemes with magnetic field since we do not
require large g factors.

1098-0121/2014/90(4)/045118(8)

045118-1

PACS number(s): 71.10.Pm, 05.30.Pr, 73.21.Hb, 74.45.4-c

The setup we consider (see Fig. 1) consists of two one-
dimensional channels, or quantum wires (QWs) with the
Rashba SOI. The QWs are close to an s-wave superconductor
resulting in proximity-induced superconductivity. In general,
there are two types of pairing terms. The first one is intrawire
pairing corresponding to tunneling of Cooper pairs as a whole
to either of the QWs. The second type is the interwire
pairing corresponding to “crossed Andreev reflection” [50]
where the Cooper pair gets split into two different channels.
Such processes dominate in the regime of strong electron-
electron interactions [57-59]. In this case, the system is in the
topological phase with bound states localized at the system
ends. If the chemical potential is tuned close to the SOI energy,
the system supports two MFs at each end that are time-reversal
partners of each other [45,47]. More strikingly, if the chemical
potential is lowered, e.g., to one ninth of the SOI energy,
and electron-electron interactions are strong, the zero-energy
ground state contains three PF Kramers pairs. However, similar
to Ref. [34], the degeneracy of our bound states is not protected
by a fundamental system property [60] and is susceptible to a
specific kind of disorder.

The paper is organized as follows. In Sec. II we introduce
the model system; in Sec. III we consider the noninteracting
case and find Kramers pairs of Majorana fermions, first for
wires with SOI with opposite signs and then for wires with
equal signs. In Sec. IV we consider the case with interactions,
and using a bosonization approach we derive the parafermion
bound states. Finally, we give some conclusions in Sec. V.

II. MODEL

We consider a system consisting of two Rashba QWs
brought into the proximity to an s-wave superconductor, see
Fig. 1. The upper (lower) QW is labeled by the index 7 = 1
(t = 1) and is aligned in the x direction. The kinetic part of
the Hamiltonian is given by

3292

d
Hy = Z/dx \Iflg(x)[ 2m* — u,} W (x), (1)

where W, (x)! [W,,(x)] is the creation (annihilation) operator
of an electron of mass m at position x of the T wire with spin
0/2 = £1/2 along the z axis, and p. is the chemical potential.
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FIG. 1. (Color online) Sketch of two Rashba QWs (yellow strips)
coupled to an s-wave superconductor (blue strip). The SOI field
points in positive (negative) direction, say, along the z azis for the
upper (lower) QW, T = 1 (z = 1). The intrawire proximity-induced
superconductivity of strength A, corresponds to a Cooper pair (pair
of green dots) tunneling as a whole into the t wire. The interwire
proximity-induced superconductivity of strength A, corresponds to

crossed Andreev reflection into both QWs, which dominates for
strong electron-electron interaction assumed here.

The Rashba SOI field « ., that characterizes the strength and
the direction of the spin polarization caused by SOI, points in
the z direction in each of the two QW, so the Rashba SOI term
is written as

Hy = —i Z O5R1:'/Adx T\piq(o—S)GG’axqjta“ )

7,0,0'

Here the Pauli matrices o7} 2.3 act on the spin of the electron.
We note that the spin projection on the z direction is a
good quantum number (o), and the dispersion relation for
the spin component o at the t wire is given by E., =
h*(k — tokg, ;) /2m, where the chemical potential y is tuned
to the crossing point between two spin-polarized bands at
k=0,1ie., u = Es, see Fig. 2. Here Ey ; = hzkszo,r/Zm is

the SOI energy, and ko ; = mog,/ K2 is the SOI wave vector.
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FIG. 2. (Color online) The spectrum of two QWs with positive
(negative) Rashba SOI for T = 1 (r = 1). The solid (dashed) lines
correspond to electrons (holes). The chemical potential u is tuned to
the crossing point between spin up (blue) and spin down (red). The
superconductivity couples states with opposite momenta and opposite
spins belonging to the same t wire (A,) and belonging to different
wires (A,.). The spectrum is gapless atk = 0 for A = A;Aj, marking
the topological phase transition that separates the topological phase
with two localized midgap bound states at each wire end from the
trivial phase without them.
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In addition, the intrawire superconductivity of strength A,
is proximity induced in each of the QWs by the tunneling of
Cooper pairs as a whole from the superconductor to the T wire.
The corresponding pairing term is given by

A,
H=Y f dx S Ve (000 Vg +HEl ()

7,0,0’

If the distance between two QWs is shorter than the super-
conductor coherence length then crossed Andreev reflection
is possible [50], where the electrons from the same Cooper
pair tunnel into two different QWs, resulting in the interwire
proximity-induced superconductivity [57-59,61]. The corre-
sponding pairing term is given by

A
Ho= Y [ dr Slniona v+ Hel &)

7,0,0’

where A, is the strength of the induced interwire superconduc-
tivity. Such a process is useful in Cooper pair splitters where
crossed Andreev reflection dominates [51,52,62],s0 A, > A;.

Finally, we note that H. becomes equivalent to FFLO
pairing if one gauges away the SOI in the wires. It is known
that in one-dimensional wires the Rashba SOI can be gauged
away by a spin-dependent gauge transformation [39]. In our
case, we gauge away the Rashba SOI simultaneously in both
wires by the following transformation:

Wy, = TR, ©)

which is also wire dependent (7) as a consequence of opposite
Rashba SOI. As aresult, the crossed Andreev term H, becomes
in this new gauge

7,0,0’'

X [Ace—i‘rd(kso,l —kso,1)X "IJ;G (iUZ)UU/ \Ij%a—/ + H.C.], (6)

whereas H; remains unchanged. Thus, the crossed An-
dreev superconductivity has a nonuniform pairing term
Age T koi—koi)x which manifestly breaks the translation
invariance if kg, | 7# kg, 1. This term is related to the Fulde-
Ferrel-Larkin-Ovchinnikov (FFLO) state [63—65], where the
Cooper pair has finite total momentum. Therefore, all results
derived in the main part for two wires with opposite Rashba
SOI are also valid for a system consisting of two wires without
SOI but coupled to an FFLO-type superconductor instead of
an ordinary s-wave superconductor.

The spatial dependence makes it explicit that there can be
ground states in the system with broken symmetries (such
as a charge density wave state), and thus states of different
symmetries separated by domain walls that host bound states.
We note that this situation is analogous to Ref. [34], which finds
parafermions in a one-dimensional Rashba wire coupled to a
superconductor and in the presence of magnetic fields. There
it has been pointed out [34] that the resulting gapped state is
not within the list of possible gapped one-dimensional phases
classified in Ref. [60]. As a consequence, disorder or deviations
from the mean-field description of superconductivity can lift,
in principle, the bound state degeneracy [34].
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III. KRAMERS PAIRS OF MAJORANA FERMIONS
A. SOIs of opposite sign

In this subsection we focus on the case where the Rashba
SOIs are of opposite sign in the two QWs, agjagi < 0. In
addition, the chemical potential is tuned to the SOI energy
in both QWs, u, = E, ;. To simplify analytical calculations,
we assume in what follows that ag; = —a g7 = ag. We note
that the choice of exactly opposite SOIs, such that the Fermi
velocities vy are the same in the two QWs, is convenient but
not necessary. All that is needed is to tune the individual Fermi
wave vectors kg, (via chemical potentials) to the individual
ko, values (or fractions thereof) in each wire.

The proximity-induced superconductivity leads to gaps in
the spectrum. Thus, the question arises if there are zero-energy
bound states localized at the ends of the wires. To find an
answer, we proceed by linearizing the spectrum around the
Fermi points k = 0 and k = £k = £2k, (see Fig. 2),

W = Ry e* ™ + Ly, )
Wi = Lige ™ + Ry, ®)
Wi = Lije ™ + Ry, ©)
Wip = Ripe™™* + Lit, (10)

where R;,;(x) [L.,(x)] are slowly varying right (left) mover
fields of the electron with the spin o /2 at the T wire [10,66,67].
Thus, Hy + Hy, reduces to

Hyin = ihvp Z/dx[Liaawa — Rl 3R], (11)
and the supercond:l(;tivity part to
H, = Z/dx %(RLL; ~LLR]
+LIL R~ RILT 4 He, (12)

A .
H. = Tc/dx ANARESY AR 3

t gt _ Rl R
+RI Rl — R RI +He). (13)

Here vp = hkp/m is the Fermi velocity. We note that
the interwire superconductivity A, couples only states with
momenta close to zero, see Fig. 2.

Combining together Hyi,, Hy, and H,, we arrive at the fol-
lowing Hamiltonian density H, H = (1/2) f dx UT (e yH ¥ (x),

H = hurpkps + A(ti1202 + 120201 p3)/2
+ A1(1 + 3)mo201/2 + Ai(1 — 13)20201 /2, (14)

where the basis is chosen to be & = (R11, L1, Ry1, Ly, RTI,
L}, Rl L', Ry, Ly, Ryy, Lin Rl LT, RI, LT, The
Pauli matrices 1y 23 (072,3) act in the QW (spin) space. The
Pauli matrices 1,23 (p1,2,3) act in the electron-hole (right-
left mover) subspace. The time-reversal operator Ur = 0,0,
satisfies U;H*(—k)UT = H(k). The particle-hole symmetry

operator Up = 5, satisfies U;H*(—k)Up = —H(k). As a
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result, the system under consideration belongs to topological
symmetry class DIII [68].
The spectrum of the system is given by

EZ . = (hupk)* + AZ, (15)

1
E}, .= E[2(71qu)2 + AT+ A2 4247

+ \/(A% — A2)? + 4A2[4(hurk)? + (A1 + AD2])s
(16)

where each level is twofold degenerate due to the time-reversal
invariance of the system. The system is gapless at k = 0 if
A2 = A1Aj and at k = £2V A2 — A3 /hup if Aj = A7 <
A.. In the latter case, the gap closes twice since the levels
are twofold degenerate. Although this does not change the
number of bound states, the supports of the corresponding
wave functions are different.

Generally,if A2 > AjAjand A; # Aj, there are two zero-
energy bound states localized at the left end and two at the
right end of the system. These two states are Kramers partners
protected by the time-reversal symmetry. Below we provide
the wave function ®yr;(x) of one of these left-localized states
written in the basis (W, Wy, W], Wi, Wy, v g, vl el
Applying the time-reversal symmetry operator 7', we find the
wave function of its Kramers partner ®ppi(x) = T Pypr(x).
The general form of the Majorana fermion wave function is
then given by

Jix) 81(x)

£1(0) i

£ §i0)
D = [ 1] e = gﬁg) L an

gi00) e

fr ) gi00)

g ~ i),

which follows from the requirement that the Majorana oper-
ators [belonging to zero-energy eigenstates of Eq. (33)] be
self-adjoint: \fJMpl(x) = lilltﬂ;](x). From now on, without loss
of generality, we assume that A; > Aj.

Next, we solve the eigenvalue equation for the Hamiltonian
density given in Eq. (33) for zero eigenenergy explicitly
(following Ref. [66]). If A} + A7 > 2A., the components of
the corresponding wave functions are found to be given by

fix) = —igh(x) = (e7/% — e™/%)

X Ac[A+ Af + \/(Al + A2 —4A2], (18)

filr) = —igi(x) = =247 7/®

_e—x/§j+ikpx\/(A1 + AT)Z _4Az

x[A1+ AT+ \/(Al + A7)? —4A2]

+ 1AL+ Ar+ (A1 + A2 —4a2], (19)
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where the localization lengths are given by

Ev1 = hup/A4,

£1y = 2hup/[A) — A £ \/(Al +ADT—4A2]. 0)

If A; + A7 < 2A,, the wave function components are given
by

fi(x) = igi(x) = —e /% sin(k;x)

X 2A[Ar + A7 +iJ4A2 — (A + AD2) @)

fi) = igi () = T JANT — (A 4 A7

x [Ar+ A7 +i\/482 — (A + A7)

— B[ AL+ Ap i /402 — (A + ATP]

X [cos(klx)\/4Ag — (A + A7)?
+ sin(kx)(A; + AI)], (22)

where the localization length £13 and the wave vector k| are
given by

& =2hvp/ (A = A7),

ky = i\/4A§ — (A + AD?/2hup. 23)

The case of A} + A7 = 2A, should be treated separately
leading to

fitx) = —igi(x) = —ixe /B (A + Ap/hup,  (24)

filx) = —igh(x) = —i{2e*/rtikex
—e B2+ x(A; + A7)/hur]). (25)

As a result, if Af > A1A7 and A # Az, we find two
zero-energy bound states at each system end, and we denote
the corresponding Majorana operators (say at the left end)
as Wvgr = \Illi,ﬂ:f. These MFs are Kramers partners of each
other, so that their wave functions are related by ®ypi(x) =
T ®\ri(x). Here the time-reversal operator T is given by
T =ioyK, where K®(x) = ®*(x).

B. SOIs of equal sign

In this subsection, we consider the case where the two QWs
have the same sign of Rashba SOI, agjar; > 0. However, in
this case, in contrast to the previous section, we assume that
ar) > api > 0. Otherwise, as mentioned above, the SOI can
be gauged away completely without generating the position-
dependent crossed Andreev pairing. Again, MFs emerge as
a result of a competition between two pairing terms, and,
importantly, the crossed Andreev pairing is possible only at
k = 0 but not at finite momenta, where states with opposite
spins do not have opposite momenta, see Fig. 3.

In this subsection we use the same notation for Hamiltonian
as in the previous one. We believe that this should not lead
to any misinterpretation but could help to make connections
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FIG. 3. (Color online) The spectrum of two QWs with positive
Rashba SOI in both QWs. The solid (dashed) lines correspond
to electrons (holes). The chemical potential . is tuned to the
crossing point between spin up (blue) and spin down (red). The
superconductivity couples states with opposite momenta and opposite
spins belonging to the same t wire (A,) and belonging to different
wires (A.). The spectrum is gapless atk = 0 for A = A A1, marking
the topological phase transition that separates the topological phase
with two localized midgap bound states at each wire end from the
trivial phase without them.

between two setups. In addition, taking into account that
calculations are very similar in the two case, we try to keep
the discussion short and omit details.

Again we linearize the spectrum around the Fermi points
k=0and kp; = £2ky -,

Wy = Rye™n* + Ly, (26)
Wi = Lyge " + Ry, @7)
Wi, = L1, + Ry e’*r*, (28)
Wii = Ryji + Lije 1%, (29)

where R;,(x) [L.s(x)] are slowly varying right (left) mover
fields of the electron with the spin o/2 at the T wire [10,66,67].
Here we again assume that the chemical potentials are tuned
to the SO energy, i = Ego ;-

The kinetic part of the Hamiltonian Hy + Hy, reduces to

Hin =Y [ dx ihopelLl 0. Lo — Rl 30 Re ). GO
7,0
and the superconductivity part to
Av ot 7t gt pf
Hs = Z/d" 7 Ry = LRy,
+LI R~ RILT +He), 31
A,
_ B¢ i pi t ot
H. = ?/dx (L Rjp — RyiLy,

+ LR}, — RILY, +He). (32)
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Here vp; = hkp./m is the Fermi velocity. Again, the interwire superconductivity A, acts only at momenta close to zero, see

Fig. 3.

The Hamiltonian density H in terms of Pauli matrices is given by

H = hopik(1 + 13)p3/2 + hupik(1 — 13)p3/2 + Actina(o1p2 — 0202)/2 + Ar(1 + T)020201/2 + Ar(1 — T3)n20201 /2,

where the basis is chosen to be W
spectrum is given by

= (R11, L11, Ry1, Ly, Ru’ L11’ RIl’ Lh’

(33)

Rii, L1y, Rit, L1i, Ril, Lil, RII, L! ;). The energy

EZ . = (hupk)* + A2, (34)

1
Ej..= z[A% + A3 +2A% + B (vg, + Uy )k

+ /(a2 -

where each level is twofold degenerate. We note again that
the spectrum is gapless at k = 0 provided that A2 = AjA;.
If A2 > A Aj, we find two zero-energy bound states at each
system end. The corresponding MF wave functions are too
involved to be displayed in a general case. However, in the
special simplified case with A} = A7 and vp| = vp,, the MFs
are defined by Eq. (17) with

i) =igi(x) =

filx) = igh(x) = (e /% —

The localization length are given by &, = hug/A| and & =
hup/(Ac — Ay).

(e—ikmxe—x/él _ e—X/Ez)’ (36)

e rteT Ay (3T)

IV. KRAMERS PAIRS OF PARAFERMIONS

Electron-electron interaction effects become important if
the chemical potential is tuned to be, for example, at one third
of the SOl energy, (11,3, = Eso,-/9, such that the Fermi wave
vectors become +kg, (1 == 1/3). In this case, the interwire
pairing is possible only if backscattering terms of finite
strength gp are taken into account to generate momentum-
conserving terms [34,69-73] (Fig. 4). Below we focus on the
second case of Rashba SOI of the same sign in both QWs.

E E
3 } T
9B QB T=1
=/ N IR
i / \ H1/31 ,' ~ |/ =" M1/3,1
a 1 / AAL
(a) 1. I ’ e L
E
1
P gB =1 913\ gB =1
/ \ VAR / M1 3,1
s /3 , Ai\\ ; \ /
FIG. 4. (Color online) The momentum-conserving scattering

events corresponding to (a) H¢ and (b) H{’, for the chemical potential
Hi3r = Eg /9 with associated Fermi wave vectors k(1 £ 1/3).
See the caption of Fig. 2 for notations.

A2’ HAA2A| + AD? + B (UE, — Udy) K+ 4A2R2(up — Up) K2 + 212 (02, — v2,) (A2 — A2)k?],

(35)

In particular, the interwire superconductivity Hamiltonian
density in Nambu space is given by

He = go[LT RT(LT RiD(LiiR]) — RIGLE

X(R iLiD(Ri L 1)+LT R"(L Rll)(LnR i

— R L (R LRy L) + Hell, (38)
where the coupling strength is given by g. « Acg%. The
structure of H{¢ can be understood as follows. If a Cooper
pair splits and each partner tunnels into a different QW (i.e.,
LT Ri-) both electrons go to the same momentum kg, as a
result the finite momentum of such a Cooper pair should be
compensated by two backscattermg events taking place inside
each of the QWs (i.e., L Ri1 and L”Rﬂ)

Next, we note that Hee and H; [deﬁned by Eq. (31)]
do not commute, so these two terms cannot be ordered
simultaneously in the bosonized represenation (see below).
Thus, only these terms can be dominant and result in the
energy gap. In what follows, we assume that our setup is in
the regime where H{* dominates over H,. This corresponds
to two possible cases: the scaling dimension K. of H¢ is the
lowest one or the bare coupling constant g, is of order one.
The scaling dimension K, = [K,' + K; ' + 9(Ks + K,)]/4
can be found in a usual way in the basis of conjugated bosonic
fields ¢a,ﬂ,y,§ and 90(,/3,)/,5: Xrto = [r¢a + 90( + T("‘Pﬂ + 0/3) +
o(rg, +6, + t(rés + 65)1/2. Here the bosonic field xi;o
(Xizs) corresponds to the fermion operator R;, (L.y,). The
scaling dimension of H is given in the same basis by
K, = [KJI + Kﬂ_1 + K, + K;s]/4. Comparing K and K. we
see that in the regime of strong electron-electron interaction,
when the Luttinger parameters are substantially smaller than
one, the crossed Andreev pairing is dominant, K; < K,.

The intrawire pairing term H;¢ = » | H¢, that commutes
with H¢¢ is given by

M, = ge[RL LI (R Le)(R L))
— LY RN (LRI YL R +Hel,  (39)

where g, « Atg%.
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Next, we perform a bosonization of the fermions [69] in
Nambu space. For this we represent electron (hole) operators as
R,, = ¢'® and L., = ¢!®iw (RIG — ¢i%1re and Lia = ¢i¥10)
in terms of chiral fields ¢,,, and q?rm, where r refers to the
right/left movers, and t (o) labels the QW (spin). We then get

HE =2g.[cosQepiiy — 26111 — di11 + Piin)
— cos2py1 — 26111 — ¢1ii + ditr)
x cos(2¢111 — 2¢111 — din + 111)
— cos2pyi1 — 26111 — 111 + )]s (40)

HE, =28:[c0sQp1e1 — 2¢1.i — Pirt + Pie1)
— c0osQ2¢ici — 20101 — 11 + Pl (@D)

Next, we separate the total Hamiltonian into two uncoupled
commuting parts H + H, where H (H) operates in the space
Spanned by (¢rrl7¢rri) [(¢rrif¢rrl)]' Thus, H and H operate
in time-reversal conjugated spaces, which we can treat as
two independent subsystems. Thus, we will focus only on
H, knowing that the solution for H can be obtained by direct
analogy or via the requirement of time-reversal symmetry.
To simplify calculations, we introdyce new notations 1,;, =
2¢rnr - ¢F1’o and ﬁrta = 2¢rra - ¢f1:a~ This results in

H = 2g1 cos(ni — fiiin) + 2gi cos(niiy — #tit)
+ 2gccos(nit — fini) + 28 cosmiy — Min)- (42)

Searching for bound states, we impose vanishing boundary
conditions at x = 0,£, which couples right and left movers,
Nieoe (X = 0,8) = Nie(x =0,€) + 7. Next, we unfold the
QWs [33,34,69,74-77] by formally extending them from —¢
to £ by defining new chiral fields such that the boundary
conditions are satisfied automatically,

N171(x), x>0

e = {nm<—x> +m, x <0, @

and analogously we define £, with 7j’s. Next, we transform
the chiral fields to conjugate fields ¢,60, via & = (¢; +
01 4+ 31 + 316,)/2 and &, = (—¢p; + 6, — 31y + 376,)/2.
Finally, we arrive at

2) . g-cos(¢ +3t¢p), x>0,

(44)
4g. cos(¢y) cos(36,), x <0.

Hee — {
Working in the limit of strong electron-electron interactions,
we assume that g, and g, are large enough so that the
interaction terms are dominant, resulting in the pinning of
the fields to constant values such that the total energy is
minimized [31,33-38]. Thus, we conclude that the field
¢1 = M is pinned uniformly to minimize the kinetic energy.
In addition, the two noncommuting conjugated fields 6, and
¢, are pinned in two neighboring regions separated by an
infinitesimal interval,

6, =nm(14+M+42m)/3, x <0, (45)

pr=m(1+M+2n)/3, x>0, (46)

PHYSICAL REVIEW B 90, 045118 (2014)

Hi/3  Uo Hi/3 Mo H1/3

]
£)
]

FIG. 5. (Color online) Two-dimensional system of parafermions
consisting of an array of coupled QWs with proximity-induced
interwire and intrawire superconductivity, see Fig. 1 in the main
part. The transition between the interwire-pairing-dominant phase
(113) and the intrawire-pairing-dominant phase (u,) is controlled
by electrical gates (green slabs). Parafermions are formed initially
at the boundaries between these two phases. The tunneling ¢
between two neighboring QWs not separated by a superconductor
results in deconfinement [36] and in a sea of time-reversal invariant
parafermions.

where M, n, and m are integer-valued operators. We note
that the only nonzero commutator is [m,n] = 3i /4w, which
follows directly from [¢(x),0:(x")] = —(im/3)sgn(x — x'),
which in turn follows from the standard commutation relation
for the chiral fields &, and £, defined in Eq. (43). Next, we
define two operators that commute with the Hamiltonian, so
that they correspond to zero energy states,

(m—n)

- 4 - 4
ap=¢'3 ap = e 3, 47)

These operators act at the QW ends [33] and are easily seen
to satisfy o = o} =1 and a7 = ajee”*7/3. Thus, they
form parafermions. We further note that the ground state
of H is threefold degenerate. Indeed, from (oefoq)3 =1 we
see that ala; has three distinct eigenvalues ¢274/3, where
q = 0, £1 (mod 3). The corresponding eigenstates are denoted
by |g). With an appropriate phase choice [33], we find
a1l|q) = |g + 1), so the ground state is threefold degenerate in
the considered subspace. Analogously, we obtain the Kramers
partners from H,a, = a;(m,n — m,ni), where, again, m and
71 are integer-valued operators, and g = 0, &1 (mod 3). Thus,
the ground state of the entire system |g) ® |G) consist of
three Kramers pairs of parafermions. However, as shown in
Ref. [34], the degeneracy could be lifted by disorder. As a
result, the parafermion phase found here does not belong to
the topological phases classified in [60].

We note that due to our basis choice the constructed states
lg),1g) are not particle-hole symmetric. However, one can
easily find new particle-hole invariant states by combining
two Kramers partners with appropriate phase.

So far we have considered QWs of finite length which are
entirely in the nontrivial phase supporting PFs localized at the
wire ends. However, by local tuning of the chemical potential
W, we can move parafermions inside the QWs, see Fig. 5.
As shown above, if 1 = (1,3, the interwire superconductivity
dominate. However, if © = u, is significantly detuned from
173, the interwire superconductivity H?* is suppressed. Thus,
the intrawire superconductivity H; dominates, driving this part
of the system into the trivial phase. As before, PFs are localized
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at the boundary between two phases. All this allows us to
generate PF networks that can also extend to two-dimensional
setups [78]. Introducing coupling between parafermions one
generates a sea of PFs, which can potentially result in
the Fibonacci phase as argued in Ref. [36]. At the same time,
the extension to a two-dimensional system can help to stabilize
this phase and make it less susceptible to disorder.

The presence of the PFs in the gap can be tested in setups
similar to the ones developed for MFs [11-16]. In particular,
one can detect PFs by the zero bias peak in the conductance.
The periodicity of the Josephson current as function of the
superconducting phase provides more information. As shown
before, the period for Z, PFs is 2zn [33]. For time-reversal
invariant PFs, similar to time-reversal invariant MFs [46],
several periods can be observed with 27 n being the largest
one, i.e., 67 for the PFs considered in this work.

V. CONCLUSIONS

We showed that it is possible to construct Kramers pairs
of PFs in a time-reversal invariant system. As an example
of such a setup we considered Rashba QWs coupled to a
superconductor. Given the rapid experimental progress with
similar ultraclean systems designed for MFs [11-13,16], the
proposed setup seems to be within experimental reach. In
addition, we mention that a similar scheme works also for
edge states of fractional topological insulators (or fractional
quantum spin Hall effect system), where different topological
regions can be induced by superconductivity and transverse
hopping. We also envisage the extension of our system to
a 2D network that might result in a Fibonacci phase [36].
The construction of quantum gates for time-reversal invariant
parafermions is an interesting problem by itself, and could
be addressed in further work. We also leave for further
work a study of the splitting potentially caused by disorder
effects. However, we envisage that if disorder effects lift the
degeneracy of the bound states, the resulting energy splitting
of states can serve as a useful tool to experimentally access
the level of the initial ground state degeneracy, such that we

PHYSICAL REVIEW B 90, 045118 (2014)

can distinguish directly one Kramers pair of MFs from three
Kramers pairs of PFs.
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APPENDIX : ALTERNATIVE WAY TO BOSONIZE

In this Appendix we show that the bosonization of the
effective Hamiltonian can also be performed by introducing
bosonic operators for electrons only, ¢,,. Thus, introducing
bosonic operators for both electrons and holes (“Nambu space
representation”), as done in Sec. IV, is not necessary. However,
the Nambu space representation is more convenient for time-
reversal invariant systems.

In a first step, Egs. (40) and (41) become

H = 2gc[cos(oity + 2¢111 — $111 — 111)
x cos(2p1y; + 2¢111 — 111 — P1iD)],
HE, = 280 081zt + 2011 — Pir1 — Dici)s

leading to

(AD)

H = 2g1 cos(nii1 + niit) + 2gi cos(miir + n1it)
+2gc cos(mit + nii1) + 28c cos(niiy + M), (A2)

where we introduced the new chiral fields 1n,;o = 2¢,76 —
Prro- Again, we double the system in order to satisfy
the vanishing boundary conditions at the two system ends
automatically,

_ nl‘[l(-x)a X > 07
f1:(x) = {nm(—X) Yx ox <0, (A3)

PR L t3(C2 x >0,
Siele) = {nm(—x) +m, x<0. A

Next, we transform the chiral fields to conjugate fields ¢ and 6
via&s; = (¢ + s61 + 31¢ + 3156,)/2. Asaresult, we finally
arrive at Eq. (44).
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