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Time-reversal invariant parafermions in interacting Rashba nanowires
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We propose a scheme to generate pairs of time-reversal invariant parafermions. Our setup consists of two
quantum wires with Rashba spin-orbit interactions coupled to an s-wave superconductor, in the presence of
electron-electron interactions. The zero-energy bound states localized at the wire ends arise from the interplay
between two types of proximity-induced superconductivity: the usual intrawire superconductivity and the
interwire superconductivity due to crossed Andreev reflections. If the latter dominates, which is the case for
strong electron-electron interactions, the system supports Kramers pair of parafermions. Moreover, the scheme
can be extended to a two-dimensional sea of time-reversal invariant parafermions.
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I. INTRODUCTION

Topological properties of condensed matter systems have
attracted wide attention in recent years. In particular, lo-
calized bound states emerging at the interface between
different topological regions have been studied intensely
both theoretically and experimentally. Majorana fermions
(MFs), zero-energy bound states with non-Abelian braid
statistics, were predicted in several systems such as frac-
tional quantum Hall effect (FQHE) systems [1], topological
insulators [2–4], optical lattices [5,6], p-wave superconduc-
tors [7], nanowires with Rashba spin-orbit interaction (SOI)
[8–17], self-tuning RKKY systems [18–20], and graphenelike
systems [21–26].

Though MFs possess non-Abelian statistics, it is of Ising
type which is not sufficient for universal quantum computation,
in contrast to Fibonacci anyons [27]. The basic building
blocks for the latter anyons are parafermions (PFs), also
referred to as fractional MFs, which allow for more universal
quantum operations than MFs [28–38]. Similarly to MFs, PFs
are bound states that arise at the interface between two distinct
topological phases. In contrast to MFs, however, PFs owe their
peculiar properties to strong electron-electron interactions.
As a result, most proposals to host PFs invoke edge states
of FQHE systems, and to stabilize them at zero energy one
relies on particle-hole symmetry generated by proximity
to a superconductor [31–34,36,37]. However, while strong
magnetic fields are required for the FQHE, they are detrimental
for superconductivity, making the experimental realization of
such proposals challenging [36,39]. This has motivated us to
search for alternatives to generate PFs with superconductivity
but without magnetic fields. Indeed, we will show that by
taking advantage of time-reversal invariance it is possible
to construct Kramers pairs of PFs, which can be considered
as generalization of Kramers pairs of MFs studied before
[40–49]. We are also motivated to work with one-dimensional
systems where recent experiments have demonstrated
proximity-induced superconductivity of crossed Andreev
type [50–52], strong electron-electron interaction [53–56],
and high tunability of the chemical potential [11–16].
Moreover, the class of materials suitable for our scheme is
larger than for schemes with magnetic field since we do not
require large g factors.

The setup we consider (see Fig. 1) consists of two one-
dimensional channels, or quantum wires (QWs) with the
Rashba SOI. The QWs are close to an s-wave superconductor
resulting in proximity-induced superconductivity. In general,
there are two types of pairing terms. The first one is intrawire
pairing corresponding to tunneling of Cooper pairs as a whole
to either of the QWs. The second type is the interwire
pairing corresponding to “crossed Andreev reflection” [50]
where the Cooper pair gets split into two different channels.
Such processes dominate in the regime of strong electron-
electron interactions [57–59]. In this case, the system is in the
topological phase with bound states localized at the system
ends. If the chemical potential is tuned close to the SOI energy,
the system supports two MFs at each end that are time-reversal
partners of each other [45,47]. More strikingly, if the chemical
potential is lowered, e.g., to one ninth of the SOI energy,
and electron-electron interactions are strong, the zero-energy
ground state contains three PF Kramers pairs. However, similar
to Ref. [34], the degeneracy of our bound states is not protected
by a fundamental system property [60] and is susceptible to a
specific kind of disorder.

The paper is organized as follows. In Sec. II we introduce
the model system; in Sec. III we consider the noninteracting
case and find Kramers pairs of Majorana fermions, first for
wires with SOI with opposite signs and then for wires with
equal signs. In Sec. IV we consider the case with interactions,
and using a bosonization approach we derive the parafermion
bound states. Finally, we give some conclusions in Sec. V.

II. MODEL

We consider a system consisting of two Rashba QWs
brought into the proximity to an s-wave superconductor, see
Fig. 1. The upper (lower) QW is labeled by the index τ = 1
(τ = 1̄) and is aligned in the x direction. The kinetic part of
the Hamiltonian is given by

H0 =
∑
τ,σ

∫
dx �†

τσ (x)

[−�
2∂2

x

2m
− μτ

]
�τσ (x), (1)

where �τσ (x)† [�τσ (x)] is the creation (annihilation) operator
of an electron of mass m at position x of the τ wire with spin
σ/2 = ±1/2 along the z axis, and μτ is the chemical potential.
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FIG. 1. (Color online) Sketch of two Rashba QWs (yellow strips)
coupled to an s-wave superconductor (blue strip). The SOI field
points in positive (negative) direction, say, along the z azis for the
upper (lower) QW, τ = 1 (τ = 1̄). The intrawire proximity-induced
superconductivity of strength �τ corresponds to a Cooper pair (pair
of green dots) tunneling as a whole into the τ wire. The interwire
proximity-induced superconductivity of strength �c corresponds to
crossed Andreev reflection into both QWs, which dominates for
strong electron-electron interaction assumed here.

The Rashba SOI field αRτ , that characterizes the strength and
the direction of the spin polarization caused by SOI, points in
the z direction in each of the two QW, so the Rashba SOI term
is written as

Hso = −i
∑
τ,σ,σ ′

αRτ

∫
dx τ�†

τσ (σ3)σσ ′∂x�τσ ′ . (2)

Here the Pauli matrices σ1,2,3 act on the spin of the electron.
We note that the spin projection on the z direction is a
good quantum number (σ ), and the dispersion relation for
the spin component σ at the τ wire is given by Eτσ =
�

2(k − τσkso,τ )2/2m, where the chemical potential μ is tuned
to the crossing point between two spin-polarized bands at
k = 0, i.e., μ1 = Eso, see Fig. 2. Here Eso,τ = �

2k2
so,τ /2m is

the SOI energy, and kso,τ = mαRτ/�
2 is the SOI wave vector.

FIG. 2. (Color online) The spectrum of two QWs with positive
(negative) Rashba SOI for τ = 1 (τ = 1̄). The solid (dashed) lines
correspond to electrons (holes). The chemical potential μ is tuned to
the crossing point between spin up (blue) and spin down (red). The
superconductivity couples states with opposite momenta and opposite
spins belonging to the same τ wire (�τ ) and belonging to different
wires (�c). The spectrum is gapless at k = 0 for �2

c = �1�1̄, marking
the topological phase transition that separates the topological phase
with two localized midgap bound states at each wire end from the
trivial phase without them.

In addition, the intrawire superconductivity of strength �τ

is proximity induced in each of the QWs by the tunneling of
Cooper pairs as a whole from the superconductor to the τ wire.
The corresponding pairing term is given by

Hs =
∑
τ,σ,σ ′

∫
dx

�τ

2
[�τσ (iσ2)σσ ′�τσ ′ + H.c.]. (3)

If the distance between two QWs is shorter than the super-
conductor coherence length then crossed Andreev reflection
is possible [50], where the electrons from the same Cooper
pair tunnel into two different QWs, resulting in the interwire
proximity-induced superconductivity [57–59,61]. The corre-
sponding pairing term is given by

Hc =
∑
τ,σ,σ ′

∫
dx

�c

2
[�τσ (iσ2)σσ ′�τ̄σ ′ + H.c.], (4)

where �c is the strength of the induced interwire superconduc-
tivity. Such a process is useful in Cooper pair splitters where
crossed Andreev reflection dominates [51,52,62], so �c > �τ .

Finally, we note that Hc becomes equivalent to FFLO
pairing if one gauges away the SOI in the wires. It is known
that in one-dimensional wires the Rashba SOI can be gauged
away by a spin-dependent gauge transformation [39]. In our
case, we gauge away the Rashba SOI simultaneously in both
wires by the following transformation:

� ′
τσ = eiτσkso,τ x�τσ , (5)

which is also wire dependent (τ ) as a consequence of opposite
Rashba SOI. As a result, the crossed Andreev term Hc becomes
in this new gauge

H ′
c = 1

2

∑
τ,σ,σ ′

∫
dx

× [�ce
−iτσ (kso,1−kso,1̄)x� ′

τσ (iσ2)σσ ′� ′
τ̄ σ ′ + H.c.], (6)

whereas Hs remains unchanged. Thus, the crossed An-
dreev superconductivity has a nonuniform pairing term
�ce

−iτσ (kso,1−kso,1̄ )x, which manifestly breaks the translation
invariance if kso,1 �= kso,1̄. This term is related to the Fulde-
Ferrel-Larkin-Ovchinnikov (FFLO) state [63–65], where the
Cooper pair has finite total momentum. Therefore, all results
derived in the main part for two wires with opposite Rashba
SOI are also valid for a system consisting of two wires without
SOI but coupled to an FFLO-type superconductor instead of
an ordinary s-wave superconductor.

The spatial dependence makes it explicit that there can be
ground states in the system with broken symmetries (such
as a charge density wave state), and thus states of different
symmetries separated by domain walls that host bound states.
We note that this situation is analogous to Ref. [34], which finds
parafermions in a one-dimensional Rashba wire coupled to a
superconductor and in the presence of magnetic fields. There
it has been pointed out [34] that the resulting gapped state is
not within the list of possible gapped one-dimensional phases
classified in Ref. [60]. As a consequence, disorder or deviations
from the mean-field description of superconductivity can lift,
in principle, the bound state degeneracy [34].
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III. KRAMERS PAIRS OF MAJORANA FERMIONS

A. SOIs of opposite sign

In this subsection we focus on the case where the Rashba
SOIs are of opposite sign in the two QWs, αR1αR1̄ < 0. In
addition, the chemical potential is tuned to the SOI energy
in both QWs, μτ = Eso,τ . To simplify analytical calculations,
we assume in what follows that αR1 = −αR1̄ = αR . We note
that the choice of exactly opposite SOIs, such that the Fermi
velocities υF are the same in the two QWs, is convenient but
not necessary. All that is needed is to tune the individual Fermi
wave vectors kFτ (via chemical potentials) to the individual
kso,τ values (or fractions thereof) in each wire.

The proximity-induced superconductivity leads to gaps in
the spectrum. Thus, the question arises if there are zero-energy
bound states localized at the ends of the wires. To find an
answer, we proceed by linearizing the spectrum around the
Fermi points k = 0 and k = ±kF ≡ ±2kso (see Fig. 2),

�11 = R11e
ikF x + L11, (7)

�11̄ = L11̄e
−ikF x + R11̄, (8)

�1̄1 = L1̄1e
−ikF x + R1̄1, (9)

�1̄1̄ = R1̄1̄e
ikF x + L1̄1̄, (10)

where Rτσ (x) [Lτσ (x)] are slowly varying right (left) mover
fields of the electron with the spin σ/2 at the τ wire [10,66,67].
Thus, H0 + Hso reduces to

Hkin = i�υF

∑
τ,σ

∫
dx[L†

τσ ∂xLτσ − R†
τσ ∂xRτσ ], (11)

and the superconductivity part to

Hs =
∑

τ

∫
dx

�τ

2
(R†

τ1L
†
τ 1̄ − L

†
τ 1̄R

†
τ1

+L
†
τ1R

†
τ 1̄ − R

†
τ 1̄L

†
τ1 + H.c.), (12)

Hc = �c

2

∫
dx (L†

11L
†
1̄1̄ − L

†
1̄1̄L

†
11

+R
†
1̄1R

†
11̄ − R

†
11̄R

†
1̄1 + H.c.). (13)

Here υF = �kF /m is the Fermi velocity. We note that
the interwire superconductivity �c couples only states with
momenta close to zero, see Fig. 2.

Combining together Hkin, Hs , and Hc, we arrive at the fol-
lowing Hamiltonian densityH, H = (1/2)

∫
dx �̂†(x)H�̂(x),

H = �υF k̂ρ3 + �c(τ1η2σ2 + τ2η2σ1ρ3)/2

+�1(1 + τ3)η2σ2ρ1/2 + �1̄(1 − τ3)η2σ2ρ1/2, (14)

where the basis is chosen to be �̂ = (R11, L11, R11̄, L11̄, R
†
11,

L
†
11, R

†
11̄, L

†
11̄, R1̄1̄, L1̄1, R1̄1̄, L1̄1̄, R

†
1̄1̄, L

†
1̄1, R

†
1̄1̄, L

†
1̄1̄). The

Pauli matrices τ1,2,3 (σ1,2,3) act in the QW (spin) space. The
Pauli matrices η1,2,3 (ρ1,2,3) act in the electron-hole (right-
left mover) subspace. The time-reversal operator UT = σ2ρ1

satisfies U
†
TH∗(−k)UT = H(k). The particle-hole symmetry

operator UP = η1 satisfies U
†
PH∗(−k)UP = −H(k). As a

result, the system under consideration belongs to topological
symmetry class DIII [68].

The spectrum of the system is given by

E2
τ,± = (�υF k)2 + �2

τ , (15)

E2
2,±,± = 1

2

[
2(�υF k)2 + �2

1 + �2
1̄ + 2�2

c

±
√(

�2
1 − �2

1̄

)2 + 4�2
c[4(�υF k)2 + (�1 + �1̄)2]

]
,

(16)

where each level is twofold degenerate due to the time-reversal
invariance of the system. The system is gapless at k = 0 if
�2

c = �1�1̄ and at k = ±2
√

�2
c − �2

1/�υF if �1 = �1̄ <

�c. In the latter case, the gap closes twice since the levels
are twofold degenerate. Although this does not change the
number of bound states, the supports of the corresponding
wave functions are different.

Generally, if �2
c > �1�1̄ and �1 �= �1̄, there are two zero-

energy bound states localized at the left end and two at the
right end of the system. These two states are Kramers partners
protected by the time-reversal symmetry. Below we provide
the wave function �MF1(x) of one of these left-localized states
written in the basis (�11, �11̄,�†

11, �
†
11̄, �1̄1, �1̄,1̄, �

†
1̄1, �

†
1̄1̄).

Applying the time-reversal symmetry operator T , we find the
wave function of its Kramers partner �MF1̄(x) = T �MF1(x).
The general form of the Majorana fermion wave function is
then given by

�MF1(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1(x)

g1(x)

f ∗
1 (x)

g∗
1 (x)

f1̄(x)

g1̄(x)

f ∗̄
1 (x)

g∗̄
1 (x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, �MF1̄(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g∗
1 (x)

−f ∗
1 (x)

g1(x)

−f1(x)

g∗̄
1 (x)

−f ∗̄
1 (x)

g1̄(x)

−f1̄(x),

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (17)

which follows from the requirement that the Majorana oper-
ators [belonging to zero-energy eigenstates of Eq. (33)] be
self-adjoint: �̂MF1(x) = �̂

†
MF1(x). From now on, without loss

of generality, we assume that �1 > �1̄.
Next, we solve the eigenvalue equation for the Hamiltonian

density given in Eq. (33) for zero eigenenergy explicitly
(following Ref. [66]). If �1 + �1̄ > 2�c, the components of
the corresponding wave functions are found to be given by

f1(x) = −ig∗
1 (x) = (e−x/ξ2 − e−x/ξ2̄ )

×�c

[
�1 + �1̄ +

√
(�1 + �1̄)2 − 4�2

c

]
, (18)

f1̄(x) = −ig∗̄
1 (x) = −2�2

ce
−x/ξ2

− e−x/ξ1̄+ikF x

√
(�1 + �1̄)2 − 4�2

c

× [
�1 + �1̄ +

√
(�1 + �1̄)2 − 4�2

c

]

+ 1
2e−x/ξ2̄

[
�1 + �1̄ +

√
(�1 + �1̄)2 − 4�2

c

]2
, (19)
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where the localization lengths are given by

ξ±1 = �υF /�±1,

ξ±2 = 2�υF /
[
�1 − �1̄ ±

√
(�1 + �1̄)2 − 4�2

c

]
. (20)

If �1 + �1̄ < 2�c, the wave function components are given
by

f1(x) = ig∗
1 (x) = −e−x/ξ3 sin(k1x)

× 2�c

[
�1 + �1̄ + i

√
4�2

c − (�1 + �1̄)2
]
, (21)

f1̄(x) = ig∗̄
1 (x) = e−x/ξ1̄+ikF x

√
4�2

c − (�1 + �1̄)2

× [
�1 + �1̄ + i

√
4�2

c − (�1 + �1̄)2
]

− e−x/ξ3
[
�1 + �1̄ + i

√
4�2

c − (�1 + �1̄)2
]

× [
cos(k1x)

√
4�2

c − (�1 + �1̄)2

+ sin(k1x)(�1 + �1̄)
]
, (22)

where the localization length ξ±3 and the wave vector k1 are
given by

ξ3 = 2�υF / (�1 − �1̄) ,

k1 = ±
√

4�2
c − (�1 + �1̄)2/2�υF . (23)

The case of �1 + �1̄ = 2�c should be treated separately
leading to

f1(x) = −ig∗
1 (x) = −ixe−x/ξ3 (�1 + �1̄)/�υF , (24)

f1̄(x) = −ig∗̄
1 (x) = −i{2e−x/ξ1̄+ikF x

− e−x/ξ3 [2 + x(�1 + �1̄)/�υF ]}. (25)

As a result, if �2
c > �1�1̄ and �1 �= �1̄, we find two

zero-energy bound states at each system end, and we denote
the corresponding Majorana operators (say at the left end)
as �MFτ = �

†
MFτ . These MFs are Kramers partners of each

other, so that their wave functions are related by �MF1̄(x) =
T �MF1(x). Here the time-reversal operator T is given by
T = iσ2K , where K�(x) = �∗(x).

B. SOIs of equal sign

In this subsection, we consider the case where the two QWs
have the same sign of Rashba SOI, αR1αR1̄ > 0. However, in
this case, in contrast to the previous section, we assume that
αR1 > αR1̄ > 0. Otherwise, as mentioned above, the SOI can
be gauged away completely without generating the position-
dependent crossed Andreev pairing. Again, MFs emerge as
a result of a competition between two pairing terms, and,
importantly, the crossed Andreev pairing is possible only at
k = 0 but not at finite momenta, where states with opposite
spins do not have opposite momenta, see Fig. 3.

In this subsection we use the same notation for Hamiltonian
as in the previous one. We believe that this should not lead
to any misinterpretation but could help to make connections

FIG. 3. (Color online) The spectrum of two QWs with positive
Rashba SOI in both QWs. The solid (dashed) lines correspond
to electrons (holes). The chemical potential μτ is tuned to the
crossing point between spin up (blue) and spin down (red). The
superconductivity couples states with opposite momenta and opposite
spins belonging to the same τ wire (�τ ) and belonging to different
wires (�c). The spectrum is gapless at k = 0 for �2

c = �1�1̄, marking
the topological phase transition that separates the topological phase
with two localized midgap bound states at each wire end from the
trivial phase without them.

between two setups. In addition, taking into account that
calculations are very similar in the two case, we try to keep
the discussion short and omit details.

Again we linearize the spectrum around the Fermi points
k = 0 and kFτ = ±2kso,τ ,

�11 = R11e
ikF1x + L11, (26)

�11̄ = L11̄e
−ikF1x + R11̄, (27)

�1̄1 = L1̄1 + R1̄1e
ikF 1̄x, (28)

�1̄1̄ = R1̄1̄ + L1̄1̄e
−ikF 1̄x, (29)

where Rτσ (x) [Lτσ (x)] are slowly varying right (left) mover
fields of the electron with the spin σ/2 at the τ wire [10,66,67].
Here we again assume that the chemical potentials are tuned
to the SO energy, μτ = Eso,τ .

The kinetic part of the Hamiltonian H0 + Hso reduces to

Hkin =
∑
τ,σ

∫
dx i�υFτ [L†

τσ ∂xLτσ − R†
τσ ∂xRτσ ], (30)

and the superconductivity part to

Hs =
∑

τ

∫
dx

�τ

2
(R†

τ1L
†
τ 1̄ − L

†
τ 1̄R

†
τ1

+L
†
τ1R

†
τ 1̄ − R

†
τ 1̄L

†
τ1 + H.c.), (31)

Hc = �c

2

∫
dx (L†

1̄1R
†
11̄ − R

†
11̄L

†
1̄1

+L
†
11R

†
1̄1̄ − R

†
1̄1̄L

†
11 + H.c.). (32)
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Here υFτ = �kFτ /m is the Fermi velocity. Again, the interwire superconductivity �c acts only at momenta close to zero, see
Fig. 3.

The Hamiltonian density H in terms of Pauli matrices is given by

H = �υF1k̂(1 + τ3)ρ3/2 + �υF 1̄k̂(1 − τ3)ρ3/2 + �cτ1η2(σ1ρ2 − σ2ρ2)/2 + �1(1 + τ3)η2σ2ρ1/2 + �1̄(1 − τ3)η2σ2ρ1/2,

(33)

where the basis is chosen to be �̂ = (R11, L11, R11̄, L11̄, R
†
11, L

†
11, R

†
11̄, L

†
11̄, R1̄1̄, L1̄1, R1̄1̄, L1̄1̄, R

†
1̄1̄, L

†
1̄1, R

†
1̄1̄, L

†
1̄1̄). The energy

spectrum is given by

E2
τ,± = (�υFτ k)2 + �2

τ , (34)

E2
2,±,± = 1

2

[
�2

1 + �2
2 + 2�2

c + �
2
(
υ2

F1 + υ2
F2

)
k2

±
√(

�2
1 − �2

2

)2 + 4�2
c(�1 + �1̄)2 + �4

(
υ2

F1 − υ2
F2

)2
k4 + 4�2

c�
2(υF1 − υF2)2k2 + 2�2

(
υ2

F1 − υ2
F2

)(
�2

1 − �2
1̄

)
k2

]
,

(35)

where each level is twofold degenerate. We note again that
the spectrum is gapless at k = 0 provided that �2

c = �1�1̄.
If �2

c > �1�1̄, we find two zero-energy bound states at each
system end. The corresponding MF wave functions are too
involved to be displayed in a general case. However, in the
special simplified case with �1 = �1̄ and υF1 = υF2, the MFs
are defined by Eq. (17) with

f1(x) = ig∗
1 (x) = (e−ikF1xe−x/ξ1 − e−x/ξ2 ), (36)

f1̄(x) = ig∗̄
1 (x) = (e−x/ξ2 − e−ikF 1̄xe−x/ξ1 ). (37)

The localization length are given by ξ1 = �υF /�1 and ξ2 =
�υF /(�c − �1).

IV. KRAMERS PAIRS OF PARAFERMIONS

Electron-electron interaction effects become important if
the chemical potential is tuned to be, for example, at one third
of the SOI energy, μ1/3,τ = Eso,τ /9, such that the Fermi wave
vectors become ±kso,τ (1 ± 1/3). In this case, the interwire
pairing is possible only if backscattering terms of finite
strength gB are taken into account to generate momentum-
conserving terms [34,69–73] (Fig. 4). Below we focus on the
second case of Rashba SOI of the same sign in both QWs.

FIG. 4. (Color online) The momentum-conserving scattering
events corresponding to (a)Hee

c and (b)Hee
s,τ for the chemical potential

μ1/3,τ = Eso,τ /9 with associated Fermi wave vectors ±kso(1 ± 1/3).
See the caption of Fig. 2 for notations.

In particular, the interwire superconductivity Hamiltonian
density in Nambu space is given by

Hee
c = gc[L†

1̄1R
†
11̄(L†

1̄1R11)(L11̄R
†
11̄) − R

†
11̄L

†
1̄1

× (R†
11̄L11̄)(R1̄1L

†
1̄1) + L

†
11R

†
1̄1̄(L†

11R11)(L1̄1̄R
†
1̄1̄)

−R
†
1̄1̄L

†
11(R†

1̄1̄L1̄1̄)(R11L
†
11) + H.c.], (38)

where the coupling strength is given by gc ∝ �cg
2
B . The

structure of Hee
c can be understood as follows. If a Cooper

pair splits and each partner tunnels into a different QW (i.e.,
L
†
1̄1R

†
1̄1̄), both electrons go to the same momentum kF , as a

result, the finite momentum of such a Cooper pair should be
compensated by two backscattering events taking place inside
each of the QWs (i.e., L

†
1̄1R11 and L1̄1̄R

†
1̄1̄).

Next, we note that Hee
c and Hs [defined by Eq. (31)]

do not commute, so these two terms cannot be ordered
simultaneously in the bosonized represenation (see below).
Thus, only these terms can be dominant and result in the
energy gap. In what follows, we assume that our setup is in
the regime where Hee

c dominates over Hs . This corresponds
to two possible cases: the scaling dimension Kc of Hee

c is the
lowest one or the bare coupling constant gc is of order one.
The scaling dimension Kc = [K−1

α + K−1
δ + 9(Kβ + Kγ )]/4

can be found in a usual way in the basis of conjugated bosonic
fields φα,β,γ,δ and θα,β,γ,δ: χrτσ = [rφα + θα + τ (rφβ + θβ) +
σ (rφγ + θγ + τ (rφδ + θδ)]/2. Here the bosonic field χ1τσ

(χ1̄τσ ) corresponds to the fermion operator Rτσ (Lτσ ). The
scaling dimension of Hs is given in the same basis by
Ks = [K−1

α + K−1
β + Kγ + Kδ]/4. Comparing Ks and Kc we

see that in the regime of strong electron-electron interaction,
when the Luttinger parameters are substantially smaller than
one, the crossed Andreev pairing is dominant, Ks < Kc.

The intrawire pairing term Hee
s = ∑

τ Hee
s,τ that commutes

with Hee
c is given by

Hee
s,τ = gτ [R†

τ1L
†
τ 1̄(R†

τ1Lτ1)(Rτ 1̄L
†
τ 1̄)

−L
†
τ 1̄R

†
τ1(Lτ1R

†
τ1)(L†

τ 1̄Rτ 1̄) + H.c.], (39)

where gτ ∝ �τg
2
B .
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Next, we perform a bosonization of the fermions [69] in
Nambu space. For this we represent electron (hole) operators as
Rτσ = eiφ1τσ and Lτσ = eiφ1̄τσ (R†

τσ = eiφ̃1τσ and L†
τσ = eiφ̃1̄τσ )

in terms of chiral fields φrτσ and φ̃rτσ , where r refers to the
right/left movers, and τ (σ ) labels the QW (spin). We then get

Hee
c = 2gc[cos(2φ1̄1̄1 − 2φ̃111̄ − φ11̄1 + φ̃1̄11̄)

− cos(2φ111̄ − 2φ̃1̄1̄1 − φ1̄11̄ + φ̃11̄1)

× cos(2φ1̄11 − 2φ̃11̄1̄ − φ111 + φ̃1̄1̄1̄)

− cos(2φ11̄1̄ − 2φ̃1̄11 − φ1̄1̄1̄ + φ̃1̄11)], (40)

Hee
s,τ = 2gτ [cos(2φ1τ1 − 2φ̃1̄τ 1̄ − φ1̄τ1 + φ̃1τ 1̄)

− cos(2φ1̄τ 1̄ − 2φ̃1τ1 − φ1τ 1̄ + φ̃1̄τ1)]. (41)

Next, we separate the total Hamiltonian into two uncoupled
commuting parts H + H̄ , where H (H̄ ) operates in the space
spanned by (φrτ1,φ̃rτ 1̄) [(φrτ 1̄,φ̃rτ1)]. Thus, H and H̄ operate
in time-reversal conjugated spaces, which we can treat as
two independent subsystems. Thus, we will focus only on
H , knowing that the solution for H̄ can be obtained by direct
analogy or via the requirement of time-reversal symmetry.
To simplify calculations, we introduce new notations ηrτσ =
2φrτσ − φr̄τσ and η̃rτσ = 2φ̃rτσ − φ̃r̄τσ . This results in

Hee = 2g1 cos(η111 − η̃1̄11̄) + 2g1̄ cos(η11̄1 − η̃1̄1̄1̄)

+ 2gc cos(η1̄1̄1 − η̃111̄) + 2gc cos(η1̄11 − η̃11̄1̄). (42)

Searching for bound states, we impose vanishing boundary
conditions at x = 0,�, which couples right and left movers,
η1τσ (x = 0,�) = η1̄τσ (x = 0,�) + π . Next, we unfold the
QWs [33,34,69,74–77] by formally extending them from −�

to � by defining new chiral fields such that the boundary
conditions are satisfied automatically,

ξτ (x) =
{
η1τ1(x), x > 0

η1̄τ1(−x) + π, x < 0 ,
(43)

and analogously we define ξ̃τ with η̃’s. Next, we transform
the chiral fields to conjugate fields φ,θ , via ξτ = (φ1 +
θ1 + 3τφ2 + 3τθ2)/2 and ξ̃r = (−φ1 + θ1 − 3τφ2 + 3τθ2)/2.
Finally, we arrive at

Hee =
{

2
∑

τ gτ cos(φ1 + 3τφ2), x > 0,

4gc cos(φ1) cos(3θ2), x < 0 .
(44)

Working in the limit of strong electron-electron interactions,
we assume that gτ and gc are large enough so that the
interaction terms are dominant, resulting in the pinning of
the fields to constant values such that the total energy is
minimized [31,33–38]. Thus, we conclude that the field
φ1 = πM is pinned uniformly to minimize the kinetic energy.
In addition, the two noncommuting conjugated fields θ2 and
φ2 are pinned in two neighboring regions separated by an
infinitesimal interval,

θ2 = π (1 + M + 2m)/3, x < 0, (45)

φ2 = π (1 + M + 2n)/3, x > 0, (46)

FIG. 5. (Color online) Two-dimensional system of parafermions
consisting of an array of coupled QWs with proximity-induced
interwire and intrawire superconductivity, see Fig. 1 in the main
part. The transition between the interwire-pairing-dominant phase
(μ1/3) and the intrawire-pairing-dominant phase (μo) is controlled
by electrical gates (green slabs). Parafermions are formed initially
at the boundaries between these two phases. The tunneling t

between two neighboring QWs not separated by a superconductor
results in deconfinement [36] and in a sea of time-reversal invariant
parafermions.

where M , n, and m are integer-valued operators. We note
that the only nonzero commutator is [m,n] = 3i/4π , which
follows directly from [φ2(x),θ2(x ′)] = −(iπ/3)sgn(x − x ′),
which in turn follows from the standard commutation relation
for the chiral fields ξτ and ξ̃τ defined in Eq. (43). Next, we
define two operators that commute with the Hamiltonian, so
that they correspond to zero energy states,

α1 = ei 4π
3 (m−n), α1̄ = ei 4π

3 (m+n). (47)

These operators act at the QW ends [33] and are easily seen
to satisfy α3

1 = α3
1̄ = 1 and α1α1̄ = α1̄α1e

−2iπ/3. Thus, they
form parafermions. We further note that the ground state
of H is threefold degenerate. Indeed, from (α†

1α1̄)3 = 1 we
see that α

†
1α1̄ has three distinct eigenvalues e2iπq/3, where

q = 0, ±1 (mod 3). The corresponding eigenstates are denoted
by |q〉. With an appropriate phase choice [33], we find
α1|q〉 = |q + 1〉, so the ground state is threefold degenerate in
the considered subspace. Analogously, we obtain the Kramers
partners from H̄ , ᾱτ = ατ (m,n → m̄,n̄), where, again, m̄ and
n̄ are integer-valued operators, and q̄ = 0, ±1 (mod 3). Thus,
the ground state of the entire system |q〉 ⊗ |q̄〉 consist of
three Kramers pairs of parafermions. However, as shown in
Ref. [34], the degeneracy could be lifted by disorder. As a
result, the parafermion phase found here does not belong to
the topological phases classified in [60].

We note that due to our basis choice the constructed states
|q〉,|q̄〉 are not particle-hole symmetric. However, one can
easily find new particle-hole invariant states by combining
two Kramers partners with appropriate phase.

So far we have considered QWs of finite length which are
entirely in the nontrivial phase supporting PFs localized at the
wire ends. However, by local tuning of the chemical potential
μ, we can move parafermions inside the QWs, see Fig. 5.
As shown above, if μ = μ1/3, the interwire superconductivity
dominate. However, if μ = μo is significantly detuned from
μ1/3, the interwire superconductivity Hee

c is suppressed. Thus,
the intrawire superconductivity Hs dominates, driving this part
of the system into the trivial phase. As before, PFs are localized
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at the boundary between two phases. All this allows us to
generate PF networks that can also extend to two-dimensional
setups [78]. Introducing coupling between parafermions one
generates a sea of PFs, which can potentially result in
the Fibonacci phase as argued in Ref. [36]. At the same time,
the extension to a two-dimensional system can help to stabilize
this phase and make it less susceptible to disorder.

The presence of the PFs in the gap can be tested in setups
similar to the ones developed for MFs [11–16]. In particular,
one can detect PFs by the zero bias peak in the conductance.
The periodicity of the Josephson current as function of the
superconducting phase provides more information. As shown
before, the period for Zn PFs is 2πn [33]. For time-reversal
invariant PFs, similar to time-reversal invariant MFs [46],
several periods can be observed with 2πn being the largest
one, i.e., 6π for the PFs considered in this work.

V. CONCLUSIONS

We showed that it is possible to construct Kramers pairs
of PFs in a time-reversal invariant system. As an example
of such a setup we considered Rashba QWs coupled to a
superconductor. Given the rapid experimental progress with
similar ultraclean systems designed for MFs [11–13,16], the
proposed setup seems to be within experimental reach. In
addition, we mention that a similar scheme works also for
edge states of fractional topological insulators (or fractional
quantum spin Hall effect system), where different topological
regions can be induced by superconductivity and transverse
hopping. We also envisage the extension of our system to
a 2D network that might result in a Fibonacci phase [36].
The construction of quantum gates for time-reversal invariant
parafermions is an interesting problem by itself, and could
be addressed in further work. We also leave for further
work a study of the splitting potentially caused by disorder
effects. However, we envisage that if disorder effects lift the
degeneracy of the bound states, the resulting energy splitting
of states can serve as a useful tool to experimentally access
the level of the initial ground state degeneracy, such that we

can distinguish directly one Kramers pair of MFs from three
Kramers pairs of PFs.
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APPENDIX : ALTERNATIVE WAY TO BOSONIZE

In this Appendix we show that the bosonization of the
effective Hamiltonian can also be performed by introducing
bosonic operators for electrons only, φrτσ . Thus, introducing
bosonic operators for both electrons and holes (“Nambu space
representation”), as done in Sec. IV, is not necessary. However,
the Nambu space representation is more convenient for time-
reversal invariant systems.

In a first step, Eqs. (40) and (41) become

Hee
c = 2gc[cos(2φ1̄1̄1 + 2φ111̄ − φ11̄1 − φ1̄11̄)

× cos(2φ1̄11 + 2φ11̄1̄ − φ111 − φ1̄1̄1̄)],

Hee
s,τ = 2gτ cos(2φ1τ1 + 2φ1̄τ 1̄ − φ1̄τ1 − φ1τ 1̄), (A1)

leading to

Hee = 2g1 cos(η111 + η1̄11̄) + 2g1̄ cos(η11̄1 + η1̄1̄1̄)

+ 2gc cos(η1̄1̄1 + η111̄) + 2gc cos(η1̄11 + η11̄1̄), (A2)

where we introduced the new chiral fields ηrτσ = 2φrτσ −
φr̄τσ . Again, we double the system in order to satisfy
the vanishing boundary conditions at the two system ends
automatically,

ξ1τ (x) =
{
η1τ1(x), x > 0,

η1̄τ1(−x) + π, x < 0,
(A3)

ξ1̄τ (x) =
{
η1̄τ 1̄(x), x > 0,

η1τ 1̄(−x) + π, x < 0.
(A4)

Next, we transform the chiral fields to conjugate fields φ and θ

via ξsτ = (φ1 + sθ1 + 3τφ2 + 3τsθ2)/2. As a result, we finally
arrive at Eq. (44).
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