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We address the fundamental question how the spatial Kondo correlations are building up in time assuming
an initially decoupled impurity spin �Simp. We investigate the time-dependent spin-correlation function χ (�r,t) =
〈�Simp�s(�r)〉(t) in the Kondo model with antiferromagnetic and ferromagnetic couplings, where �s(�r) denotes the
spin density of the conduction electrons after switching on the Kondo coupling at time t = 0. We present data
obtained from a time-dependent numerical renormalisation group (TD-NRG) calculation. We gauge the accuracy
of our two-band NRG by the spatial sum rules of the equilibrium correlation functions and the reproduction
of the analytically exactly known spin-correlation function of the decoupled Fermi sea. We find a remarkable
building up of Kondo correlation outside of the light cone defined by the Fermi velocity of the host metal. By
employing a perturbative approach exact in second-order of the Kondo coupling, we connect these surprising
correlations to the intrinsic spin-density entanglement of the Fermi sea. The thermal wavelength supplies a cutoff
scale at finite temperatures beyond which correlations are exponentially suppressed. We present data for the
frequency dependent retarded spin-spin susceptibility and use the results to calculate the real-time response of a
weak perturbation in linear response: within the spatial resolution no response outside of the light cone is found.
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I. INTRODUCTION

A localized spin interacting antiferromagnetically with a
metallic host is one of the fundamental problems in theoretical
condensed mater physics. Originally proposed by Kondo
[1] for understanding the low-temperature resistivity [2] in
gold wires containing a low concentration of Cu impurities,
it has also been realized by depositing magnetic adatoms
[3–5] or molecules on metallic surfaces. Scanning tunneling
microscopes (STM) allow to manipulate and detect magnetic
adatoms on metallic substrates using the Kondo resonance [1].
Quantum corrals have been built and a coherent interference of
the electrons was detected on the substrate surfaces using STM
[3–5]. In 1998, David Goldhaber-Gordon demonstrated in a
seminal paper [6] that the Kondo effect can also be observed
in single-electron transistors [7] realized by a semiconductor
quantum dot. Both types of experiments have opened up a new
field of observing the Kondo effect in nanodevices [8–10].

While the equilibrium properties of the Kondo problem
are theoretically well understood by the virtue of Wilson’s
numerical renormalization group (NRG) [11,12] approach
and the exact Bethe ansatz solution [13], its nonequilibrium
properties are subject to active research [14–22].

In this paper, we address the fundamental question how the
spatial Kondo correlations are building up in time assuming
an initially decoupled impurity spin �Simp. We have investi-
gated the time-dependent spin-correlation function χ (�r,t) =
〈�Simp�s(�r)〉(t) using the time-dependent NRG (TD-NRG) [17].
�s(�r) denotes the spin density of the conduction electrons at
distance R = |�r| from the impurity after switching on the
Kondo coupling at time t = 0. Since the spins are initially
uncorrelated, this correlation function vanishes for t � 0 and
is a measure of the building up of the spatial entanglement
between the local spin and the conduction-electron spin
density.

For infinitely long times, the equilibrium spatial correlation
function of the Kondo model must be recovered. This corre-
lation function χ∞(�r) = limt→∞ χ (�r,t) has been investigated

intensively by Affleck and collaborators [23–26] using field
theoretical methods in the last 15 years. It accounts for
alternating ferromagnetic and antiferromagnetic correlations
as expected by spin correlations mediated by the RKKY
mechanism. Furthermore, the crossover between different
power-law decays for short and long distances, found [27–30]
in χ∞(�r), occurs at a characteristic length scale ξK = vF/TK,
which has been interpreted as the size of the Kondo screening
cloud [23–26,31], where vF is the Fermi velocity, and TK

the Kondo temperature governing the crossover from a free
impurity spin at high temperatures to the singlet formation
for T → 0. The modulus of equilibrium correlation function
χ∞(�r) has also been investigated using a real-space DMRG
[28]. Therefore the two limits, t = 0 and t = ∞, are known
and used as reference points for our calculations.

The time-dependent spin-correlation function χ (�r,t) con-
tains the information about how the spin correlations propagate
through the system. We have found for an antiferromagnetic
Kondo coupling (i) ferromagnetic correlations propagating
away from the impurity with the Fermi-velocity vF, which
defines the “light cone” [32] of the problem, and (ii) in addition
finite and nonexponential small correlations outside of this
light cone. We have been able (iii) to trace back the correlations
outside of the light cone to the intrinsic entanglement of
the Fermi sea using a controlled second-order expansion in
the Kondo coupling constant and comparing the perturbative
results with the full TD-NRG simulation. Since χ (�r,t) is not
a response function, correlations outside of the light cone are
allowed.

Any response function, however, describing the transmis-
sion of signals vanishes outside of the light cone in accordance
with relativity if the momentum cutoff is sent to infinity [22].
For a finite momentum cutoff, this statement is weaken to fast
decay on a length scale set by the inverse momentum cutoff.
At T = 0, an algebraic decay is found in accordance with a
broadened δ-distribution function.

Our TD-NRG results agree remarkably well with our pertur-
bative theory for short and intermediate time and length scales
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and approach the correct equilibrium correlation functions
in the long-time limit. Our data confirm the recent findings
by Medvedyeva et al. [22] but also considerably extent their
work: we include the full spatial dependence that allows us to
access the full 2kF oscillations inherent to the RKKY mediated
correlations. Furthermore, the crossover between short and
long distances, i.e., R � ξK and R � ξK, including the Kondo
physics at low temperature in the strong coupling regime is
fully accessible by the NRG, which cannot be revealed by
perturbative approaches.

Borda has pioneered the calculation of equilibrium spatial
correlation function for the Kondo model using the NRG [27].
He has realized that this problem is equivalent to the two-
impurity Kondo model [33–35] where the second impurity
spin has been removed, while the local conduction electron
density operator �s(�r) is used as a probe for the spin cor-
relations. By mapping the problem onto two �r-dependent
linear combinations of conduction electrons with even and
odd symmetry under spatial inversion around the midpoint
�r/2, the calculation of spatial correlations become accessible
to the NRG. Thereby, the spatial information [27,34–36]
is encoded in the energy dependent density of states (DOS)
of the even and odd bands. Since a single two-band NRG
run is required for each distance R, the numerical cal-
culations are very involved and require an independent
NRG calculation with individually adapted bands for each
distance R.

An alternative approach for obtaining real space infor-
mation using a conventional single-site NRG has recently
proposed by Mitchell et al. [30] who have applied the exact
equation of motion to relate specific R-dependent properties
such as the conduction electron density variation in the host
to impurity properties using the free conduction electron
Green function. This approach, however, is not applicable to
the spatially dependent spin-spin correlation function or the
retarded spatial spin-spin susceptibility as investigate here.

In this paper, we use an improved mapping compared to
Borda’s original work [27]. Our modifications are able (i)
to accurately reproduce the analytically known sum rules
[23,27,31] for the spin-correlation function in the ferromag-
netic and antiferromagnetic Kondo regimes, (ii) reproduce
the analytical spin-spin correlation function of the decoupled
Fermi sea exactly, and (iii) obtain sign changes χ∞(�r) at short
and intermediate distances expected from RKKY mediated
correlations. While Borda reported [27] that χ∞(�r) remains
negative for all distances and Kondo couplings as can be
seen in Fig. 2 of Ref. [27], we find oscillating and power-law
decaying χ∞(�r) < 0 only for distances R � ξK in accordance
with previous analytic predictions using a 1D field theoretical
approach [23,31]. At short distances, the Kondo screening is
incomplete and, therefore, alternating signs are found in χ∞(�r).

We also discuss the spectral functions of the retarded
spin-spin susceptibility as a function of R and use these results
to calculate the linear response of the host spin density at a
distance R to a local magnetic field applied on the impurity
spin at the origin. Here, the response outside of the light
cone is suppressed. We benchmark the quality of the NRG
spectral function with the spin susceptibility of the metallic
host without impurity for which the susceptibility can be
calculate analytically.

A. Plan of the paper

The paper is organised as follows. We begin with the
definition of the model in Sec. II A and derive the mapping to
the two-impurity model in Sec. II B. After that, we discuss in
Sec. II C the exact sum rules of the equilibrium spin-correlation
function for the Kondo regime and the local moment regime
relevant for a ferromagnetic Kondo coupling.

In Sec. III, we present our equilibrium results for χ∞(R) for
ferromagnetic and antiferromagnetic couplings which differ
slightly from the previously reported data by Borda [27] and
discuss the effect of spatial dimensions.

In Sec. IV A, we provide a short summary of the TD-NRG
employed in the following to obtain the nonequilibrium
quench dynamics. Section IV B is devoted to our numerical
TD-NRG data on the temporal buildup of the spatial Kondo
correlations. In order to understand the surprising buildup of
the Kondo correlations outside of the light cone, a second-order
perturbative calculation presented in Sec. IV C is able to
provide an analytical explanation of the origin of this unusual
correlations found in the TD-NRG. We use these analytical
results to also explain the spatial and temporal building up
of spin-correlation for ferromagnetic couplings in Sec. IV E.
In Sec. IV F, we extend the discussion to finite temperatures.
Section V is devoted to the retarded spin-spin susceptibilities
and the time-dependent response of the conduction electron
spin density as a function of an suddenly applied local
magnetic field within the linear response theory. We conclude
with a summary and outlook.

II. THEORY

A. Definition of the model

We investigate the spatial and temporal correlations be-
tween the conduction electron spin density �s(�r) and a localized
impurity spin �Simp coupled locally to the metallic host via
Kondo interaction [1]. For a generic system, we can neglect the
details of the atomic wave function and expand the spin-density
operator �s(�r) in plane waves [37]

�s(�r) = 1

2

1

NVu

∑
σσ ′

∑
�k�k′

c
†
�kσ

[�σ ]σσ ′c�k′σ ′e
i(�k′−�k)�r , (1)

where N is the number of unit cells in the volume V , Vu =
V/N is the volume of the unit cell, and �k the momentum vector.
In an energy representation [11,37], the Kondo Hamiltonian
[1] of the system,

H = H0 + HK,

H0 =
∑

σ

∫ D

−D

dε ε c†εσ cεσ , (2)

HK = J �Simp�sc(0),

describes this local impurity spin located at the origin coupled
via an effective Heisenberg coupling to the unit-cell volume
averaged conduction electron spin �sc(�r) = Vu�s(�r) with a
coupling constant J ; H0 accounts for the energy of the free
conduction electrons.

Wilson [11,12] realized that the logarithmic divergencies
generated by a perturbative treatment [1] of the Kondo
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coupling can be circumvented by discretizing the energy spec-
trum of the conduction band on a logarithmic grid [11] using a
dimensionless discretization parameter � > 1. Consequently,
all intervals contribute equally to the divergence and the
problem can be solved by iteratively adding these intervals with
progressively smaller energy. The continuum limit is recovered
for � → 1. Using an appropriate unitary transformation [11],
the Hamiltonian is mapped onto a semi-infinite chain, with the
impurity coupled to the first chain site. The N th link along
the chain represents an exponentially decreasing energy scale:
DN ∼ �−N/2. Using this hierarchy of scales, the sequence
of finite-size Hamiltonians HN for the N -site chain is solved
iteratively, discarding the high-energy states at the conclusion
of each step to maintain a manageable number of states. The
reduced basis set of HN so obtained is expected to faithfully
describe the spectrum of the full Hamiltonian on a scale of
DN , corresponding to the temperature TN ∼ DN . Details can
be found in the review [12] on the NRG by Bulla et al.

B. Spatial correlations

While Wilson’s original approach was tailored towards
solving the thermodynamics of the local impurity and the clas-
sifying the fixed points of the Hamiltonian, we are explicitly
interested in the time evolution of the spatial spin-correlation
functions 〈�Simp�s(�r)〉(t) at the distances R. For a rotational
invariant system considered here, this quantity is isotropic and
only dependent on R. The correlations between those spatially
well separated points are mediated by the conduction electrons
which is linked to the RKKY interaction.

Borda has realized [27] that the calculation of the spatial
correlations is related to a simplified two-impurity problem.
Originally Jones et al. [34,35] have extended the NRG [11] to
a two-impurity Kondo model,

H = H0 +
∑
i=±

Ji
�Si

imp�sc( �Ri) , (3)

where the two impurity spins �Si
imp are located at the position

�R± = ±�r/2 and coupled to the same conduction band. The
spatial dependence is included into the two nonorthogonal
energy-dependent field operators

cεσ,± = 1√
Nρ(ε)

∑
�k

δ(ε − ε�k)c�kσ e±i�k�r/2, (4)

which are combined to even (e) and odd (o) parity eigenstates
[33–36]

cεσ,e = 1

Ne(ε)
(cεσ,+ + cεσ,−),

cεσ,o = 1

No(ε)
(cεσ,+ − cεσ,−) (5)

of H0. The dimensionless normalization functions Ne(o)(ε),

N2
e (ε) = 4

Nρ(ε)

∑
�k

δ(ε − ε�k) cos2

( �k�r
2

)
,

N2
o (ε) = 4

Nρ(ε)

∑
�k

δ(ε − ε�k) sin2

( �k�r
2

)
, (6)

are computed from the anti-commutation relation
{cεσ,α,c

†
εσ,α′ } = δ(ε − ε′)δαα′δσσ ′ . Note that both densities

Ne(ε) and No(ε) depend on the distance R = |�r| and are not
normalized. ρ(ε) denotes the conduction band density of
states of the original band.

The two-impurity Hamiltonian (3) can be written in terms
of these even and odd fields and solved using the NRG [34,35].
By omitting one of the two-impurity spins [27], i.e., �S−

imp, the
original Kondo Hamiltonian (2) is recovered for an impurity
spin located at �R+. Furthermore, �sc( �R−) can be used for
probing the isotropic spin-correlation function 〈�Simp�s(�r)〉.

The local even or odd parity conduction electron operators
coupling to the impurity spin take the form

f0σ,e(o) = 1

N̄e(o)

∫
dε

√
ρ(ε)Ne(o)(ε)cεσ,e(o), (7)

and its anticommutator {f0σ,e(o),f
†
0σ ′,e(o)} = δσσ ′ determines

the dimensionless normalization constants

N̄e(o) =
[ ∫

dεN2
e(o)(ε)ρ(ε)

]1/2

. (8)

These constants enter the definition of the effective parity
density of states

ρe(o)(ε) = 1

N̄2
e(o)

N2
e(o)(ε)ρ(ε), (9)

which accounts for the position dependence and are used in
the construction of the NRG tight-binding chain (for details
see the NRG review in Ref. [12]).

Then, the original Kondo Hamiltonian (2) is expanded in
these orthogonal even and odd fields:

H =
∑

σ

∑
α=e,o

∫ D

−D

dε ε c†εσ,αcεσ,α

+ J

8

∑
σσ ′

(
N̄ef

†
0σ,e + N̄of

†
0σ,o

)
[�σ ]σσ ′

× (
N̄ef0σ,e + N̄of0σ,o

)�Simp (10)

after positioning the impurity spin at �R+. The spin-density
operator at �R− entering the spatial correlation function is given
by

�s( �R−) = 1

8Vu

∑
σσ ′

(
N̄ef

†
0σ,e − N̄of

†
0σ,o

)
[�σ ]σσ ′

× (
N̄ef0σ,e − N̄of0σ,o

)
, (11)

where Vu accounts for its dimensions.
Note the inclusion of the proper R-dependent normalization

constants N̄e,N̄o into the Hamiltonian and the spin-density
operator �s( �R−), which are crucial for recovering the exact
sum rules discussed in the following section. Furthermore, we
use properly normalised conduction bands with an energy-
dependent density of states as defined in Eq. (9) and renormal-
ized Kondo couplings J in Eq. (10), while Borda included an
unnormalised DOS ρi(ε) = N2

i (ε)ρ(ε) into the kinetic energy
term, see Eq. (6) in Ref. [27].
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C. Sum rule of the spatial correlation function

The quality of the calculated spatial correlation function
can be verified by a sum rule derived for the strong-coupling
fixed point at T = 0. Since the ground state |0〉 is a singlet in
the Kondo regime, the application of the total spin operator of
the system comprising local and total conduction electron spin

�Stot|0〉 =
(

�Simp +
∫

s(�r) dDr

)
|0〉 = 0 (12)

must vanish. Consequently, the correlator 〈0| �Simp �Stot|0〉 also
vanishes,

〈0| �Simp �Stot|0〉 = 3

4
+

∫
〈0| �Simp�s(�r)|0〉 dDr = 0 , (13)

and, therefore, χ∞(r) must obey the sum rule:∫
〈�Simp�s(�r)〉 dDr = −3

4
(14)

at T = 0. The spin-correlation function is isotrop for a generic
system. Substituting the dimensionless variable x = kFR/π

and angular integration yields

CDπD

kD
F

∫ ∞

0
xD−1χ∞(x) dx = −3

4
, (15)

where D is the dimension, C1 = 2, C2 = 2π and C3 = 4π .
For the linear dispersion ε(|�k|) = vF(|�k| − kF) the Fermi

wave vector in the different dimensions is given by kF =
π/2Vu in 1D, kF = √

π/Vu in 2D and kF = (π2/Vu)1/3 in
3D. The volume of a unit cell Vu in the Fermi wave vector
is canceled by the factor 1/Vu in �s(x) after substituting
�sc(�r) = Vu�s(�r) in the correlation function.

Numerically evaluating the sum rule (15) using our NRG
correlation function, we have confirmed the theoretical value
of − 3

4 with an error less than 2% in 1D. Since χ∞(R) ∝
R−(D+1) for R → ∞, the integral kernel RD+1χ∞(R) is
very susceptible to numerical errors in higher dimensions.
Therefore the accuracy decreases with increasing dimensions.
For distances kFR/ξK � 1 a very high number of kept states
in the NRG calculation are required to prevent the integral∫ ∞

0 RD−1χ∞(R) dR from diverging.
For a ferromagnetic coupling, the Hamiltonian approaches

the local moment (LM) fixed point with a decoupled impurity
spin. Using the same argument as above yields the sum rule∫

〈�Simp�s(�r)〉 dDr = 0. (16)

valid for J < 0. Consequently, we expect an oscillatory
solution for χ∞(R) with sign changes at all length scales
and a decay R−α where α � D: the spin correlation function
will be significantly different in the ferromagnetic and in the
antiferromagnetic regime.

D. Effective densities of states in 1D, 2D, and 3D

The spatial correlations depend on the dimensionality of
the host. For a given distance R, the dimensionality enters
primarily via the dimension of the wave vector �k in the Eqs. (6)
and the energy dispersion ε�k of the host.
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FIG. 1. (Color online) Normalization constants N̄e(o) for different
dimensions D vs the dimensionless distance x = kFR/π . For
R → ∞ N̄e is equal to N̄o.

In order to obtain information on generic spectral densities
N2

e(o)(ε)ρ(ε) appearing in the Eqs. (8) and (9), we assume a

isotropic linear dispersion ε�k = vF(|�k| − kF), where vF is the
Fermi velocity and kF the Fermi wave-vector. Inserting the
dispersion in equations (6) yields in 1D to

N2
e(o)(ε)ρ(ε) = 2ρ0

{
1 ± cos

[
xπ

(
1 + ε

D

)]}
, (17)

where ρ0 = 1/2D is the constant density of states and
x = kFR/π . In higher dimensions, we perform the angular
integration to obtain for 2D:

N2
e(o)(ε)ρ(ε) = 2ρ0

{
1 ± J0

[
xπ

(
1 + ε

D

)]}
(18)

with the zeroth Bessel function J0(x). In 3D, the effective
densities of states [34,35] reads

N2
e(o)(ε)ρ(ε) = 2ρ0

{
1 ± sin

[
xπ

(
1 + ε

D

)]
xπ

(
1 + ε

D

)
}
. (19)

Note that in 2D and 3D ρ(ε) is not constant for a linear
dispersion, and ρ(ε) = ρ0 = 1/2D is a simplification.

The normalization constants N̄e(o) reveal important infor-
mation on the admixture of even and odd bands for a given
distance R. They are shown as a function of the dimensionless
distance x = kFR/π for different dimensions D in Fig. 1.
Clearly, N̄o(x = 0) = 0 in any dimension: the odd band
decouples from the problem, and the standard Kondo model is
recovered which allows to calculate local (R = 0) expectation
values within the standard single band NRG.1

With increasing R, the oscillations of the even and odd
density of states ρe(o) decay as ∝R(1−D)/2. For large distances,
the even and odd bands become equal and the normalization
constants approach the same value. For 1D, strong oscillations

1In order to avoid different numerical accuracy for R = 0 and R > 0
calculations, we have used kFR/π = 0.01 in the NRG calculations
for R → 0.
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are observed for short distances which are suppressed in
higher dimensions. Apparently, the R dependence will be
more pronounced in lower dimensions and the correlation
function will decay with the different power law than in higher
dimensions.

III. EQUILIBRIUM PHYSICS: SPATIAL CORRELATION

A. Kondo regime: short distance versus
large distance properties

There are two characteristic length scales in the problem:
1/kF defined by the metallic host, governing the power-law
decay of χ∞(R) and its RKKY oscillations, and the Kondo
length scale ξK, sometimes referred to as size of the Kondo
screening cloud [23–26,31]. Since ξK increases exponentially
with decreasing J , we use different J to present data for the
two different regimes R < ξK and ξK < R. The results for
χ∞(R) for these two different regimes are shown in Fig. 2.
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FIG. 2. (Color online) The spin-correlation function (a)
Rχ∞(R) = R〈�Simp�s(�r)〉 as a function of the dimensionless distance
x = kFR/π in 1D for small Kondo couplings ρ0J = 0.05,0.075,0.1
and R/ξK � 1. We added RKKY interaction between the impurity
spin and a probe spin in distance R for comparison. (b) R2χ∞(R) as
a function of the dimensionless distance x in 1D for larger Kondo
couplings ρ0J = 0.5,0.6,0.7. The inset shows the value of the
correlation function at the origin χ∞(0) vs ρJ . For large J , the value
−3/4 is reached.

TABLE I. The Kondo temperature TK and length scale ξK for
different Kondo couplings. The Kondo temperatures have been
obtained from the NRG level flow (see text).

ρ0J TK/D kFξK

0.05 1×10−10 1×1010

0.075 1.7×10−7 5.88×106

0.1 7.5×10−6 1.33×105

0.15 3.9×10−4 2564.10
0.3 0.0204 49.02
0.5 0.0749 13.35
0.6 0.115 8.69
0.7 0.2103 4.76

In our calculations, the Kondo temperature TK has been
defined from the NRG level flow: TK is the energy scale
at which the first excitation reaches 80% of its fixed point
value. The Kondo temperature TK and length scale ξK for
different Kondo couplings are stated in Table I. All correlation
functions have been obtained for T/TK → 0. The sum rule
(15) of χ∞(R) is numerically fulfilled up to typically 2% error
in 1D.

In contrast to the original work by Borda [27], we
observe ferromagnetic and anti-ferromagnetic correlations for
short distances in accordance with predictions [23–26,31]
by Affleck and his collaborators as presented in Fig. 2(a).
For distances R � ξK, the impurity is still unscreened and
impurity spin behaves more like a free spin. We have plotted the
rescaled correlation function Rχ∞(R) to reveal the 1/R decay
at short distances in 1D [27] stemming from the analytical
form of the RKKY interaction.

We have also added the RKKY interaction KRKKY between
the impurity spin and a fictitious probe impurity spin at
distance R obtained in second-order perturbation theory for
comparison (details of the calculations can be found in
Appendix A). The oscillating part of χ∞(R), and the positions
of the minima and maxima nicely agree with the RKKY in-
teraction ∝cos(2kFR). For multiple integers x = kFR/π = n

the correlation function has minima and for odd multiple
x = n + 1/2 a maxima is found.

In order to access larger distances R � ξK, we increase
ρ0J . The rescaled spin correlation function R2χ∞(R) depicted
in Fig. 2(b) clearly reveals the power-law decay of the envelop
function at distances R/ξK � 1 as 1/R2. Furthermore, we only
find antiferromagnetic correlations for R/ξK � 1, and χ∞(R)
remains negative at all distances. In this regime, the maxima
have the value χ∞(R) = 0 as noted earlier [23–26,31]: the
impurity spin is screened by the conduction band electrons
and the envelope of χ∞(R) has to decreases faster.

We observe this crossover from a 1/R to a 1/R2 decay
at around R ≈ ξK. We also find universal behavior for
the envelope of χ∞(R) for distances kFR/π > 1 and can
reproduce Fig. 3 of Ref. [27] (not shown here).

Since we have plotted R2χ∞(R) which vanishes for R = 0,
the information of χ∞(0) is not included in the main panels of
Fig. 2. Therefore, we have added the ρ0J dependence of the
local spin-correlation function χ∞(R = 0) as inset to Fig. 2(b).
χ∞(0) < 0, as expected for a local antiferromagnetic coupling,
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FIG. 3. (Color online) The spin-correlation function R2χ∞(R) as
a function of the dimensionless distance x = kFR/π in 2D. In higher
dimensions, the envelope of the RKKY and χ∞(R) has a more
complicated structure. Every second maximum has a lower amplitude.
NRG parameters are � = 5 and Ns = 3000.

and the strong coupling value of −3/4 is approached for large
J : almost the whole contribution to the sum rule (15) is located
in the first antiferromagnetic peak at R = 0, and χ∞(R) has to
decay very rapidly with increasing R.

In Fig. 3, the short distance behavior of χ∞(R) in 2D
is shown. As for 1D case the oscillating part and the
positions of the minima and maxima of χ∞(R) and the 2D
RKKY-interaction nicely agree. In contrast to 1D, the RKKY
interaction acquires a more complex mathematical structure
even for a simplified linear dispersion replacing the simple
cos(2kFR) oscillations in 1D. Therefore modification to the
cos(2kFR) behavior must be taken into account when analyzing
experimental data.

B. Ferromagnetic couplings J < 0 in 1D

Up until now, we have focused only on antiferromagnetic
Kondo coupling causing the Kondo-singlet formation de-
scribed by the strong-coupling (SC) fixed point for T → 0. We
extend our discussion of the equilibrium correlation function to
the ferromagnetic regime characterized by the local-moment
(LM) fixed point and a twofold degenerate ground state. As
pointed out above, the sum rule for χ∞(�r) predicts that the
spatial integral of the correlation function vanishes. For a
ferromagnetic coupling, ξK → ∞, and the correlation function
is also oscillating as cos(2kFR) and decaying as 1/R for at all
distances in 1D.

Exemplifying our findings, we depicted Rχ∞(R) for two
different Kondo coupling, ρ0J = −0.1 and −0.5, in Fig. 4.
We numerically checked the sum rule and found deviations
from zero by less than 1% in 1D. The RKKY oscillations and
1/R decay of the envelop function are clearly visible up very
larger distances kFR/π = 100.

In the ferromagnetic regime, the local spin-correlation
function χ∞(0) must be positive and approaches its upper
limit of χ∞(0) → 1/4 for J → −∞ as shown in the inset of
Fig. 4. In order to fulfill the sum rule, χ∞(R) does not oscillate
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FIG. 4. (Color online) The spin-correlation function Rχ∞(R) as
a function of the dimensionless distance x = kFR/π in 1D for
two different ferromagnetic Kondo couplings ρ0J = −0.1 and −0.5
for T → 0. The inset shows χ∞(0) vs ρJ . For large ferromag-
netic couplings 0.25 is reached. NRG parameters are � = 3 and
Ns = 1400.

symmetrically around the x axis: χ∞(R) must be slightly
shifted to antiferromagnetic correlations to compensate the
ferromagnetic peak at R = 0.

IV. NONEQUILIBRIUM DYNAMICS

A. Extension of the NRG to nonequilibrium: the TD-NRG

The TD-NRG has been designed [17] to track the real-time
dynamics of quantum-impurity systems following an abrupt
quantum quench such as considered here; at t = 0, we switch
on the Kondo coupling J between the prior decoupled impurity
spin and the metallic host.

Initially, the entire system is characterized by the density
operator of the free electron gas

ρ̂0 = e−βH0

Tr(e−βH0 )
, (20)

at time t = 0 when the Kondo interaction HK is suddenly
switched on: H = H0 + HK. The density operator evolves
thereafter in time according to

ρ̂(t > 0) = e−itH ρ̂0e
itH . (21)

Our objective is to use the NRG to compute the time-dependent
expectation value O(t) of a general local operator Ô . As shown
in Ref. [17], the result can be written in the form

〈Ô〉(t) =
N∑
m

trun∑
r,s

eit(Em
r −Em

s )Om
r,sρ

red
s,r (m), (22)

where Em
r and Em

s are the dimension-full NRG eigenenergies
of the perturbed Hamiltonian at iteration m � N , Om

r,s is the
matrix representation of Ô at that iteration, and ρred

s,r (m) is the
reduced density matrix defined as

ρred
s,r (m) =

∑
e

〈s,e; m|ρ̂0|r,e; m〉. (23)
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The restricted sum over r and s in (22) requires that at
least one of these states is discarded at iteration m. The
NRG chain length N implicitly defines the temperature
entering Eq. (20): TN ∝ �−N/2, where � > 1 is the Wilson
discretization parameter.

The derivation of Eq. (22) is based on the two observations.
(i) It has been shown [17] that the set of all discarded
states in the NRG procedure forms a complete basis set of
many-body Fock space which are approximate eigenstates
of the Hamiltonian. (ii) The general local operator Ô is
diagonal in the environment degrees of freedom (DOF) such
that the trace over these DOF can be performed analytically
yielding ρred

s,r (m). This approach has been extended to steady
state currents at finite bias [38–40]. The only error of the
method stems from the representation of the bath continuum
H0 by a finite-size Wilson chain [11] and are essentially well
understood [41,42].

B. Time-dependent spatial correlation function
in the Kondo regime

After discussing the equilibrium correlation function in
Sec. III, we present our results for the full time-depended
correlation function χ (�r,t). The NRG fixed point differs for
different signs of the Kondo coupling: for J > 0 the SC fixed
point [11] is reached while for J < 0 the system approaches
the LM fixed point. Therefore we present data for both regimes
and begin with the antiferromagnetic Kondo coupling.

χ (R,t) is depicted as a function of the dimensionless
distance x = kFR/π and the dimensionless time τ = tD for
a moderate Kondo coupling ρ0J = 0.3 as a color contour plot
for 1D in Fig. 5. Each distance R requires a single TD-NRG
run. Therefore, we have restricted ourselves to Nz = 4 values
for the z-averaging [17,43] for the NR = 350 different values
of R included in Fig. 5 and only kept a moderate number of
NRG states.

The development of the ferromagnetic correlation maxi-
mum at x = 1/2 is clearly visible already after very short times
corresponding to χ∞(R) depicted in Fig. 2(a). For t → ∞,
the equilibrium Friedel oscillations as discussed above are

FIG. 5. (Color online) The 1D time and spatial dependent spin-
correlation function χ (R,t) vs x = kFR/π and τ = tD for ρ0J = 0.3
as a color contour plot. Its color map is depicted on the right site. The
correlation propagates with vF, which is added as white line as guide
to the eye. NRG parameters are � = 3, Ns = 1400, and Nz = 4.
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FIG. 6. (Color online) Time dependent correlation function
χ (R,t) for a fixed distance kFR/π = 0.51 vs time for different
number of z averages Nz and a fixed ρ0J = 0.3. NRG parameters
are � = 3 and Ns = 1600.

recovered: the correlation function has minima for x = n,
and maxima are found for odd multiple x = n + 1/2. For
larger distances and times, the ferromagnetic correlations are
suppressed in favor of purely antiferromagnetic correlations
as expected from the equilibrium correlation function.

After the ferromagnetic correlation maximum has passed,
χ (R,t) exhibits some weak oscillations in time for R = const.
In order to discriminate between finite size oscillations caused
by the bath discretiation [41,42] and the real nonequilibrium
dynamics of the continuum, the time evolution of χ (R =
0.51π/kF,t) is shown for different number of z-averages Nz

in Fig. 6. Since the short-time oscillations clearly converge
with increasing Nz, they contain relevant real-time dynamics
which will be analysed in more detail in the next section
below. In the long-time limit, the TD-NRG oscillates around
a time average, which is independent of Nz, and is close to
the equilibrium correlation function χ∞(R). Those oscillations
are partially related to the bath discretisation [17,41,42] and
are be suppressed for increasing number of z values Nz,
decreasing � and increasing number of Ns . Therefore we
conclude that thermodynamic equilibrium is reached up to
the well understood small discretisation errors [17,41,42].

How are the Kondo correlation building up at different
distances R with time?

Clearly visible is the propagation of ferromagnetic corre-
lations away from the impurity with a constant velocity given
by the Fermi velocity of the metallic host. At the impurity
site, an antiferromagnetic spin-spin correlation develops rather
rapidly. Since the total spin is conserved in the system, a
ferromagnetic correlation-wave propagates spherically away
from the impurity spin. The added white line R = vFt serves
as guide to the eye in Fig. 5 to illustrate this point. This line
represents the analog to a light cone in electrodynamics.

Inside the light cone, the equilibrium correlation function
is reached rather fast. To exemplify this, we plot χ (R,t)
as function of relative time t ′ = t − R/vF for four different
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FIG. 7. (Color online) (a) Time-dependent correlation function
χ (R,t) vs t ′ = t − R/vF for four different distances kFR = 0,0.51,

1.01,1.51 for ρ0J = 0.3 in 1D. (b) Rescaled time-dependent corre-
lation function χ (R,t)/χmax vs t − tmax for kFR/π = 2.01 and four
different couplings ρ0J = 0.05,0.10.15,0.3. tmax is the position and
χmax is the amplitude of the ferromagnetic peak. NRG parameters are
� = 3,Ns = 1200, and Nz = 32.

distances R in Fig. 7(a). Negative t ′ corresponds to the
correlations outside the light cone, while for t ′ > 0 the spin
correlation function χ (R,t) inside the light cone is depicted.

At the origin of the impurity (R = 0), a antiferromagnetic
correlation develops2 on the time scale 1/

√
J : the short time

dynamics is linear in the Kondo coupling and proportional to
t2 as will be discussed in greater detail below.

At t ′ = 0 and finite distance R > 0, a significant fer-
romagnetic correlation-wave peak is observe which decays
rather rapidly. Its position corresponds to the yellow (color-
online) light cone shown in Fig. 5. In order to shed some
light into the nature of this rapid decay, we present the

2For a true two-channel calculation, using the same NRG parameters
requires a finite R, otherwise No(ε) = 0 and the numerics breaks
down.

ratio χ (R,t)/χmax versus (t − tmax)D for a constant distance
kFR/π = 2.01 and different couplings ρ0J in Fig. 7(b).
χmax has been defined as χmax = χ (R,tmax), and tmax is the
numerical position of the ferromagnetic peak. Note that tmax

slightly differs from bare light cone time scale R/vF and
is shifted to larger times with increasing ρ0J (not shown.)
This increasing shift can be analytically understood, and we
will give the detailed explanation in Sec. IV C below. After
dividing out the amplitude χmax of the maximum, the decay
surprisingly shows a universal behavior and the time scale
is simply given by 1/D. A comparision of the oscillation
with cos(t ′D) (pink dash-dotted line) shows a remarkable
agreement for small times 0 < t ′D < 1. This indicates that
the functional form of χ (R,t) for fixed R consists of a damped
oscillatory cos(t ′D) term whose maximum is reach when the
ferromagnetic correlation wave reaches the distances R at the
time tmax > R/vF. For larger times t ′, χ (R = 2.01π/KF) has
to approach an finite antiferromagnetic value. Therefore the
oscillations in the TD-NRG are not centered around the origin
but shifted to negative values as can seen in Fig. 7(b) by
comparing with the undamped cos(t ′D) curve.

Most striking, however, is the building up of correlations
for t ′ < 0 outside of the light cone. These correlations are
antiferromagnetic and show no exponential decay. These
correlations appear shortly before the light cone. They reach
their largest modulus for odd multiple kFr/π = n + 1/2 and
decay with a power law as tD goes to zero. In Sec. IV D below,
we will provide a detailed analysis of their origin and present
an analytically calculation in J that agrees remarkably well
with the observed TD-NRG results.

Such a building up of correlations outside of the light cone
has recently be reported in a perturbative calculations [22]
neglecting, however, the 2kF oscillations. Here, we present
results for a full nonperturbative calculation which includes the
Friedel oscillations containing the RKKY mediated effective
spin-spin interaction.

The different behavior for short and long distances is
illustrated in Fig. 8. The upper panel shows results for short
distances r/ξK � 1. We observe the distinctive ferromagnetic
correlation which propagates with the Fermi velocity through
the conduction band. Inside the light cone, we find oscillations
between ferromagnetic and antiferromagnatic correlations. In
the lower panel, the behavior for longer distances is depicted.
We find that the ferromagnetic propagation vanishes at around
kFR ≈ ξK. At these distances, we only observe oscillations
between zero and antiferromagnatic correlations inside the
light cone. For both cases, the long-time behavior agrees
remarkable well with the NRG equilibrium calculations.

C. Perturbation theory

Surprisingly, we found in our TD-NRG results the building
up of spin-correlations outside of the light cone which do not
decay exponentially. In order to rule out TD-NRG artifacts
and shed some light into its origin, we perturbatively calculate
〈�Simp�s(r)〉(t) up to second order in J .

Since only H0 enters the initial density operator, we
transform all operators into the interaction picture and, after
integrating the von Neumann equation, we obtain for the
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FIG. 8. (Color online) The time-dependent correlation
〈 �Simp�s(R)〉(t) for different distances as a color contour plot.
Its color map is depicted on the right site. (a) The oscillation
between ferromagnetic and antiferromagnatic correlations for long
times is only observed for short distances R/ξK � 1. (b) For long
times, oscillations only between zero and antiferromagnetic
correlations are observed. The ferromagnetic propagation
vanishes at around R/ξK ≈ 1. Both long-time behaviors are
in agreement with the NRG equilibrium results. NRG parameters are
� = 3,Ns = 1400, and Nz = 32.

density operator

ρI (t) ≈ ρ0 + i

∫ t

0

[
ρ0,H

I
K(t1)

]
dt1

−
∫ t

0

∫ t1

0

[[
ρ0,H

I
K(t2)

]
HI

K(t1)
]
dt2dt1, (24)

which is exact in second order in the Kondo coupling J .
The superscript I labels the operators in interaction picture
AI (t) = eiH0tAe−iH0t , and the boundary condition is given by
ρ0 = ρI (t = 0). We use this ρI (t) to calculate the spin-spin
correlation function

χ (�r,t) = Tr[ρI (t)�Simp�sI (�r,t)] (25)

where only expectation values with respect to the initial density
operator ρ0 enter. The occurring commutators are cumbersome
but can be evaluated analytically (for details see Appendix B).
We note that the contribution in linear order in J does not
vanish for a perturbation HK = J �Simp�s(0). Although the time
integrals can be performed analytically, the multiple momenta

FIG. 9. (Color online) The analytical χ (R,t) evaluated numeri-
cally for ρ0J = 0.3 up to second order in J as a color contour plot.
Its color map is depicted on the right site. The light cone R = vFt has
been added as a white line.

integrations of the free conduction electron states must be
performed numerically.

The sum of the first- and second-order contributions to
χ (R,t) are shown in Fig. 9 up to relatively large times. This
perturbatively calculated χ (R,t) turns out to be well behaved
and does not contain secular terms. Clearly, the Kondo physics
is not included in such an approach remaining only valid for
r/ξK � 1 and tTK � 1. Therefore we expect deviations at
large distances and times from the NRG results.

Nevertheless, the NRG result depicted in Fig. 5 and
the perturbation theory result qualitatively agrees very well.
As in the TD-NRG, ferromagnetic correlations propagate
spherically away from the impurity with Fermi velocity (white
line as guide to the eye) in the perturbative solution. For long
times, an equilibrium is reached: we recover the distance
dependent Friedel oscillations which are known from the
RKKY interaction. We also find the same antiferromagnatic
correlations outside the light cone as in the NRG results. Again,
their maxima are located at odd multiple of x = kFR/π =
n + 1/2 at the same positions as predicted in the TD-NRG
calculations.

To the leading order in the Kondo coupling ρ0J , the
ferromagnetic wave in the correlation function propagates
on the light cone line R = vFt . Note, however, that the peak
position of the analytical χ (R,t) plotted in Fig. 9 is slightly
shifted to later times than defined by the light cone line.
This shift coincides with the one observed in the TD-NRG
results shown in the Figs. 5 and 7. With our analytical
analysis at hand, we can provide a detailed understanding
of this effect. The first-order contribution given by Eq. (B6)
yields a peak of ferromagnetic correlations positioned exactly
on light cone line. However, the maximum of the second-
order contribution (B7) is shifted to slightly larger times.
Adding both contributions generates a J -dependent line for
the ferromagnetic peak position away from the light cone line:
the larger J , the later the ferromagnetic maximum occurs due
to increasing importance of the second-order contribution.

While these spatial oscillations are implicitly encoded in the
effective even and odd density of states in the NRG calculation,
they are explicitly generated by the momenta integration in the
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perturbative approach. This confirms our TD-NRG results and
provides a better understanding of the numerical data.

Comparing Figs. 5 and 9 in more detail illustrates the
shortcomings of the perturbative approach which remains only
valid for R/ξK � 1. As discussed in Sec. III above, the decay
of the envelope function crosses over from a 1/R to an 1/R2

behavior due to the Kondo screening of the local moment
for R/ξK > 1. Since the perturbative approach is unable to
access the Kondo-singlet formation the perturbative solution
depicted in Fig. 9 decays as 1/R at all distances and also
remains oscillating between ferromagnetic and antiferromag-
netic correlations, while the TD-NRG correctly predicts only
antiferromagnetic correlations inside the light cone once R

exceeds the Kondo length scale ξK.

D. Intrinsic correlations of the Fermi sea

Since the perturbative results agree remarkably well with
the TD-NRG data for short distances, the analytical approach
can be used to gain an explicitly understanding of the
correlations outside of the light cone. It has been proposed [22]
that these correlations originate from the intrinsic spin-spin
correlations in the Fermi sea 〈�s(0)�s(�r)〉 already present prior
to the coupling of the impurity. Once the impurity is coupled
to the local conduction electron spin density at time t = 0,
we instantaneously probe these intrinsic entanglements of the
Fermi sea between the local spin density and the spin density
at a large distance R.

For J = 0, 〈�s(0)�s(R)〉 can be calculated analytically and is
given by

〈�s(0)�s(R)〉 = 3 sin(kFR) sin
(

kFR
2

)
cos

(
3
2kFR

)
4V 2

u (kFR)2
(26)

in 1D. This exact result coincides with the NRG data obtained
by setting J = 0 in an equilibrium NRG calculation as shown
in Fig. 10. This excellent agreement between the analytical
and the NRG approaches serves as further evidence for
the numerical accuracy of mapping Eqs. (7)–(9) to the two
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FIG. 10. (Color online) The intrinsic spin-spin correlations of the
Fermi sea between the spin densities �s(0) and �s(r) in 1D. Via the
mapping to the even and odd conduction bands, we are able to measure
bath properties at distance R and get a perfect agreement between
theory and NRG results. NRG parameters are � = 3 and Ns = 1200.
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correlations for large distances. A comparison with (a) shows that
the positions of these correlations coincide with the positions of the
intrinsic correlations of the Fermi sea. So the correlations outside the
light cone originate from these intrinsic correlations.

discretized and properly normalized Wilson chains for even
and odd parity conduction bands.

In order to connect the intrinsic spin entanglement of the
decoupled Fermi sea with the observed antiferromagnetic cor-
relations outside of the light cone, we expand the perturbative
calculated χ (R,t) for small times 0 � tD � 1 and perform the
momentum integrations analytically, separately for the first-
and the second-order contributions.

The leading order terms in time are proportional to ∝(tD)2

and decay as 1/R2. We recall the difference between the 1/R2

decay outside of the light cone for the short-times dynamics
and the well understood 1/R decay inside the light cone
when the equilibrium reached. Therefore we have plotted
the perturbative results in 1D as χ (R,t)[R/(tD)]2 in Fig. 11
to eliminate the time dependence and compensate for the
leading spatial decay of the envelop function. The first-order
contribution (green online) is shown as a dashed-dotted line,
the second-order contribution (blue online) is depicted as a
dashed line, and the sum of both (red online) is added as a
solid line for ρ0J = 0.3 in Fig. 11.

Since the second-order contribution to χ (0,t) remains
always zero in a short-time expansion, the time evolution of
the antiferromagnetic correlation at R = 0 is dominated by the
first-order term being proportional to ∝J t2. Therefore the time
scale for the initial fast buildup of the local antiferromagnetic
correlation is given by 1/

√
J confirming the TD-NRG short-

time dynamics for kFR/π = 0.01 as depicted in Fig. 7(a).
The largest contribution for short times stems from the fer-

romagnetic peak around kFR/π = 0.5. However, correlations
are visible at all length scales which develop quadratically
in time. The positions of the maxima and minima agree
remarkable with those of the intrinsic correlation function
〈�s(0)�s(R)〉 of the Fermi sea depicted in Fig. 10 and both decay
with 1/R2.

Since the first-order contribution is sensitive to the
sign of J , its maxima contribute with the equal sign as
〈�s(0)�s(R)〉 for ferromagnetic J and opposite sign for an
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antiferromagnetic coupling. The second-order term only adds
negative (antiferromagnetic) contributions to χ (R,t). The lo-
cation of its negative peaks coincide with the antiferromagnetic
peak location of the spin-spin correlation function 〈�s(0)�s(�r)〉
of the decoupled Fermi sea depicted in Fig. 10. The sum of
both orders contains only small ferromagnetic correlations
for larger distances kFR/π > 1 for ρ0J = 0.3. The larger the
coupling J is the smaller these ferromagnetic correlations are
due to the increasing dominance of the second-order term.

We can conclude from this detailed analytical analysis that
the antiferromagnetic correlation directly in front of the light
cone results from the antiferromagnetic peak in the intrinsic
correlations from the Fermi sea at around kFR ≈ 1.6π . This
peak also propagates through the conduction band with the
Fermi velocity. Because the intrinsic correlations decay with
1/(kFR)2, the propagation of the antiferromagnetic peaks for
larger distances is not visible.

E. Local moment regime: ferromagnetic coupling: J < 0

Now we extend the discussion to ferromagnetic Kondo
couplings. In this regime, the LM fixed point is stable, and the
ground state is twofold degenerate in the absence of an external
magnetic field. In the RG process, the Kondo coupling is
renormalized to zero. Nevertheless, the spatial spin-correlation
function χ∞(R) remains finite for T → 0 as discussed in
Sec. III B.

The results for the time-dependent spin-correlation function
χ (R,t) are shown as a color contour plot in Fig. 12.
Figure 12(a) depicts the TD-NRG calculation, while the
analytical result obtained up to second-order in perturbation
theory is added as panel (b) for the same parameters. Since the
first-order contribution is sign sensitive, the analytical correla-
tion function differs significantly from the antiferromagnetic
regime displayed in Fig. 9.

As in the Kondo regime, the analytical and the TD-NRG
results agree qualitatively very well. The Friedel oscillations
with the frequency 2kF are clearly visible inside the light cone.
Note the phase shift compared to the Kondo regime: now
the ferromagnetic correlations are observed at x = n and the
antiferromagnetic correlations at half integer values of x.

Since a ferromagnetic correlation is building up at the
impurity spin position on a very short time scale ∝1/

√
J , and

the total spin of the system is conserved, an antiferromagnetic
correlation wave spherically propagates away from the origin
traveling with the Fermi-velocity vF (again we have added a
white line R = vFt as guide to the eye to both panels). For
ferromagnetic couplings, the peak position of the propagation
is slightly shifted to earlier times tmax < R/vF, due to the
sign change of the first-order contribution. The correlations
outside the light cone are stronger suppressed compared to the
Kondo regime. Again, we can trace the origin to the intrinsic
entanglement of the Fermi sea by consulting Figs. 10 and 11
as well as the discussion above.

F. Finite temperature: cutoff of the Kondo correlations

Up to now, we have only considered the zero-temperature
limit. Next, we extend the discussion to the propagation of the
correlations at finite temperatures.

FIG. 12. (Color online) (a) The time-dependent spin correlation
function χ (R,t) vs x = kFR/π and τ = tD for a ferromagnetic
Kondo coupling ρ0J = −0.1 in 1D as color contour plot. Its color
map is depicted on the right site. (b) The analytic spin correlation
function χ (R,t) for the same parameter calculated in second-order
perturbation theory in ρ0J . NRG parameters are � = 3, Ns = 1400,
and Nz = 32.

Figure 13 illustrates the difference in the time-dependent
correlation function at the two different temperatures T = 0
and 2TK, depicted in panels (a) and (b), respectively. Note that
we have used the data of Fig. 5 but measure the distance R in
units of the Kondo correlation length ξK.

For both temperatures, we observe the correlations in
and outside of the light cone and the propagation of the
ferromagnetic correlation with Fermi velocity as described
in Sec. IV B. While for small distances R/ξK � 0.15, the
spin-correlation functions agree well for both temperatures,
the correlations inside and outside of the light cone become
strongly suppressed in the finite temperature data once R

exceeds 0.5ξK: the correlations are cut off at the thermal length
scale ξT = vF/T = vF/(2TK) = 0.5ξK.

The ferromagnetic correlation which propagates with Fermi
velocity, however, is amplified due to spin conservation.
Because of the strong suppression outside of the light cone,
the total spin has to be distributed over a larger area.

Figure 14 shows the approach to the equilibrium correlation
functions at large times: the spatial dependence of the spin
correlation functions for both temperatures is plotted using
the data of Fig. 13 at the largest time D = 70. In the T = 0
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FIG. 13. (Color online) The correlation function χ (R,t) vs
x = R/ξK and τ = tD for the medium coupling ρ0J = 0.3 and
different temperatures in 1D. A comparison between the correlation
function for (a) zero temperature and (b) T = 2TK reveal that
correlations in and outside of the light cone vanish at around x =
R/ξK = 0.5 for T = 2TK. NRG parameters are � = 3, Ns = 1400,
and Nz = 4.

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

χ
(R

,t
D

=
70

)V
u

R/ξK

0.0001

0.001

0.01

0.1

0.1 1

- χ
(R

,t
D

=
70

)V
u

R/ξK
T = 2TK

T = 0

FIG. 14. (Color online) The correlation function χ (R,tD = 70)
vs x = R/ξK for the medium coupling ρ0J = 0.3 and the constant
time tD = 70 in 1D. For T = 0, the RKKY-like oscillations are
observed while for T = 2TK the correlations are cut off. The inset
shows the envelope function of χ (R,tD = 70).

curve (dashed line), the RKKY type of oscillations between
antiferromagnetic and ferromagnetic peaks for small distances
and only antiferromagnetic correlations for larger distances
are clearly visible. The decay of its envelope functions plotted
as an inset of Fig. 14 reveals the power-law decay with the
distance.

For the finite temperature T = 2TK, however, the corre-
lations are cut off, and, due to the rapid decay, only a few
oscillations (solid red line) can be observed. The envelope
in the inset shows the expected exponential decay at short
distances. At larger distances, the numerical noise of the
TD-NRG exceeds the rapid suppression of the correlation
function, and one needs to resort to the equilibrium NRG
(see Fig. 3 in Ref. [27]).

V. RESPONSE FUNCTION

Within the linear-response theory, we can investigate the
the conduction electron spin-density polarization 〈�s(R,t)〉 as
a function of an externally applied local magnetic field �B(t).
Since the Kondo Hamiltonian is rotational invariant in spin
space, the retarded spin-spin susceptibility tensor is diagonal
and proportional to the unity matrix. Therefore it is sufficient
to investigate the conduction electron spin-density polarization
in z direction 〈sz(R,t)〉 at distance R of the Kondo spin caused
by applying a local magnetic field �B(t) = B(t)�ez acting on the
Kondo spin with �ez being the unity vector in z direction.

The spin-density polarization 〈�s(R,t)〉
〈sz(R,t)〉 = 〈sz(R,t = −∞〉+

∫ ∞

−∞
dt ′ χr

imp−c(R,t − t ′)�(t ′)

(27)

is related to the retarded spin susceptibility

χr
imp−c(R,t) = −i

〈[
sz(R,t),Sz

imp

]〉
�(t) (28)

that is a true response function. Since the system is unpolarized
at t = −∞, 〈sz(R,t = −∞〉 = 0 and can be neglected. In
Eq. (27), the local applied time-dependent Zeeman splitting
�(t) = gμBB(t) has entered. Since the spin-density sz(R,t)
and Sz

imp are Hermitian operators, χr (R,t) is a purely real
function depending only on the spectrum [44] ρr

imp−c(R,ω) =
− limδ→0+ �χr

imp−c(R,ω + iδ)/π :

χr
imp−c(R,t) = −2

∫ ∞

0
dωρr

imp−c(R,ω) sin(ωt) . (29)

A. Retarded host susceptibility χ r
c−c(R,t)

The retarded equilibrium host spin-density susceptibility

χr
c−c(R,t) = −i〈[sz(R,t),sz(0,t)]〉�(t) (30)

can be analytically calculated in the absence of a coupling
to the impurity (J = 0) (see Appendix C). For a 1D linear
dispersion, we have obtained

ρr
c−c(R,ω) = 1

2πV 2
u N2

∑
k1,k2

[
f

(
εk2

) − f
(
εk1

)]

×
{
π cos[(k2 − k1)R]δ

[
ω − (

εk1 − εk2

)]

+ sin[(k2 − k1)R]

ω − (
εk1 − εk2

)
}
. (31)

045117-12



SPATIAL AND TEMPORAL PROPAGATION OF KONDO . . . PHYSICAL REVIEW B 90, 045117 (2014)

The analytic expression (31) of the spin-spin susceptibil-
ity contains the dimensionless frequency kFR for a linear
dispersion causing increasing frequency oscillations with
increasing R.

The numerical effort for a calculation of these retarded
spin-spin susceptibilities and their spectral functions using
the NRG grows exponentially at larger distances since the
high energy spectrum of the NRG response function is much
less accurate than its low-frequency counterpart. While the
analytical calculation makes full use of the bath continuum,
the conduction band is discretized on a logarithm energy
scale [11] and comprise only a few bath sites representing the
high-energy spectrum. Note that the NRG is geared towards
the calculation of the impurity properties, while we are using
the NRG to extract a bath correlation function. Therefore we
are limited to short distances for the bath spectral resolution
in the NRG calculation.

To illustrate this point, we present a comparison between
the analytical and the NRG spectral function as a benchmark in
Fig. 15(a). While the agreement between the two results is very
good at short distances, significant deviations are observed at
kFR/π = 2.01. Their origin can be traced to the limitation of
the NRG to accurately resolve the high-energy part of the
oscillations in the spectrum. The frequency scale of these
oscillations is of the order of the bandwidth D as can be seen
from Eq. (31). These high-energy oscillations cannot be
properly resolved for large R by the finite number of excitation
energies provided by the NRG in this frequency range for a
finite � > 1. The low-energy part of the spectrum, however is
excellently recovered by the NRG as expected.

After benchmarking the accuracy of the spectral functions
at small distances, we have used the Fourier transformation
Eq. (29) and the corresponding version for χr

c−c(R,t) to
calculate the retarded spin susceptibility in the time domain.
A time-dependent and spatial conduction electron spin density
〈sz(R,t)〉 is induced as a response to a fictitious local Zeeman
splitting �(t) = gμBBθ (t) applied locally at the origin.

We compare 〈sz(R,t)〉 obtained from the NRG retarded
spin-spin susceptibility χr

c−c(R,t) (dashed line) and the ana-
lytical susceptibility (solid line) in Fig. 15(b). Both suscepti-
bilities have been calculated using the Fourier transformation
of the data depicted in Fig. 15(a) and substituting the resulting
χr

c−c(R,t) for χr
imp−c(R,t) in Eq. (27). We have plotted

〈sz(R,t)〉 normalized to the Zeeman energy �0 = gμBB

to eliminate the trivial proportionality to the applied-field
strength.

The induced time-dependent spin-density polarization
〈sz(R,t)〉 can be understood as a response to a spin wave
propagating with the speed vF through the lattice and a
consecutive fast equalization. The maximum of the spin wave
is expected to be found at the time τl = R/vF indicated by the
arrows in Fig. 15(b). The analytical response can be evaluated
at arbitrary distances R. Indeed, the center of the propagating
spin wave is located exactly at the time τl for larger distances
kFR/π � 2—not explicitly shown here—while for shorter
distances we observe a slight shift as depicted in Fig. 15(b).
Some response is found outside of the light cone related to the
finite width of the spin wave. This finite spatial resolution is
directly linked to the finite momentum cutoff in the analytical
formula defined by the restriction of the k values to the first
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FIG. 15. (Color online) (a) The spectral function of retarded host
spin-density susceptibility χr

c−c(R,t) in the absence of the impurity
for four different distances kFR/π = 0.01,0.51,1.51,2.01. The solid
line shows the exact analytic result and the dashed line the numerical
NRG result. (b) The conduction electron spin-density 〈sz(R,t)〉 vs
time as a response to the local magnetic field B(t) = Bθ (t) applied
to the spin-density sz(0) at the origin. The Fourier transformation of
the spectral information depicted in (a) has been used in combination
with Eq. (27) where χr

imp−c(R,t) has been replaced by χr
c−c(R,t). The

arrows indicate the time τ = R/vF. Note that the 〈sz(R,t)〉 has been
normalised to the Zeeman energy �0 = gμBB. NRG parameters are
� = 2.25, Ns = 3000, and Nz = 16.

Brillouin zone: a sharp suppression of the signal outside the
light cone would require sending the momentum cutoff to
infinity as done in the analytical calculation of Ref. [22].

The spin wave obtained from the NRG calculations is
slightly faster originating from the shift of spectral weight
to higher energies due to NRG spectral broadening [12] of
the finite size NRG spectra as illustrated also in Fig. 15(a).
By comparing the numerical response with its analytical
counterpart, it is apparent that the small oscillations around
the long-time limit of the spin-density polarization are not a
numerical artefact due to the NRG discretization errors but
related to the finite bandwidth and the linear conduction band
dispersion.
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Furthermore, we find a significant deviation between the
long-term limit of the spin polarization calculated analytically
and the one using the convolution of the NRG retarded
susceptibility for kFR/π = 0.01. It is straightforward to see
that the stationary value is determined by the integral over
ρr

c−c(R,ω)/ω. As discussed above and depicted in Fig. 15(a),
the finite resolution and the NRG broadening shifts some spec-
tral weight to higher frequencies compared to the exact solu-
tions, and, hence, we find a reduced value for |〈sz(R → 0,∞)〉|
since ρr

c−c(0,ω)/ω does not change sign. Once the spectral
functions exhibit sign changes, broadening and finite size
errors partially cancel and the accuracy of 〈sz(R,∞)〉 increases
for larger R.

B. Retarded susceptibility χ r
imp−c(R,t)

Now we proceed to the spin susceptibility χr
imp−c(R,t) for

finite J describing the response of the conduction band spin
density at some distance R to a perturbative magnetic field
in z direction coupling only to the impurity spin. Its spectral
function is shown in Fig. 16(a) for four different distances
R to illustrate the changes due to the presence of the Kondo
spin (J > 0).

Clearly, the increase of the numbers of oscillations in the
frequency spectra with increasing R prevails the indication
of the RKKY mediated spin response. Furthermore, the
antiferromagnetic coupling J > 0 leads to a change of sign
in ρr

imp−c compared to ρr
c−c. A significant spectral weight is

now located at low frequencies: the Kondo physics is reflected
in the distinctive peak at ω ≈ TK apparent for all distances R.

In Fig. 16(b), the time dependence of the spin-density
〈sz(R,t)〉 is shown for a Zeeman splitting �(t) = gμBBθ (t)
applied to the impurity spin. Compared to ρr

c−c, one observes
a change of sign in the response due to the antiferromagnatic
coupling. For even multiples of kFR/(2π ), the conduction-
band electron spin density aligns antiparallel, and for odd
multiples the density aligns parallel to the impurity spin
in the long-time limit reflecting the RKKY mediated spin
response.

We have identified two relevant time scales in the induced
spin density 〈sz(R,t)〉: the fast light cone time scale τ = R/vF

and the slow Kondo time scale 1/TK. The spin-density
polarization remains almost zero until the ferromagnetic
spin wave has propagated from the impurity spin to the
distance R after that 〈sz(R,t)〉 starts building up [see inset of
Fig. 16(b)]. Again, the finite width of this spin-wave response
is directly linked to the finite momentum cutoff of our single
symmetric conduction band used in the NRG calculation as
discussed above. The steady state, however, is reached very
slowly: its sign is determined by the R-dependent RKKY
interaction, and the long-time approach is governed by the
Kondo scale TK independent of the distance as demonstrated
in Fig. 16(b). This is in contrast to the fast response of the
decoupled Fermi sea, where the equilibrium spin polarization
is reached rather fast on the time scale 1/D as depicted
in Fig. 15(b).

To gauge the quality of the long-time steady-state value
obtained within the linear-response theory, we have used
an equilibrium NRG approach to calculate the equilibrium
value 〈sz(R,∞)〉/(gμBB) at a very small magnetic field
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FIG. 16. (Color online) (a) The spectral function of the retarded
host-spin susceptibility ρr

imp−c(R,ω) for four different distances
R = 0.01,0.51,1.51,2.01. (b) The time-dependent spin-polarization
〈sz(R,t)〉 vs the dimensionless time t TK after switching on the local
magnetic Zeeman splitting �(t) = gμBBθ (t) on the impurity spin
calculated using Eq. (27) for three distances 0.51,1.51,2.01. The
inset shows the short time behavior in more detail. The horizontal
lines on the right indicate the equilibrium value 〈sz(R,∞)〉/(gμBB)
obtained by an equilibrium NRG calculation with Nz = 1 for a very
small magnetic field gμBB/D = 10−8 acting on the impurity spin.
NRG parameters are � = 2.25, Ns = 3000, and Nz = 16.

gμBB/D = 10−8 acting on the impurity spin. These values
are added as a horizontal line on the right of Fig. 16(b).
For vanishing local magnetic field, the linear response theory
becomes exact, and the steady-state value must coincide with
the equilibrium expectation value in an infinitely large system.
Similar to Fig. 15(b), the steady-state value |〈sz(R,∞)〉|
calculated from the spectral function is smaller than the
equilibrium value caused by the NRG broadening shift of
spectral weight to higher energies. This origin of the deviations
has already been discussed in Sec. V A.

VI. DISCUSSION AND OUTLOOK

We presented a comprehensive study of the spatial and tem-
poral propagation of Kondo-correlations for antiferromagnetic
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and ferromagnetic Kondo couplings using the TD-NRG. Our
approach is based on a careful construction of two Wilson
chains obtained from the two distance dependent even and
odd parity bands. Full energy dependence and the correct
normalization of the bands are required for accurate results. We
have benchmarked our mapping by (i) calculating the intrinsic
spatial dependence of spin-spin correlation of the Fermi sea,
which coincides with the exact analytical calculation for
the full continuum, and (ii) checking the sum rule of the
equilibrium spin correlation function for ferromagnetic and
antiferromagnetic couplings. Our numerical data fulfil the sum
rule with an error of 1% in 1D, which provided a second
independent check of the distance dependent NRG mapping.

The light cone defined by the Fermi velocity R = vFt

divides the parameter space of the spatial and temporal
correlation function χ (R,t) in two segments. Inside the light
cone, the spin correlations develop rather rapidly, and then
are followed by a much slower decay towards the equilibrium
correlation function. Typical decaying Friedel oscillations with
a characteristic frequency 2kF are observed in the spatial
dependence. In the Kondo regime, the envelope function shows
a power-law behavior 1/R in equilibrium with ferromagnetic
and antiferromagnetic correlations for short distances and
crosses over to a 1/R2 behavior for distances exceeding
the Kondo length scale R > ξK in 1D. In this region, only
antiferromagnetic correlations are found that correspond to a
finite negative value of the sum rule.

For the ferromagnetic regime, the inverse length scale
1/ξK vanishes, and the correlation function remains oscillatory
with a slower decay of the envelope function. The position
of minima and maxima are interchanged. The analytical
calculation of the correlation function provides an excellent
understanding of our numerical TD-NRG data.

Remarkably, we have found a building up of correlation
even outside of the light cone for ferromagnetic and antiferro-
magnetic Kondo couplings in our TD-NRG data. We were able
to trace back these correlations to the intrinsic entanglement
of the Fermi sea using a second-order perturbation expansion
in the Kondo coupling. The analytical structure of the
perturbative contribution provides an explanation of the differ-
ences observed between ferromagnetic and antiferromagnetic
Kondo couplings. The extension of the calculations to finite
temperatures shows that both correlations in- and outside of
the light cone are cut off at the thermal length scale ξT = vF/T .

Furthermore, we have presented the spectra of the re-
tarded susceptibility for different distances R and have used
χr

imp−c(R,t) to calculate the response of the spin-density
polarization 〈sz(R,t)〉 induced by a weak magnetic field that
has been switched on locally at the origin and interacting with
the impurity spin. For the real-time response of 〈sz(R,t)〉,
almost no correlations outside of the light cone were found
within the spatial resolution. The sharpness of the light cone
is directly related to the momentum cutoff.
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APPENDIX A: RKKY-INTERACTION

In this appendix, we briefly summarize how the effective
RKKY-interaction between two impurities mediated by a
single conduction band is calculated in second order in J .
The interaction between the conduction band electrons and
the impurities can be expanded in even (e) and odd (o) parity
states [34,36] and is given by

Hint = J

8

∑
σ,σ ′

∫ ∫
dεdε′√ρ(ε)ρ(ε′)�σσ,σ ′ [(�S1 + �S2)

× (Ne(ε)Ne(ε′)c†εσ,ecε′σ ′,e + No(ε)No(ε′)c†εσ,ocε′σ ′,o)

+ (�S1 − �S2)(Ne(ε)No(ε′)c†εσ,ecε′σ ′,o + H.c.)]. (A1)

The normalization factors
√

ρ(ε)Ne/o(ε) have been defined
by Eq. (17) in 1D, by (18) in 2D and by (19) in 3D. The RKKY
interaction is generated by a propagation of spin excitation
in the conduction band between the two impurities. The
leading second-order contribution to the RKKY interaction is
depicted as a Feynman diagram in Fig. 17. Integrating out the
conduction electrons leads to the effective RKKY interaction

FIG. 17. (Color online) The second-order Feynman diagram
generating the lowest-order contribution to the RKKY interaction
between to localized spins mediated by a spin excitation propagating
through the metallic host.
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HRKKY:

HRKKY = 1

β

∑
iω

∫ ∫
dεdε′ ∑

α,α′
G0(ωn,ε)G0(ωn,ε

′)

×V
�R1

α,α′ (ε,ε′)V
�R2

α‘,α(ε′,ε), (A2)

which is exact in second order in J . The vertex operator

V
�Ri

α,α′ (ε,ε′) at the position �Ri , of the impurity spin �Si originates
from the Hamiltonian Hint in (A1) and is defined as

V
�Ri

α,α′ (ε,ε′) = ci
p,p′

J

8

√
ρ(ε)ρ(ε′)Np(ε)Np′(ε′)�σσ,σ ′ �Si (A3)

and depends on the combined spin-parity index α = (σ,p)
with spin σ and parity p, and the sign factor

ci
p,p′ =

{−1 if p �= p′ and i = 2
1 otherwise . (A4)

G0(ωn,k) = [iωn − εk + iδ]−1 denotes the Green’s function
of a free electron, and iωn the fermionic Matsubara frequen-
cies. A textbook [45] evaluation of the summation over the
Matsubara frequencies yields

1

β

∑
iω

G0(ωn,ε)G0(ωn,ε
′) = f (ε) − f (ε′)

ε − ε′ , (A5)

where f (ε) labels the Fermi-Dirac distribution. For T = 0 and
a particle-hole symmetric conduction band, we arrive at

HRKKY =
∑
α,α′

∫ 0

−D

dε

∫ D

0
dε′

(
V

R1
α,α′ (ε,ε′)V R2

ε′,α(ε′,ε)

ε − ε′

+ V
R2
α,α′ (ε,ε′)V R1

α′,α(ε′,ε)

ε − ε′

)
. (A6)

After performing the spin and parity summations, we obtain
the effective spin-spin interaction:

HRKKY =
∫ 0

−D

dε

∫ D

0
dε′ ρ(ε)ρ(ε′)

J 2

16

×
(

N2
e (ε)N2

e (ε′) + N2
o (ε)N2

o (ε′)
ε − ε′

− N2
e (ε)N2

o (ε′) + N2
o (ε)N2

e (ε′)
ε − ε′

)
�S1 �S2, (A7)

which defines the effective RKKY interaction constant KRKKY

as

KRKKY =
∫ 0

−D

dε

∫ D

0
dε′ ρ(ε)ρ(ε′)

J 2

16

×
(

N2
e (ε)N2

e (ε′) + N2
o (ε)N2

o (ε′)
ε − ε′

− N2
e (ε)N2

o (ε′) + N2
o (ε)N2

e (ε′)
ε − ε′

)
, (A8)

which implicitly depends on the distance via the energy-
dependent parity densities Ne(ε) and No(ε). If their energy
dependence is replaced by a constant

√
ρ(ε)Np(ε) = ρ0Np,

the approximation of Jones and Varma [34]

KRKKY

D
= −J 2ρ2

0

16
2 ln(2)

(
N2

e − N2
o

)2
(A9)

is recovered. This KRKKY, however, remains ferromagnetic
for all distances R and is insufficient to account for the
correct spatial dependent RKKY interaction. As pointed
out by Affleck and coworkers [36], maintaining the energy
dependence is crucial for the alternating ferromagnetic and
antiferromagnetic interaction between two impurity spins as a
function of increasing distance.

APPENDIX B: PERTURBATIVE APPROACH OF SPIN-SPIN
CORRELATION FUNCTION χ (�r,t)

We divide the Hamiltonian into two parts H = H0 + HK

with H0 = ∑
σ,�k ε�k c

†
�kσ

c�kσ
, with the free conduction band

dispersion ε�k and HK = J �Simp�sc(0). The time-dependent spin-
correlation function χ (�r,t) = 〈�Simp�s(�r)〉(t) can be calculated
as

〈�Simp�s(�r)〉(t) = Tr[ρI (t)�Simp�sI (�r,t)] (B1)

using the density operator ρI (t) in the interaction picture,
which is defined for any operator A as

AI (t) = eiH0tAe−iH0t . (B2)

Since the impurity spin commutes with H0, it remains time
independent. The real-time evolution of ρI (t) can be derived
from the von-Neumann equation

∂tρ
I (t) = i

[
ρI (t),H I

K(t)
]
, (B3)

which is integrated to

ρI (t) = ρ0 + i

∫ t

0

[
ρ0,H

I
K(t1)

]
dt1

−
∫ t

0

∫ t1

0

[[
ρI (t2),H I

K(t2)
]
,H I

K(t1)
]

dt2 dt1 (B4)

using the boundary condition ρI (0) = ρ0. For an approximate
solution in O(J 2), we replace ρI (t2) by ρ0 in the second
integral. Substituting (B4) into (B1) and cyclically rotating
the operators under the trace yields

〈�Simp�s(�r)〉(t)

≈ Tr[ρ0 �Simp�sI (�r,t)] + i

∫ t

0
Tr

[
ρ0

[
HI

K(t1),�Simp�sI (�r,t)]]dt1

−
∫ t

0

∫ t1

0
Tr

[
ρ0

[
HI

K(t2),
[
HI

K(t1),�Simp�sI (�r,t)]]]dt2dt1

(B5)

containing only expectation values that only involve the
initial density operator ρ0 in which the impurity spin and the
conduction electrons factorize. In the absence of a magnetic
field, the first term vanishes, and the initial correlation function
is zero at t = 0. The integral kernel of the first-order correction
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is given by

Tr
[
ρ0

[
HI

K(t1),�Simp�sI (�r,t)]] = −3

4

J

VuN2

∑
�k,�q

f (ε�k+�q) sin(�q�r + (ε�k+�q − ε�k)(t1 − t)). (B6)

For a linear dispersion in 1D, the argument of the sine contains (εk+q − εk) = vFq contributions. The kernel remains phase
coherent on the light cone q(r − vFt) and, therefore, generates the response on this light cone line.

Calculating the commutator of the second order yields

Tr
[
ρ0

[
HI

K(t2),
[
HI

K(t1),�Simp�sI (�r,t)]]]

= 3

8

J 2

VuN3

∑
�k,�q1,�q2

f
(
ε�k+�q1

)
f

(−ε�k−�q2

){
cos

[�q1�r + (
ε�k+�q1

− ε�k−�q2

)
t1 + (

ε�k−�q2
− ε�k

)
t2 + (

ε�k − ε�k+�q1

)
t
]

+ cos
[�q2�r + (

ε�k+�q1
− ε�k−�q2

)
t1 + (

ε�k − ε�k+�q1

)
t2 + (

ε�k−�q2
− ε�k

)
t
]

− cos
[
(�q1 + �q2)�r − (

ε�k+�q1
− ε�k−�q2

)
t − (

ε�k−�q2
− ε�k

)
t2 − (

ε�k − ε�k+�q1

)
t1

]
− cos

[
(�q1 + �q2)�r − (

ε�k+�q1
− ε�k−�q2

)
t − (

ε�k − ε�k+�q1

)
t2 − (

ε�k−�q2
− ε�k

)
t1

]}
. (B7)

Because of the simple sine and cosine structure, the time
integration can be obtained analytically. For the momentum
integrations over �k, �q1, and �q2, we insert a 1D linear dispersion
for ε�k . If we expand (B6) and (B7) for small times around
t = 0, the momentum integrations can also be calculated ana-
lytically otherwise a numerical integration has to be performed.

APPENDIX C: RETARDED HOST
SPIN-SPIN SUSCEPTIBILITY

In this section, we will analytically derive the spectral
function ρr

c−c(R,ω) of the retarded host spin-spin susceptibility

χr
c−c(R,t) = −i〈[sz(R,t),sz(0,0)]〉θ (t) (C1)

introduced in Eq. (31). The spin-density operator sz(R,t),
which is given by

sz(R,t) = 1

2VuN

∑
k1,k2

∑
α,β

σ z
α,βc

†
k1,α

ck2,β
e−i(k1−k2)Rei(εk1 −εk2 )t

(C2)

in the Heisenberg picture, is inserted into the definition
Eq. (C1) yielding

χr
c−c(R,t) = −iθ (t)

4V 2
u N2

∑
k1,k2
k3,k4

∑
α,β

α′,β ′

σ z
α,βσ z

α′,β ′e
−i(k3−k4)R

× ei(εk3 −εk4 )t 〈[c†k3,α′ck4,β ′ ,c
†
k1,α

ck2,β

]〉
. (C3)

The expectation value of the commutator can be simplified to〈[
c
†
k3,α′ck4,β ′ ,c

†
k1,α

ck2,β

]〉
= δα,β ′δβ,α′δk1,k4δk2,k3

[
f

(
εk2

) − f
(
εk1

)]
. (C4)

After performing the spin and the k3,k4 summations, we arrive
at the closed form

χr
c−c(R,t)

= −iθ (t)

2V 2
u N2

∑
k1,k2

e−i(k2−k1)Rei(εk2 −εk1 )t
[
f

(
εk2

)− f
(
εk1

)]
. (C5)

Its Fourier transformation yields the analytic expression

χr
c−c(R,z) = −i

2V 2
u N2

∑
k1,k2

∫ ∞

0
eizt e−i(k2−k1)Rei(εk2 −εk1 )t

× [
f

(
εk2

) − f
(
εk1

)]
dt (C6)

= 1

2V 2
u N2

∑
k1,k2

[
f

(
εk2

)−f
(
εk1

)]
e−i(k2−k1)R

z − (
εk1 − εk2

) , (C7)

where we have made explicit use of the θ function and
used a slightly imaginary frequency z = ω + iδ and δ > 0
guaranteeing convergence of the Fourier integral.

Due to the complex phase factor exp[−i(k2 − k1)R], the
spectral function ρr

c−c(R,ω) defined as

ρr
c−c(R,ω) = − 1

π
lim
δ→0

�[
χr

c−c(R,ω + iδ)
]

(C8)

has two contributions: the first term is generated by a δ

function stemming from the 1/(z − ε) term and the second
by � exp[−i(k2 − k1)R] = − sin[(k2 − k1)R]. To this end, we
obtain

ρr
c−c(R,ω) = 1

2πV 2
u N2

∑
k1,k2

[
f

(
εk2

) − f
(
εk1

)]

×
{
π cos[(k2 − k1)R]δ

[
ω − (

εk1 − εk2

)]

+ sin[(k2 − k1)R]

ω − (
εk1 − εk2

)
}
. (C9)

Equation (C9) contains the dimensionless frequency kFR,
which is directly related to the increasing oscillation with
increasing distance R.
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[42] F. Güttge, F. B. Anders, U. Schollwöck, E. Eidelstein,
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