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We analyze the collective magnetoroton excitations of bosonic Laughlin ν = 1
2 fractional quantum Hall (FQH)

states on the torus and of their analog on the lattice, the fractional Chern insulators (FCIs). We show that, by
applying the appropriate mapping of momentum quantum numbers between the two systems, the magnetoroton
mode can be identified in FCIs and that it contains the same number of states as in the FQH case. Further, we
numerically test the single-mode approximation to the magnetoroton mode for both the FQH and FCI cases.
This proves particularly challenging for the FCI because its eigenstates have a lower translational symmetry
than the FQH states. In spite of this, we construct the FCI single-mode approximation such that it carries the
same momenta as the FQH states, allowing for a direct comparison between the two systems. We show that
the single-mode approximation captures well a dispersive subset of the magnetoroton excitations both for the
FQH and the FCI cases. We find remarkable quantitative agreement between the two systems. For example, the
many-body excitation gap extrapolates to almost the same value in the thermodynamic limit.
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I. INTRODUCTION

It is a celebrated property of topologically ordered gapped
ground states of quantum matter that they contain the universal
information about their topological excitations. For example,
the statistics of quasiparticles in Abelian fractional quantum
Hall (FQH) states can be inferred from their entanglement
spectrum [1,2] or their response to modular transformations
[3,4]. In the limit where the energy gap is infinite, this infor-
mation completely determines the universal physics inscribed
in the state. However, these universal data do not contain
information about the dynamics, i.e., energetics, of excitations
above the state. As such, it is incapable of explaining
whether and why a featureless topological ground state is
incompressible or what the nature of competing states is. The
answers to these questions can be inferred from the study of
the nonuniversal dynamics of its collective excitations.

Fractional quantum Hall states are a class of topologically
ordered states, for which both universal and dynamical
properties of the collective excitations are well understood.
In a seminal work, Girvin, MacDonald, and Platzman (GMP)
unraveled that FQH states possess a neutral collective excita-
tion, the magnetoroton mode, which, at long wavelengths, is
well described by a density wave on top of the featureless
ground state using the single-mode approximation (SMA)
[5,6]. Within the SMA, it is possible to demonstrate the
existence of a spectral gap above the FQH ground state
and study the transition to the Wigner crystal which occurs
via softening of the magnetoroton mode. These properties
are intimately related to the fact that the density operators,
when projected in a single Landau level, do not commute,
but rather furnish what is now called the GMP algebra. The
work by GMP was complemented via the construction of
explicit wave functions for the magnetoroton mode on the
sphere for both Abelian and non-Abelian FQH states using

a composite fermion approach [7,8] and a Jack polynomial
approach [9–12].

Recently, it was shown that there exist analogs of FQH
states for repulsively interacting electrons in lattice models
with appropriate topological energy bands [13–15] (see also
Refs. [16,17] and references therein). In contrast to the FQH
effect in Landau levels, no externally applied magnetic field is
required in the lattice models. By studying their entanglement
spectrum [15], and via modular [18] as well as adiabatic
[19–22] transformations, it has been established that these
so-called fractional Chern insulators (FCI) have excitations
with the same topological properties. However, FCI and
FQH states differ in other respects. Importantly, the lattice
Hamiltonians with FCI ground states lack the center-of-mass
translational symmetry of the Landau level problem. As a
consequence, the GMP algebra of density operators holds only
approximately in the limit of long wavelengths [23–27]. Given
these similarities and differences, it is instructive to study the
fate of the dynamical collective excitations of FQH states in
FCIs. This serves as one main objective for our work.

We focus on the simplest FQH state, namely, the bosonic
Laughlin state at filling ν = 1

2 , and its FCI cousin. The FCI,
defined as a lattice model with periodic boundary conditions,
should naturally be compared to the continuum FQH state
on the torus geometry. To the best of our knowledge, even
for this simplest FQH state, no numerical study of the SMA
to the magnetoroton mode has been performed on the torus.
Hence, the other main objective for the current study is to
establish how well the SMA approximates excitations above
the FQH Laughlin states on the torus. The results will serve
as a reference that allows us to identify the magnetoroton
excitations above the FCI ground state.

To achieve this, we first have to find the correct interpre-
tation of the SMA for the FQH effect in the torus geometry.
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Using the density wave excitations proposed by GMP, one
can build a factor of ν−2 more variational SMA states than
the magnetoroton mode contains. We give a prescription as to
how the SMA states that best approximate the magnetoroton
mode should be selected from this manifold of variational
states. Equipped with this selection criterion, we find the
magnetoroton dispersion of the FQH state well captured
by the SMA at long wavelengths. For shorter wavelength,
however, the magnetoroton dispersion flattens out, while the
SMA dispersion merges with the continuum of multiple
quasiparticle-quasihole pair excitations. We show that this
behavior is not improved if the space of variational states
is enlarged to all SMA states. It is thus not a shortcoming
of our selection criterion, but simply reflects the fact that the
SMA is not a good approximation to the magnetoroton mode
at large momenta. We also give a finite-size extrapolation of
the gap above the ν = 1

2 bosonic Laughlin state, determined
by the minimum of the magnetoroton dispersion, to the
thermodynamic limit.

Turning to FCIs, we indeed observe a neutral collective
mode separated from the quasicontinuum of excited states.
However, not all lattice models for FCIs expose this collective
mode. We find the mode clearly separated in models which
show a smaller finite-size splitting of their quasidegenerate
topological ground states, such as the kagome lattice model
[28] and the ruby lattice model [29]. We identify this
collective mode as the analog of the magnetoroton mode of
the FQH states with the aid of two complementary pieces of
evidence. First, using the FQH-to-FCI mapping introduced
in Ref. [30], we compare the number of states belonging to
the magnetoroton mode in the FQH and FCI cases. We show
that the number of states per momentum sector in the FCI
spectrum can be deduced from the FQH counting, provided
the FQH torus has the same angle as the torus defined by
the periodic boundary conditions of the FCI lattice. Second,
we develop a systematic procedure to construct the SMA
for the magnetoroton mode of the FCI. Due to the absence
of the magnetic translations, building an SMA for FCI is
more challenging. Similarly to the FQH case, the FCI density
operator allows us to build a larger space of variational states
for the magnetoroton mode, provided one allows for the
momenta of the density wave excitations to lie outside of the
first Brillouin zone. We give a criterion that determines which
momenta of the full Brillouin zone are relevant for the SMA.
We then show numerically that these SMA states provide an
accurate description of the dispersive subset of magnetoroton
states in the FCI. As may be expected from the FQH case,
the flat part of the magnetoroton curve cannot be captured
by the SMA. Finally, we quantitatively compare the quality of
the SMA description of the magnetoroton mode in the FQH
and FCI cases. We show that the dispersive branch of the
magnetoroton mode above the Laughlin ν = 1

2 state of the
ruby lattice model is equally well described by the SMA as
that of the FQH.

The paper is structured as follows. We start off in Sec. II by
presenting the exact diagonalization spectra for the FQH and
FCI cases, as well as the folding of the FQH Brillouin zone to
the FCI Brillouin zone that allows for their direct comparison.
Subsequently, in Sec. III, we develop the analytical formalism
for the SMA for both the FQH effect on the torus and for the

FCI. Section IV contains the numerical results of the SMA
that test our analytical formalism. We conclude our results in
Sec V.

II. NUMERICAL EVIDENCE FOR THE
MAGNETOROTON MODE

A. Fractional quantum Hall system on the torus

We consider a system of N bosons on a torus pierced by
Nφ flux quanta. The torus is spanned by the vectors Lxex and
Lyey , where ex and ey are two unit vectors. Unless otherwise
specified, we consider a square torus, i.e., the aspect ratio
Lx/Ly equals 1, and the twisting angle is θ = π/2 (cos θ ≡
ex · ey). While all our numerical results are for the fixed filling
ν = N/Nφ = 1

2 of the lowest Landau level (LLL), we will give
the analytical expressions in this section for a generic bosonic
filling ν = 1/m, where m is an even integer. The bosons
interact via the repulsive delta interaction, which is the model
Hamiltonian for which the bosonic ν = 1

2 Laughlin state is
the densest zero-energy state. In the pseudopotential language
[31], it means that we consider only the V0 pseudopotential.

Translation operators on the torus can be factorized into the
product of a center of mass (c.m.) and a relative translation.
The c.m. translation operator along the y axis and the relative
translation operator along the x axis commute with each other
and with the Hamiltonian. The eigenstates of the Hamiltonian
thus carry the corresponding momentum quantum numbers k
that belong to the FQH Brillouin zone:

BZFQH ≡
{

k = 2π

Lx

kx ẽx + 2π

Ly

ky ẽy

∣∣∣∣
kx = 0, . . . ,GCD(N,Nφ) − 1; ky = 0, . . . ,Nφ − 1

}
,

(1)

where GCD stands for the greatest common divisor, and ẽx,ẽy

are two unit vectors in the reciprocal lattice, such that ei · ẽj =
δi,j . In the following, we shall only consider cases where Nφ =
mN , so that BZFQH consist of N × Nφ points. To observe
the magnetoroton mode, the spectrum should be plotted as a
function of |k|, where k takes values in the reduced Brillouin
zone [32] of size N × N :

BZred
FQH ≡

{
k = 2π

Lx

kx ẽx + 2π

Ly

ky ẽy

∣∣∣∣
kx = 0, . . . ,N − 1; ky = 0, . . . ,N − 1

}
. (2)

While the m topologically degenerate ground states appear
at different momenta Kα ≡ (0,αN ) ∈ BZFQH, with α =
0, . . . ,m − 1, they all map to momentum k = 0 in BZred

FQH.
This way, all their magnetoroton dispersions coincide at the
same momenta. Collapsing data for various system sizes,
Fig. 1 clearly exposes the magnetoroton mode as an excitation
mode above the ground state and below the continuum of
higher-energy excitations. In order to obtain the data collapse,
all momenta k ∈ BZred

FQH have to be rescaled by a factor
1/

√
N sin(θ )/(LxLy) to yield a dimensionless momentum κ

that is defined in a Brillouin zone of area N (2π )2. The data
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FIG. 1. (Color online) Low-energy spectrum of the FQH on the
torus for up to N = 13 bosons and Nφ = 2 × N flux quanta, as a
function of the modulus of the momentum κ , where κ is defined in
Eq. (3).

are then plotted as a function of |κ |, i.e.,

|κ | = 2π√
N sin θ

√
r−1k2

x + rk2
y − 2 cos θ kxky, (3)

where r = Lx/Ly is the aspect ratio. We observe that the
magnetoroton dispersion does not show a magnetoroton
minimum, but rather flattens out for momenta |κ | > 2. This
behavior can be attributed to the short-range nature of the
pseudopotential interaction. In contrast, for the Coulomb
interaction, a deep minimum would be visible (see Ref. [12]
for a comparison between short-range interactions and the
Coulomb interaction).

An elemental characterization of the magnetoroton mode
is given by the number of states that it consists of in a
finite-size system. As the mode merges with the continuum
for small momenta, there is an ambiguity in defining this
number for certain system sizes. Here, we focus on systems
where the number of magnetoroton states is unambiguous.
We propose a simple phenomenological rule that determines
how many states should be expected. In the case of in the
bosonic ν = 1

2 Laughlin state on the sphere geometry, there is
no low-energy excitation with an angular momentum L = 0
(where the ground state lies), nor in the sector with L = 1
(see Ref. [12] for an explanation in terms of the clustering
properties of the Jack polynomials). By analogy, on the torus
we expect no low-energy excitation in the momentum sectors
of the ground state (which has a twofold degeneracy), nor in the
sector with the smallest nonzero |k| [for instance k = (1,0)T].
For a torus with a twisting angle θ = π/2 and aspect ratio 1,
the latter momentum sector has a degeneracy 4m due to the C4

rotational symmetry and the c.m. translational symmetry. As
a result, only m(N2 − 1 − 4) momentum sectors out of a total
number of NNφ momentum sectors in BZFQH contribute a state
to the magnetoroton mode. Note that the geometry of the torus
has a crucial influence on the number of states. For instance, a
torus with a twisting angle θ = 2π/3 has C6 symmetry. This,
when combined with the c.m. translational symmetry, implies
a (6m)-fold degeneracy of the sector k = (1,0)T. Hence,
we expect to find magnetoroton states in m(N2 − 1 − 6)
momentum sectors only. We confirmed these counting rules in
all cases that we analyzed. For instance, a system with N = 10
bosons at filling ν = 1

2 has a magnetoroton mode with 190

states and 186 states for θ = π/2 and 2π/3, respectively. This
counting of magnetoroton excitations should be contrasted to
the counting of topological charged excitations (i.e., quasiholes
and quasiparticles), which is independent of the geometry
parametrized by θ .

B. Fractional quantum Hall to fractional Chern
insulator folding

A FCI emerges in a Chern insulator defined by a given tight-
binding model if one partially fills a topologically nontrivial
band with interacting fermions or bosons. For certain models
and interactions, FQH-like phases emerge at specific filling
factors. We consider a system with Nx (respectively Ny) unit
cells in the x (respectively y) direction and periodic boundary
conditions in both directions. For the FCI, translation operators
in the x and y directions commute with each other and with
the Hamiltonian. The eigenstates are labeled by Nx × Ny

momentum quantum numbers k ∈ BZFCI with

BZFCI ≡
{

k = 2π

axNx

kx ẽx + 2π

ayNy

ky ẽy

∣∣∣∣
kx = 0, . . . ,Nx − 1; ky = 0, . . . ,Ny − 1

}
, (4)

where ax and ay are the lattice spacings in the x and y

directions, respectively. The FCI has to be compared to a
FQH system with Nφ = Nx × Ny , so that the number of
single-particle states in a nondegenerate band on the lattice
equals the number of orbitals in a Landau level. However, due
to the c.m. translational symmetry, the relative momenta of
the FQH system reside in an N × N reduced Brillouin zone
BZred

FQH. A mapping between the N2 FQH momenta and the Nφ

lattice momenta, which corresponds to the folding of BZred
FQH

down to BZFCI, was developed in Ref. [30]. Following this
procedure, we show the folded FQH magnetoroton spectrum
for N = 10 bosons in Fig. 2(b). We now focus on the fate
of the FQH magnetoroton mode under this mapping. In this
representation, the magnetoroton mode consists of a highly
degenerate low-energy band, with a few states lying in the
gap above the band. These more isolated states constitute the
dispersive branch of the mode. The folding places states with
a short and a long wavelength (in the FQH sense) in the same
sectors. This obscures the identification of the magnetoroton
mode as a single dispersing branch of states.

This demonstrates the difficulties we will face to identify
the dispersion relation of a potential magnetoroton mode in a
FCI spectrum. Generically, FCIs do not have a c.m. translation
symmetry that makes kx a good quantum number in the FQH
case. As a result, the FCI spectrum cannot be unfolded or
resolved in this extra quantum number, and cannot be plotted
as a function of |k| with k ∈ BZred

FQH.

C. Fractional Chern insulators

Unlike in the case of the FQH effect with pseudopotential
interaction, there exists no “canonical” model for FCIs without
continuously tunable parameters. Rather, many details of FCI
states are governed by nonuniversal aspects of the respective
models. In this work, we consider three representative models
for Chern insulators: the ruby [29] and kagome [28] lattice

045114-3
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FIG. 2. (Color online) Low-energy spectrum of the FQH on a torus of aspect ratio Lx/Ly = 1.25 with a twisting angle θ = 2π/3, with
N = 10, Nφ = 20, as a function of (a) the modulus of the momentum and (b) the linear FCI momentum (using the FQH-to-FCI mapping).
(c) Low-energy spectrum of the ruby lattice model with N = 10 particles and Nx × Ny = 5 × 4.

models, and the Haldane model [33]. All three models have
a lowest Bloch band characterized by a Chern number 1. The
tight-binding parameters that we use are defined in Refs. [34]
(ruby lattice model), [35] (kagome lattice model), and [36]
(Haldane model). We consider N bosons on a Nx × Ny lattice
with periodic boundary conditions. They interact via an onsite
density-density interaction, which is projected onto the lowest
band. The filling fraction is defined with respect to the lowest
band, i.e., ν = N/(NxNy), and chosen to be ν = 1

2 for all
numerical calculations in this paper. It has been established
that the ground state of these systems is a Laughlin-type phase:
In the exact diagonalization spectra, we observe an almost
degenerate twofold ground state with a gap to higher-energy
excitations. In the cases of the ruby and kagome lattice
models, the ground-state energy splitting is barely noticeable,
proving that they are less affected by finite-size effects. We
observe a low-energy excitation mode separated in energy
from the continuum of higher-energy excitations [see Figs. 2(c)
and 3(a)]. This mode resembles the magnetoroton mode of
the FQHE on the torus folded onto the FCI Brillouin zone
[see Fig. 2(b)]. In the case of the Haldane model, there is
a clear ground-state splitting and no low-energy excitation
mode is distinguishable from the continuum [see Fig. 3(b)].
The energy fluctuations that we see in the ground state are
also present in the low-energy excitations, resulting in their
mixing with the continuum. This strong model dependency
stresses the importance of choosing a “good” FCI model to

 0.1
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 0  5  10  15

E

kx + Nxky

(a) kagome  0.1

 0.2

 0.3

 0  5  10  15

E
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FIG. 3. (Color online) Low-energy spectrum of (a) the kagome
lattice model and (b) the Haldane model with N = 10 bosons on a
Nx × Ny = 5 × 4 lattice. For the ruby lattice model [see Fig. 2(c)] and
kagome lattice model, the ground state’s quasidegeneracy is such that
no splitting is visible by the naked eye. The low-energy excitation
mode is separated by a gap from the continuum of higher-energy
excitations. In the case of the Haldane model, the ground state
has a clear energy splitting, and the low-energy mode cannot be
distinguished from the continuum.

observe the magnetoroton mode. Here, the qualifier “good”
simultaneously applies to the optimization of ground-state
splitting, the gap in the entanglement spectrum, the energy
gap, and a clear magnetoroton mode. All of these qualities
seem to go hand in hand in the models we studied so far.

We compare the number of states in the magnetoroton mode
in the FQH and FCI systems using the FQH-to-FCI mapping
[30] (see Sec. II B). The counting per momentum sector in
BZFCI is the same provided the twisting angle of the torus α

matches the angle defined by the reciprocal lattice vectors of
the FCI (θ = π/3 for the kagome lattice, θ = 2π/3 for the ruby
lattice). We compare the FCI spectrum to the FQH spectrum
(folded into the FCI Brillouin zone), at the same system size
and aspect ratio, identifying a similar magnetoroton pattern
in the FCI as in the FQH spectra. An almost degenerate
band including a large number of states lies below a few
isolated states. In the FQH case, the isolated states were
part of the dispersive branch of the magnetoroton mode at
low momentum. In the case of the ruby lattice model, one
can establish a one-to-one FQH-FCI correspondence of these
states [see Figs. 2(b) and 2(c)]. The near degeneracy of some
of these states comes from some residual FQH symmetry. In
the kagome lattice model, this near degeneracy is lifted into
a low-lying band that mixes with other states. Once again,
we see that choosing a good model is crucial to observe the
magnetoroton mode. The energy splitting widens the band
of almost degenerate states to the point that they mix with
the states of the dispersive branch, making their identification
impossible.

D. Extrapolation of the energy gap

For a wide range of system sizes, the FQH magnetoroton
modes all fall on the same curve, as shown in Fig. 1. Indeed,
the gap between the ground state and the first excited state
(which belongs to the magnetoroton mode) exhibits almost
no finite-size effect, starting from N = 7. We extract the
many-body gap of the FQH systems and plot it as a function
of 1/N in Fig. 4(a). The thermodynamic extrapolation of
the gap yields a value of � = 0.615(5) × V0, where the V0

pseudopotential is the scale of the two-particle interaction
energy [consult the inset of Fig. 4(c) for the definition of V0].
Note that all the FQH energies are expressed in units of V0 in
this paper. The scaling of the gap on the sphere geometry was
studied in Refs. [37,38], and shows a more important finite-size
effect than we observe on the torus. The extrapolated gap of
the Laughlin ν = 1

2 system on the sphere is 0.60(1) × V0, in
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FIG. 4. (Color online) (a) Gap of the FQH system on a torus of aspect ratio 1, at filling factor ν = 1
2 . (b) Gap of the ruby lattice Chern

insulator model at a filling factor ν = 1
2 , for systems of aspect ratio as close to 1 as possible, in one case, and as close to 0.58 as possible.

(c) Two-particle spectrum of the ruby lattice FCI model with onsite interaction, with Ns = 10 × 10 unit cells. The inset shows the two-particle
spectrum of the FQH system on a torus with Nφ = 100, and displayed in the reduced 2 × 2 Brillouin zone.

agreement with our value on the torus geometry. Note that the
scaling on the sphere assumed a linear behavior as a function
of 1/N , which may underestimate the thermodynamic value
of the gap.

Performing a similar extrapolation for a FCI system is
more difficult. As was initially pointed out in Ref. [15], and
discussed in great details in Refs. [39,40], both extents Lx

and Ly of the lattice should be large enough to prevent the
formation of a charge-density-wave phase. As a consequence
for a finite and generally small system size, the aspect ratio
of the lattice greatly influences the value of the gap. In order
to minimize this effect while studying the evolution of the
gap with the system size, we follow the approach introduced
in Ref. [40], and use tilted boundary conditions (see also
Ref. [35] for a more detailed description). For any number
of unit cells Ns , this method allows us to obtain an aspect
ratio close to the desired value. We look at the evolution of the
gap for systems with aspect ratios r close to 1 and for systems
r � 0.58 in Fig. 4(b). The choice of the value r � 0.58 is rather
arbitrary; it corresponds to the largest nontilted lattice that we
can numerically reach, namely, with N = 12 particles (Ns =
24 = 6 × 4). While one expects that r � 1 should minimize
the finite-size effects, our system actually shows a small size
dependence at either aspect ratio. Note that the energy scale
of the interaction in the FCI is not as well defined as in
the FQH case. The energy scale is parametrized by the gap in
the spectrum of the interacting two-particle problem. While the
FQH case only has one single nonzero energy per momentum
sector, which is almost k independent, the FCI system has
nonzero energy states with larger fluctuations, originating from
the momentum dependence of the projection on a given band
[see Fig. 4(c)]. This prevents us from performing an exact
rescaling of the FCI spectra with respect to the two-particle
energy scale. Nevertheless, taking the average two-particle
nonzero energy as the energy scale leads to an extrapolated
gap of 0.60(3), a value close to the FQH one.

III. SINGLE-MODE APPROXIMATION

Throughout this work, we consider the Laughlin state at
filling fraction ν = 1/m. The SMA provides a variational
expression for low-energy excitations above the topologically
degenerate ground states |	α〉, α = 0, . . . ,m − 1, given by

∣∣	SMA
k,α

〉 = ρk|	α〉. (5)

Here, ρk is the Fourier component of the density operator at
momentum k projected to the lowest Landau level (LLL) or
any given Bloch band in the FCI case. The momentum of
|	k,α〉 is given by the momentum Kα of |	α〉 shifted by k.
As illustrated in the previous section, the FQH states possess a
larger set of good momentum quantum numbers k than the
FCI. In fact, a naive implementation of Eq. (5) produces
more variational SMA states than the number observed in
the magnetoroton mode for the FQH effect. For the FCI, in
contrast, the very definition of the density operator ρk itself is
ambiguous. The FCI density operator depends parametrically
on the geometrical embedding of orbitals in the unit cell of
the underlying lattice. It will be the objective of this section to
interpret Eq. (5) correctly for both the FQH effect on the torus
and for the FCI.

Given the states |	SMA
k,α 〉, one can obtain an approximation

to the dispersion of the magnetoroton mode via

Emr
k =

〈
	SMA

k,α

∣∣H ∣∣	SMA
k,α

〉
〈
	SMA

k,α

∣∣	SMA
k,α

〉 , (6)

where H is the many-body Hamiltonian of the FQH or FCI
system.

A. Fractional quantum Hall effect on the torus

First, we introduce the expressions for the SMA in the case
of the FQH. We consider a torusT = [0,Lx] × [0,Ly] spanned
by the two orthogonal unit vectors ex and ey that is pierced by
Nφ flux quanta. The position space representation of a basis
of single-particle wave states in the Landau gauge, and in the
LLL, is given by

φqy
(r) = e

− x2

2�2
B√√

πLy�B

∑
k∈Z

[
e

2π
Ly

(qy+kNφ )(x+iy)

× e
− 1

2 ( 2π�B
Ly

)2(qy+kNφ )2]
, (7)

where qy = 0, . . . ,Nφ − 1 is the conserved one-body mo-
mentum along the y axis, r = (x,y) ∈ T, and the magnetic
length is given by �2

B = sin θLxLy/(2πNφ). Using these wave
functions, the density operator at position r , when projected
to the LLL, is expressed as

ρ(r) =
∑
qy ,q′

y

φ∗
qy

(r)φq′
y
(r)c†qy

cq′
y
. (8)
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Here, c†qy
and cqy

are the operators that, respectively, create and
annihilate a particle in the orbital qy of the LLL. The Fourier
components of the projected density operator are given by

ρk =
∫
T

d2r e−ik·r ρ̃(r), (9a)

and can be conveniently expressed as

ρk = e− k2�2
B

4 e
− 2πikx ky

2Nφ

Nφ−1∑
qy=0

e
− 2πikx qy

Nφ c
†
qy+ky

cqy
. (9b)

In Eq. (9b), we do not restrict k to belong to BZFQH, as was
pointed out in Refs. [41,42]. Rather, for every k ∈ BZFQH,
there exist several linearly independent operators ρk+G with
the reciprocal lattice vectors

G = 2π N (Gx/Lx,mGy/Ly)T, G ∈ Z2. (10)

More precisely, ρk+G = ρk+G′ if there exists a pair of integers
(�Gx,�Gy) so that G − G′ = (m�Gx,�Gy). This gives
rise to m distinct density operators ρk+G for every is k ∈
BZFQH. Hence, the ρk span the same N2

φ-dimensional space

of operators as the boson bilinears c
†
q′

y
cqy

, with qy,q′
y =

0, . . . ,Nφ − 1. Acting with the ρk operators on the m-fold
degenerate ground states according to Eq. (5) thus yields a ba-
sis of mN2

φ linearly independent variational states {|	SMA
k+G,α〉},

spanning what we call the bilinear subspace. That is, for
every of the N × Nφ good quantum numbers k ∈ BZFQH, we
can build m2 variational states with the help of the density
operator (9b). Here, one factor of m is due to the m degenerate
ground states labeled by α that one can act on, and a second
factor of m comes from the distinct shifts by reciprocal lattice
vectors G.

In contrast, we have seen in Sec. II that the magnetoroton
mode consists of at most one state in every of the N × Nφ

sectors of k. Thus, the naive SMA as given by Eq. (5) provides
a factor of m2 more variational states than needed to describe
the magnetoroton mode. For each k ∈ BZFQH, we propose the
following rule to select one of the m2 SMA states∣∣	SMA

k+G,α

〉 ≡ ρk+G|	α〉, α = 0, . . . ,m − 1 (11a)

as the variational state for the magnetoroton mode: The
variational magnetoroton state is given by∣∣	mr-SMA

k

〉 = ∣∣	SMA
k+G0,α0

〉
, (11b)

where α0 labels the ground state at momentum Kα ∈
BZFQH and G0 is the reciprocal lattice vector for which the
momentum-space distance

|k + G − Kα| (11c)

is minimized for fixed k ∈ BZFQH. An illustration of this
selection rule for the simplest case of m = 2 is given in Fig. 5.

B. Fractional Chern insulators

For fractional Chern insulators, we consider the following
generic form of a translationally invariant one-body Hamil-
tonian on a lattice � of Ns = Nx × Ny sites with periodic

k FQH
y

NΦN0

k FQH
x

0

N α0=0

α0=0

α0= 1

α0= 1

α0=1

α0=1

α0= 0

α0= 0

G0 = (0,0) G0 = (0,0)

G0 = (N,0) G0 = (N,0)

FIG. 5. (Color online) Schematic representation of the SMA con-
struction rule (11c) in the FQH Brillouin zone BZFQH. In the vicinity
of the origin (red), the magnetoroton states are well approximated
by SMA states stemming from the first ground state (α0 = 0).
Conversely, around (kx,ky) = (0,N ) (blue), the magnetoroton states
are approximated by SMA states originating from the second ground
state (α0 = 1). In the upper area, one should use the density operator
at k + G0 with G0 = (N,0) to obtain the magnetoroton state. In the
lower area, one should use the density operator at k + G0 = k, where
k ∈ BZFQH.

boundary conditions

HCI =
∑

r,r ′∈�

∑
a,a′

c†rahaa′(r − r ′)cr ′a′ , (12)

where cra and c
†
ra are the operators that annihilate and create,

respectively, a particle on the orbital a = 0, . . . ,Nb of lattice
site r ∈ �. We use the Fourier transform convention

cka = 1√
Ns

∑
r∈�

eikrcra. (13a)

Using these operators, the Hamiltonian (12) is represented in
terms of the Bloch Hamiltonian haa′(k) as

HCI =
∑

k

∑
aa′

c
†
kahaa′ (k)cka′ . (13b)

Here, k takes values in the FCI Brillouin zone BZFCI that was
defined in Eq. (4).

For every k ∈ BZFCI, the Bloch Hamiltonian has a spectral
decomposition into normal modes γ n

k with band index n =
0, . . . ,Nb:

HCI =
∑

k

∑
n

Ek,nγ
n†
k γ n

k . (14a)

The normal modes are related by a unitary transformation
to the operators cka:

γ n
k =

∑
a′

un∗
ka′cka′ , (14b)

where the matrix elements un∗
ka′ form the eigenstates of the

Bloch Hamiltonian haa′(k). To define a density operator (and
subsequently project it to a given band n = 0), a geometrical
choice about the embedding of the orbitals a = 1, . . . ,Nb has
to be made by assigning a displacement vector ra to every
orbital that locates it relative to a fixed point in the unit cell. We
define an embedding as the set {ra}Nb of these displacements.
For instance, we choose the embedding of the kagome lattice
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model as

{ra}Nb = {(0,0),(1/2,0),(0,1/2)}, (15)

in units where the lattice spacing is unity. In the same units,
the ruby lattice model has the embedding

{ra}Nb = 1

3 + √
3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

( −1 , −1+√
3

2

)(
1 , 1+√

3
2

)( −1 − √
3 , −1−√

3
2

)(
1 , 1−√

3
2

)( −1 , −1−√
3

2

)(
1 + √

3 , 1+√
3

2

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(16)

The choice of embedding is an extra piece of information
that is not contained in the Hamiltonian and determines
whether or not the density operator shares certain spatial
symmetries with the Hamiltonian. For example, the choice
(15) preserves the inversion symmetry of the kagome lattice
Hamiltonian. The density operator ρ̃k and its corresponding
projection ρk in the band n = 0 are given by

ρ̃k =
∑
r∈�

∑
a

eik·(r+ra )c†racra, (17a)

ρk =
∑

q∈BZFCI

[∑
a

eik·ra u0∗
q+k,au

0
q,a

]
γ

0†
k+qγ

0
q . (17b)

When q = 2π
Na

ẽx,y , the bracketed factor in Eq. (17b) can be
identified to the nonunitary exponentiated Abelian Berry con-
nection Aa(k). Hence, Aa(k) also depends on the embedding,
a piece of information not contained in the effective Hamilto-
nian. Still, as was discussed in Ref. [43], the embedding has to
be properly chosen to obtain a large overlap of the model wave
functions with exact diagonalization states. For any specific
model, we will use the same embedding that maximizes the
overlap with the model state. More precisely, we will use the
embedding defined in Eq. (16) for the ruby lattice model, and
the embedding of Eq. (15) for the kagome lattice model.

For later use, we shall also define a variant of the projected
density operator that involves the unitary Berry connection

ρ
U(1)
k = 1

Nb

∑
q∈BZFCI

∑
a eik·ra u0∗

q+k,au
0
q,a∣∣∑

a eik·ra eik·ra u0∗
q+k,au

0
q,a

∣∣γ 0†
k+qγ

0
q .

(17c)

This definition of a density operator has proven useful to
establish a mapping between FCI and FQH states [43] and
we shall see that it also produces slightly better results for the
SMA to the magnetoroton mode than ρk. Note that both ρk

and ρ
U(1)
k do not in general go back to themselves when k is

shifted by a reciprocal lattice vector

G = 2π (Gx/ax,Gy/ay), G ∈ Z2, (18)

if the embedding displacements ra are not integer in units
of the lattice spacing. Thus, k in Eq. (17b) is not limited
to BZFCI. In the case of the kagome lattice with the em-
bedding (15), ρk+G = ρk+G′ if G − G′ mod 2 = 0, yielding
4Ns independent density operators. The number of linearly

independent density operators (i.e., the number of values of k
that give linearly independent density operators) depends on
the model’s particular embedding. Consequently, there is an ar-
bitrariness in using a specific embedding to obtain ρk. For any
incommensurate embedding, Eq. (17b) will yield N2

s linearly
independent density operators, spanning the same space as the
full set of bilinear operators {γ †

q+kγq |k,q ∈ BZFCI}. As with
the case of the FQH effect, when these operators are applied
to the m topological ground states, Eq. (5) yields a factor of
m2 more variational SMA states than the number of states we
observe in the magnetoroton mode. However, in contrast to the
FQH effect, more than one magnetoroton state can reside in a
sector of given k ∈ BZFCI. We propose the following rule to
build a set of good variational states for each k ∈ BZFCI: The
variational magnetoroton states are given by∣∣	mr-SMA

k,i

〉 = ∣∣	SMA
k+Gi ,αi

〉
, (19a)

where the index i enumerates all ground states αi at momentum
Kα ∈ BZFQH for all reciprocal lattice vectors Gi that satisfy

|k + G − Kα| < Kmax. (19b)

Here, Kmax is a cutoff that is not fixed a priori, but sets a
scale that does not depend on the system size. We give a
schematic representation of this constraint for the ruby system
with N = 10 bosons in Fig. 6. The number of pairs (αi,Gi) that
satisfy Eq. (19b) depends on k. The total number of states that
obey Eq. (19b) scales linearly with N , even though the number
of states in the magnetoroton mode scales like N × Ns . The
FQH SMA itself provides N × Nφ variational states. In spite
of this, it will become clear in the next section that the number
of states accurately described by the SMA is the same in the
FQH and the FCI systems.

α = 0

α = 1

kx

ky

FIG. 6. (Color online) Schematic representation of the SMA
construction rule (19b) for the ruby FCI model with N = 10 particles
around the first ground state α = 0. The dashed lines represent
the reciprocal lattice, while the solid lines represent the limits of
each Brillouin zone (G takes a different value in each of these
zones). The bold line marks the limits of the first Brillouin zone
BZFCI (G = 0), while the gray area corresponds to the first Brillouin
zone when constructed as the Wigner-Seitz cell of the reciprocal
lattice. The center-of-mass momentum of each of the two ground
states is indicated by a black dot. We draw a red square for each
SMA state satisfying |k + G − K 0| < Kmax, with the position of
Kmax represented by a circle. Note that no SMA state is realized at
k + G = 0 or the six sectors in its vicinity, similarly to the FQH case,
and in agreement with the counting rule of Sec. II A.
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Owing to the lower translational symmetry and the higher
degree of model dependence, the SMA to the magnetoroton
mode for the FCI contains more free parameters, such as the
embedding and the cutoff Kmax. However, as we shall see in
the next section, it does not stand behind the SMA for the FQH
magnetoroton mode, even quantitatively.

IV. NUMERICAL TEST OF THE SINGLE-MODE
APPROXIMATION

For each of the two classes of systems, the FQH states and
the FCIs, we now test the SMA numerically. To that end, we
consider the following three benchmarks:

(i) How good is the agreement between the variational
energy (6) of the SMA states selected via the criteria (11) and
(19) with the exact dispersion of the magnetoroton states for
the FQH and FCI cases, respectively?

(ii) How large is the overlap of these selected SMA states
with the exact magnetoroton states?

(iii) Do (i) and (ii) improve significantly if the full space
SMA states (5) is considered, instead of the subset selected by
the criteria (11) and (19)? This serves as a direct test of the
criteria (11) and (19).

As announced, we will focus on bosonic systems at half-
filling ν = 1

2 , where the ground state is the twofold degenerate
Laughlin state (i.e., m = 2). For the FQH states, we will use a
delta-function interaction, while for the FCI, we consider the
ruby lattice model with the interaction and model parameters
given in Ref. [34].

A. Fractional quantum Hall effect on the torus

The numerical result that addresses the benchmark question
(i) is summarized in Fig. 7, where data for various system
sizes have been collapsed according to Eq. (3). We observe
that the SMA variational energies only slightly overestimate
the magnetoroton mode energy at small momenta |κ | < 2π ,
in a way that accurately preserves the shape of the dispersion
relation. For momenta |κ | > 2π , the SMA energies increase

 0

 0.5

 1

 0  5  10  15

E

|κ|

ED
SMA

Bil.

FIG. 7. (Color online) Low-energy spectrum of the FQH systems
with up to N = 13 bosons on the torus, at half-filling. The variational
energy of the SMA states is compared to the energies obtained through
exact diagonalization (ED) of the Hamiltonian, and to the energies
obtained by diagonalization of the Hamiltonian in the full bilinear
subspace (Bil.). For N = 13, only one eigenvalue per sector has been
computed via ED. The color code for the systems sizes is the same
as in Fig. 8.
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|κ|
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N = 11
N = 12
N = 13

FIG. 8. (Color online) The dots (respectively crosses) show the
overlap between the SMA (respectively the full bilinear subspace)
and each exact magnetoroton state, as a function of |κ |, for the FQH
on the torus with up to N = 13 bosons at half-filling.

and finally merge with the continuum of excited states, while
the magnetoroton mode flattens out to constant values. Note
that neither the magnetoroton mode nor its approximation
show any visible finite-size effect. The estimated value of
the excitation gap from the SMA dispersion is 0.74(2), which
corresponds to a relative error of 0.20 as compared to the exact
diagonalization result.

Figure 8 addresses benchmark question (ii) for the FQH
effect. In accordance with the behavior of the SMA variational
energies, the overlap between the SMA state selected by
criterion (11) and the respective exact magnetoroton eigenstate
at a given k ∈ BZFQH is high (�0.9) for small magnitudes of
|κ | < 2π of the rescaled momentum κ , and drops significantly
for |κ | > 4π .

Finally, to address benchmark question (iii), and check the
validity of the selection criterion (11) for SMA states, we
diagonalized the interacting Hamiltonian at every k ∈ BZFQH

in the full m2 subspace of SMA states (11a). The m2 energy
eigenvalues per momentum sector are superimposed with
the exact and SMA spectra in Fig. 7. We observe that the
enlarged space of variational states does not further improve
the approximation to the magnetoroton dispersion that was
obtained with the variational states selected by criterion (11).
In particular, the flattening of the magnetoroton dispersion
at large |κ | is not captured in this approach either. This is
supported by the overlaps of the full SMA subspace with
the magnetoroton mode being not significantly larger than
the overlap of the single SMA state selected by criterion
(11) in each momentum sector (see Fig. 8). In the dispersive
branch, the relative discrepancy between these overlaps is less
than 10−4, while it is of the order of 0.2 in the flatter part
of the magnetoroton mode. As the variational states (11a)
span the whole space of neutral single-particle excitations
above the ground states, we conclude that the magnetoroton
states are many-body excitations above the ground states at
large |κ |.

In conclusion, we confirmed the validity of our selection
criterion (11) for variational magnetoroton states in the
FQH effect on the torus and found that the SMA provides
an excellent approximation to the magnetoroton mode for
momenta |κ | < 2π , while it breaks down for |κ | > 4π . As
a corollary, the number of magnetoroton states that are well
captured by the SMA scales linearly with the number N of
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particles in the system [see the definition of κ in Eq. (3)].
Remarkably, there is almost no finite-size effect, and the
magnetoroton mode is approximated with the same accuracy
for any system size.

B. Fractional Chern insulators

In evaluating the accuracy of the SMA to the magnetoroton
mode of the FQH states, we were able to take advantage of
the fact that states for which the SMA is a good or a poor
approximation are naturally separated into small and large
momenta κ in the Brillouin zone, respectively. We illustrated
in Fig. 2 that the spectrum of the FCI magnetoroton mode on
the ruby lattice model can be very well reproduced by folding
the spectrum of the FQH magnetoroton mode on the torus
down to the Brillouin zone of the FCI. However, any attempt
to mirror this approach for the SMA is obscured by the fact that
under this folding the separation of small and large momenta
is lost because both small and large k ∈ BZred

FQH may fall on
the same k ∈ BZFCI. In other words, even if the SMA as an
approximation to the magnetoroton mode in the FCI performs
as good as in the FQH case, it is in general not possible to
establish a correspondence between the magnetoroton and the
SMA states.

It is important to note that it is impossible to “unfold”
the eigenstates of the FCI to an enlarged Brillouin zone
in any meaningful way because of the lower translational
symmetry of the FCI. It is thus impossible to reconstruct a
nondegenerate magnetoroton dispersion (with one eigenstate
per momentum quantum number) for the magnetoroton mode
from the exact eigenstates of the FCI. In contrast, we should
remember that the SMA states of the FCI, as determined by the
selection criterion (19), carry the reciprocal lattice vector G as
an additional momentum quantum number. This additional
information allows us to unfold every SMA state into the
respective Brillouin zone labeled by G (see Fig. 9), a procedure
that could not be applied to the exact eigenstates.

We now turn to the interpretation of the cutoff Kmax of
Eq. (19b). In general, the projected density operator ρk and its
unitary counterpart ρ

U(1)
k are not periodic under k → k + G,

with G a reciprocal lattice vector. However, two SMA states
generated with density operators at k and at k + G are not
orthogonal and can in fact have a large overlap. In the case
of the ruby lattice model, and for all the system sizes that

 0

 0.1

 0.2

 0  5

E

|κ|

N = 8
N = 9

N = 10
N = 12

FIG. 9. (Color online) Magnetoroton mode of the FCI system
with up to N = 12 bosons, at half-filling, obtained using the SMA as
defined in Eq. (19). We only show the states that obey the inequality
defined in Eq. (19b).

we have looked at, we find that any two states out of the set
of SMA states that obey the constraint |k + G − Kα| < 2π

have mutual overlap smaller than 0.1. Meanwhile, the overlap
|〈	SMA

k+G,α|	SMA
k+G′,α′ 〉|2 between two SMA states that obey

|k + G − Kα| � 2π and |k + G′ − Kα′ | < 2π is significantly
larger. Note that the transition is rather abrupt, with these
overlaps reaching 0.7 or more already for |k + G − Kα| = 2π .
If the magnetic translation symmetries were present, these
overlaps would be 0. Their large values thus reflect the
absence of this symmetry in FCI, and we have to discard
the corresponding states. This naturally sets the value of the
cutoff parameter Kmax, that was introduced in Eq. (19b), for
the ruby lattice model to

Kmax = 2π, (20)

as represented in Fig. 6.
Having specified this set of rules, we are now equipped to

answer the three benchmark questions (i)–(iii) for the SMA
to the FCI magnetoroton mode. We call |κ | the norm of
the momentum vector k + G − Kα up to the rescaling factor
defined in Eq. (3):

|κ | =
√

2

sin θ
|k + G − Kα|. (21)

When the variational energy of the FCI SMA states selected
by criterion (19) are plotted as a function of |κ |, one obtains an
excellent agreement with the SMA dispersion of the FQH [see
Fig. 10(a)]. Remarkably, the minimum of the FCI and FQH
magnetoroton modes fall exactly at the same value of |κ |.
Similarly to the FQH case, only the SMA states with |κ | < 2π

accurately approximate an exact eigenstate that belongs to the
magnetoroton mode. Interestingly, almost no finite-size effect
is visible, even though FCIs are in general more susceptible
to finite-size effects than FQH systems. As pointed out in
Sec. II C, imposing a cutoff Kmax leads to generating less
SMA modes than there are magnetoroton states. Fortunately,
this does not reduce the number of magnetoroton states that
are accurately described by the SMA, as the cutoff lies at
a larger value of |κ | than the minimum of the mode. We
extract the energy minimum of the SMA mode, and compare
it to the value obtained in Sec. II D. This variational value
overestimates the value of the gap by about 20%, similar
to the FQH SMA. For point (ii), Fig. 10(b) shows that the
same separation in momenta |k + G| also discriminates SMA
states with a large and small overlap. We also note that the
overlaps are slightly higher by about 1% if the variant ρ

U(1)
k

of the density operator is used instead of ρk. Moreover, the
overlap values are not significantly smaller in the FCI case
than their FQH counterparts. On average, the FCI overlaps are
5% smaller than the FQH overlaps.

To address question (iii), we note that diagonalizing the
Hamiltonian in the full bilinear subspace is not conceivable
in the FCI case. Indeed, this method mixes large and small
|k + G| in the same momentum sectors. This leaves us with
a spectrum that cannot be unfolded, and the variational states
that give an acceptable approximation of the magnetoroton
mode cannot be identified. However, one can compute the
overlap of each exact magnetoroton eigenstate with the full
bilinear subspace. Similarly to the FQH case, this overlap is
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FIG. 10. (Color online) (a) Magnetoroton mode of the FQH and
ruby lattice FCI systems at half-filling, with respectively up to N = 13
(FQH) and 12 (FCI) particles, as computed using the SMA, for |κ | <

κmax =
√

2
sin θ

Kmax. The FCI energies have been shifted by the ground-
state energy, and rescaled by the energy of the two-body problem
(see Sec. II D). (b) Overlap of the SMA states of the FQH and FCI
systems with the eigenstates obtained by exact diagonalization plotted
as a function of |κ |. In the FCI case, there may not be a one-to-one
correspondence between the SMA states and the exact eigenstates.
We therefore give the overlap with the whole FCI magnetoroton
subspace, while the FQH overlaps are with individual states.

only a few percent higher than that of the SMA states with the
exact eigenstates, validating the SMA approach.

A crucial difference between the case of the FQH effect
and the FCI that we would like to highlight is that the density
operator used to construct the SMA is uniquely defined for the
former, while it contains the freedom to choose an embedding
for the latter. The choice of embedding will in general influence
the quality of the SMA. Particularly pathological are cases in
which the orbital displacement vectors ra are integer in units of
the lattice constant. Then, the projected density operators share
the periodicity of the reciprocal lattice in momentum space and
will not suffice to build enough variational states for the SMA.
To our knowledge, no model for which such an embedding
is natural hosts a robust Laughlin-type phase. The kagome
lattice model has half-integer ra in units of the lattice constant,
and thus presents some commensurability effect. However,
even in this case, all SMA states within a circle of radius
Kmax = 2π are linearly independent. Unfortunately, as shown

in Fig. 3, its magnetoroton mode is not as well defined as that
of the ruby lattice system. Unsurprisingly, the eigenstates have
a smaller overlap with the bilinear subspace (0.8 at best), and
there is a lot of mixing between the states originating from
different ground states. The variational SMA states, in turn,
have a maximum overlap of 0.53 with the exact eigenstates.
Our efforts to tune the embedding away from the value given in
Eq. (15) did not improve these overlaps significantly. Note that
tuning the embedding for the ruby model would barely improve
the overlaps in this case either. Indeed, they are already close to
the maximal values that can be reached using all the bilinears
originating from the same ground state.

V. CONCLUSION

In summary, we have applied the SMA to FQH systems
on the torus geometry, and shown how to select a reduced
set of variational states to describe the magnetoroton mode.
We further identified a magnetoroton mode for FCI systems
and developed the SMA for this case. We found that the FCI
magnetoroton mode can be understood in close analogy to the
FQH case, provided that the reduced translational symmetry
of the FCI, as well as the freedom of embedding of the
particle density in position space, are accurately accounted
for. Remarkably, the SMA for FCIs provides an additional
degree of freedom that allows us to unfold the magnetoroton
mode in an enlarged Brillouin zone, while the absence of
magnetic translation symmetry in FCIs prevents any direct
unfolding of the exact spectrum. This very important result
credits the SMA with an additional purpose, on top of being
a quantitatively accurate variational method. Interestingly, the
dispersion relations of the FQH and FCI magnetoroton modes
obtained using the SMA fall onto the same curve, and show
almost no finite-size effect.

Besides, we have given an extrapolation of the excitation
gap of the ν = 1

2 bosonic Laughlin state for both the FQH
and FCI cases. For systems of 10 particles or more, the gap
is almost independent of the system size. This robustness
suggests that the extrapolation of the gap to the thermodynamic
limit is very reliable. Moreover, the numerical value of the
FCI gap falls within the range of uncertainty of the FQH gap,
confirming the universal character of the gap of the Laughlin
state in FCIs.
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