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Momentum dependence in K -edge resonant inelastic x-ray scattering and its application to
screening dynamics in CE-phase La0.5Sr1.5MnO4
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We present a formula for the calculation of K-edge resonant inelastic x-ray scattering on transition-metal
compounds, based on a local interaction between the valence shell electrons and the 1s core hole. Extending a
previous result, we include explicit momentum dependence and a basis with multiple core-hole sites. We apply
this formula to a single-layered charge-, orbital-, and spin-ordered manganite, La0.5Sr1.5MnO4, and obtain good
agreement with experimental data, in particular with regards to the large variation of the intensity with momentum.
We find that the screening in La0.5Sr1.5MnO4 is highly localized around the core-hole site and demonstrate the
potential of K-edge resonant inelastic x-ray scattering as a probe of screening dynamics in materials.
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I. INTRODUCTION

There has been a great interest recently in K-edge reso-
nant inelastic x-ray scattering (RIXS) [1–8], particularly, in
transition-metal oxides, because of its unique advantages over
other probes. In this spectroscopy, hard x rays with energies
of the order of 10 keV excite transition-metal 1s electrons
into empty 4p levels, which decay back to the 1s levels. In
addition to the elastic process, inelastic processes occur that
result in low-energy excitations of the order of 1 eV near
the Fermi energy, the cross section of which is enhanced by
the resonant condition. The K-edge RIXS spectrum provides
information on the momentum dependence of the excitations,
is sensitive to the bulk properties because of the high energy
of hard x rays and directly probes valance-shell excitations
because there is no core hole in the final states. Since early
studies on nickel-based compounds [9,10], K-edge RIXS has
been a useful probe for novel excitations in transition-metal
oxides, in particular, high-Tc cuprates [11,12].

Theoretically, it has been proposed that the K-edge RIXS
spectrum reflects different aspects of the electronic structure
depending on the size of the core-hole potential, Ucore, between
the 1s core hole and the 3d electrons, relative to the 3d

band width [8]. In the weak or strong limit of Ucore, the
ultrashort core-hole lifetime expansion is applicable [13] and
it has been shown that the K-edge RIXS spectrum corresponds
to the dynamic structure factor, S(Q,ω). Some experimental
results indeed show K-edge RIXS spectra similar to S(Q,ω)
multiplied by a resonant factor, but others show deviations
[14]. In the intermediate case of Ucore, numerical calculations
show asymmetric electron-hole excitations and that the RIXS
spectrum is substantially modified from S(Q,ω) [15].
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One of the main conclusions of Ref. [15] is that the K-edge
RIXS intensity for transition-metal oxides essentially repre-
sents the dynamics of electrons near the Fermi energy, which
screen the 1s core hole created by the x ray [15,16]. Tuning
the incoming x-ray energy to the absorption edge allows
an approximation in which the sum over the intermediate
states is replaced with the single lowest-energy intermediate
state. The study further showed that expanding K-edge RIXS
intensity according to the number of final-state electron-hole
pairs is a fast-converging expansion where the one-electron-
hole-pair states dominate, particularly for insulators. The
calculation further shows that the electron excitation is from
the unoccupied band throughout entire first Brillouin zone,
reflecting the localized nature of the core-hole screening by
electrons in real space. In contrast, the hole excitations are
mostly from occupied states close to the gap to minimize the
kinetic energy, particularly when the gap energy is smaller
than the band width.

In Ref. [15], the focus was on the energy dependence of
electron-hole excitations and the case of one core-hole site per
unit cell. The momentum dependence of the RIXS spectrum
and the possibility of multiple core-hole sites within a unit
cell were not considered explicitly. In the current paper, we
derive a formula that includes the full momentum dependence
as well as multiple core-hole sites within a unit cell in the
tight-binding approach. The formula is expressed in terms of
the intermediate states with a completely localized 1s core
hole, and we show that the RIXS spectrum in reciprocal space
can be readily compared with the screening cloud in real space.

As a specific example, we calculate the K-edge RIXS
spectrum for La0.5Sr1.5MnO4 and make a comparison with
experimental results. This material has a layered perovskite
structure, which includes two-dimensional MnO2 planes with
eight Mn sites per unit cell in the low-temperature spin-,
orbital-, charge-, and structure-ordered state [17–19]. Experi-
mental results show a dramatic variation of the RIXS intensity
in reciprocal space in spite of the fact that there is almost
no change in the peak energy of the energy-loss feature [20].
We find good agreement between theory and experiment. By
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varying the parameter values, we find a correlation between
the variation of the K-edge RIXS spectrum in reciprocal space
and the size and shape of the screening cloud in real space. We
further examine the periodicity of the K-edge RIXS spectrum
[21].

The paper is organized as follows. Section II presents the
derivation of the K-edge RIXS formula in the limit of a com-
pletely localized 1s core hole. We present the experimental re-
sults and the theoretical model for La0.5Sr1.5MnO4 in Secs. III
and IV, respectively. Section V presents calculated K-edge
RIXS spectrum, comparison with experimental results, and
calculated S(Q,ω). Section VI includes further discussion on
our results and Sec. VII summarizes. Appendix A shows details
of the K-edge RIXS formula derivation. Appendix B shows
the RIXS formula in terms of eigenstates with and without
the core hole. Appendix C includes the expression of the
tight-binding Hamiltonian for La0.5Sr1.5MnO4 in reciprocal
space. We discuss the actual electron numbers at nominal
“Mn3+” and “Mn4+” sites in La0.5Sr1.5MnO4 in Appendix D.
The programs used for our calculations are available online
[22].

II. K -EDGE RIXS FORMULA IN THE LIMIT OF
LOCALIZED 1S CORE HOLE

A. Derivation of the K -edge RIXS formula

The Kramers-Heisenberg formula [8,23] is the starting
point for the derivation of our K-edge RIXS formula:

I (ω,k,k′,εεε,εεε′) ∝
∑
f

∣∣∣∣∣
∑

n

〈f |D′†|n〉〈n|D|g〉
Eg + �ωk − En + i�n

∣∣∣∣∣
2

× δ(Eg − Ef + �ω), (1)

where |f 〉, |n〉, and |g〉 represent the final, intermediate, and
initial states, Ef , En, and Eg are their energies, �n is the
inverse of the intermediate state lifetime, �ωk is the energy
of incoming x-ray with wave vector k, and �ω is the x-ray
energy loss. D′† and D are the electric multipole operators,
which include the incoming and outgoing x-ray wave vectors
and polarization vectors, (k,εεε) and (k′,εεε′).

In general, the 1s core-hole component of the intermediate
eigenstates |n〉 can be chosen as a delocalized momentum
eigenstate [16]. In the limit of the 1s electron hopping am-
plitude approaching zero, the intermediate energy eigenstates
with different core hole momenta become degenerate, and
the appropriate linear combinations can be made to form
intermediate energy eigenstates with a 1s core hole completely
localized at a chosen site [15,24,25]. Therefore the state |n〉 can
be chosen as |nR+d〉, the intermediate energy eigenstate with
the core hole at a site R + d, where R and d represent the lattice
point and the relative position of core-hole site within the unit
cell, respectively. The summation over intermediate states

∑
n

can then be written as three summations,
∑

R

∑
d

∑
nR+d .

We take the dipole approximation [8] for the electric
multipole operators D′† and D. By analyzing how the phases
of the intermediate and final eigenstates change following
a translation by the lattice vector R, we find that the sum
over R gives rise to conservation of crystal momentum.
Under the appropriate experimental conditions, such as for

FIG. 1. (Color online) Schematic drawing of the geometry for
the K-edge RIXS experiment reported in this paper. The polarization
direction is orthogonal to the scattering plane and is depicted with a
green arrow.

the experiments reported in this paper in which the scattering
plane is fixed with respect to the crystal and the incoming x-ray
polarization vectors remain perpendicular to the scattering
plane as shown in Fig. 1, the polarization effect in the K-edge
RIXS is a constant factor. We can then effectively remove the
4p creation and annihilation operators and replace the dipole
operators by the core-hole creation and annihilation operators.
This results in the following expression:

I (ω,k,k′)

∝
∑

K

∑
f

∣∣∣∣∣
∑

d

∑
nd

e−i(k′−k)·d〈f |sd|nd〉〈nd|s†d|g〉
Eg + �ωk − End + i�nd

∣∣∣∣∣
2

× δ(Eg − Ef + �ω) δ(kf + k′ − k + K), (2)

where s
†
d is the creation operator of the 1s core-hole at site d,

K represents a reciprocal lattice vector, and kf denotes the net
momentum of the final state. Details of the derivation of the
above formula are presented in Appendix A.

We make further approximations to simplify the numerical
calculation of RIXS spectrum. First, we replace the sum

∑
nd

by a single term with nd = nd
low, that is, the lowest energy

eigenstate with the core hole at a site d. This is justified
for two reasons [15]. First, 〈nd|s†d|g〉 is largest for nd

low, the
well-screened state. Second, the incoming x-ray energy is
tuned to the absorption edge, which makes the lowest energy
intermediate state the most probable, while higher energy
intermediate states, in particular, the unscreened state [15], are
less likely to be excited by the incoming x-rays in a K-edge
RIXS process. The lowest-energy intermediate state |nd

low〉 is
dominated by the single-pair electron-hole excitations, espe-
cially in insulators, because of the higher energies necessary
for multiple-pair electron-hole excitations [15]. We therefore
consider single-pair final states 〈lekelhkhσ | with an electron
with wave vector ke, band index le, and energy εleke

and a hole
with wave vector kh, band index lh, and energy εlhkh

, both with
spin σ . Finally, if the resonant energies End − Eg and core-hole
lifetime broadenings �nd are similar for different core-hole
sites within the unit cell, then we can neglect the denominator
in Eq. (2) for fixed incoming x-ray energy, because it becomes
a constant factor in the overall K-edge RIXS spectrum. These
approximations lead to the following formula, which we use
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for the numerical calculation of the K-edge RIXS spectrum:

I (ω,Q)

∝
∑

K

∑
lekelhkhσ

∣∣∣∣∣
∑

d

e−iQ·d〈lekelhkhσ |sd

∣∣nd
low

〉〈
nd

low

∣∣s†d|g〉
∣∣∣∣∣
2

× δ(εlhkh
− εleke

+ �ω) δ(ke − kh + Q + K), (3)

where Q = k′ − k. This formula relates the K-edge RIXS
spectrum to the response of the system to a localized charge.
The reasonable approximations we have taken significantly
reduce the time for numerical calculations, and therefore, this
formula can be used with the density functional approach
as well as the tight-binding approach. Details on how we
numerically calculate I (ω,Q) with Eq. (3) are presented in
Appendix B.

B. Periodicity of K -edge RIXS in reciprocal space

Understanding the periodicity of the K-edge RIXS spec-
trum is useful, for example, in determining where to probe in
reciprocal space. Also, as we will show below, there is useful
information in the momentum dependence. First, it should
be noted that periodicity in reciprocal space is not inherent
in inelastic x-ray scattering. For example, off resonance,
an increase in transferred momentum changes the transition
matrix elements, since higher-order terms in the multipole
expansion of the vector potential A are no longer negligible
[8]. However, on resonance, the matrix elements are all in
the dipole limit and should not depend on the momenta of the
incoming and outgoing photons. The only relevant momentum
is then the crystal momentum, and the K-edge RIXS cross
section follows the symmetry of the Brillouin zone. This
was noted experimentally by Kim et al. [21] in their study
of high-Tc cuprates. However, these materials have only one
transition metal site in the unit cell. Such periodicity may not
be generally applicable to crystals with multiple core-hole sites
within a unit cell, such as charge-orbital-ordered manganites.

We look into the formula in Eq. (3) to learn about the
periodicity of K-edge RIXS spectrum. For solid systems with
one core-hole site per unit cell, we can choose d = 0 and
simplify Eq. (3) by omitting a constant factor 〈nd

low|s†d|g〉 to
obtain

I (ω,Q) ∝
∑

K

∑
lekelhkhσ

∣∣〈lekelhkhσ |sd=0

∣∣nd=0
low

〉∣∣2

× δ(εlhkh
− εleke

+ �ω) δ(ke − kh + Q + K), (4)

which makes the RIXS calculations even simpler for materials
with one core-hole site per unit cell. If the x-ray wave vector
change Q is altered by a reciprocal lattice vector K′, i.e., Q′ =
Q + K′, then the RIXS intensity will be unchanged, since
K′′ = K′ + K in the second δ-function is also a reciprocal
lattice vector. This is consistent with the experimental result
for La2CuO4 (Ref. [21]).

On the other hand, if a solid has multiple core-hole sites per
unit cell due to the ordering of spin, charge, orbital, or local
lattice distortions, then the following argument shows that the
symmetry of the K-edge RIXS spectrum is with respect to
the lattice without ordering, rather than the actual lattice. We
represent the lattice without ordering by Rcore, which includes

the actual lattice R as well as d. Then Kcore, the reciprocal
lattice vector of Rcore, satisfies the condition of eiKcore·d = 1,
which results in the symmetry of K-edge RIXS spectrum in
Eq. (3), that is, I (ω,Q + Kcore) = I (ω,Q). We shall see this
explicitly in Sec. V F for La0.5Sr1.5MnO4.

III. EXPERIMENTAL RESULTS FOR La0.5Sr1.5MnO4

Mn K-edge RIXS from La0.5Sr1.5MnO4 was measured at
the Advanced Photon Source on beamlines 30-ID and 9-ID at
temperature T = 20 K, well below CE-type magnetic, charge,
orbital, and structural ordering temperatures. The instrumental
energy resolution was of about 270 meV (FWHM). As shown
in Fig. 1, a single crystal grown in traveling solvent floating
zone method is aligned so that when the x-ray wave-vector
transfer Q is in the scattering plane, it has Qx = Qy with
the x and y axes along the Mn-O bond direction and the z

axis perpendicular to the MnO2 plane. The scattering plane
was fixed with respect to the crystal and the polarization of
the incoming and outgoing x-rays was perpendicular to the
scattering plane, so that the polarization factor is a constant
factor in the RIXS formula, as assumed in the derivation of
Eq. (3). Data taken either at a fixed sample angle, θ , or a fixed
detector angle, 2θ , are shown as connected dots in Fig. 2. The
elastic peak has been subtracted from the data [20]. The main
focus in this paper is the intensity variation of the 2-eV peak,
which is known to arise from transitions between Mn 3d eg

bands from optical measurements [26,27]. The intensity of
the 2-eV peak increases rapidly from Qx = Qy = 0 to Qx =
Qy = ±π

a
, where a represent the average Mn-Mn distance

within the MnO2 plane, but is almost independent of Qz.
The latter supports the two-dimensional character of the eg

electrons confined within each MnO2 layer. The fact that there
are eight core-hole sites per two-dimensional unit cell makes
the experimental results for La0.5Sr1.5MnO4 an ideal case to
test the validity of our theory.

IV. TIGHT-BINDING HARTREE-FOCK HAMILTONIAN
AND CORE-HOLE POTENTIAL FOR eg ELECTRONS IN

La0.5Sr1.5MnO4

La0.5Sr1.5MnO4 has a layered two-dimensional perovskite
structure with negligible hopping of the Mn 3d eg elec-
trons between the MnO2 layers. This is consistent with the
experimental observation of K-edge RIXS spectrum being
independent of the momentum transfer perpendicular to MnO2

layers. We therefore consider a Hamiltonian for a single
MnO2 layer. La0.5Sr1.5MnO4 undergoes a structural and orbital
ordering transition at 230 K, and a CE-type magnetic ordering
transition at 110 K, schematically shown in Fig. 3 for the MnO2

layer. In this figure, “Mn3+” and “Mn4+” are used to indicate
the two sites not related by symmetry, rather than controversial
charge ordering [28–30]. The strong Hund’s coupling between
the eg electron spin and the t2g electron spin confines most of
the eg electron hopping along the zigzag chain. The distortion
of the oxygen octahedron surrounding the Mn ions splits the eg

energy levels through the Jahn-Teller electron-lattice coupling.
Our tight-binding Hamiltonian considers the effective Mn

3d eg levels only, because the RIXS peak at around 2 eV is
due to transitions between the bands from these levels [26,27].
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FIG. 2. (Color online) Experimental and theoretical K-edge
RIXS intensities for La0.5Sr1.5MnO4 with CE-type charge-orbital-
spin ordering. The symbols represent the experimental data, taken
at 2θ = 68◦, 2θ = 78◦, and θ = 40◦, respectively, and Qx = Qy =
Hex

2π

a
and Qz = Lex

2π

c
(Ref. [20]). The elastic peaks are subtracted

from data [20]. Dashed line represents a momentum-independent
peak, presumably from a O-Mn transition. Solid curves in gray scale
represent the RIXS intensity calculated at Qx = Qy = Hth

2π

a
for the

Mn-Mn transition for the parameter set with t0 = 0.9 eV, added to the
dashed line, as discussed in Sec. V D.

We note that these effective Mn 3d eg levels are in fact linear
combinations of atomic Mn 3d eg levels and atomic O 2p

FIG. 3. (Color online) In-plane structural layout of Mn ions for
La0.5Sr1.5MnO4 in CE-type ordering. Red and blue arrows represent
the t2g spin alignment. a′

1 and a′
2 represent the primitive lattice vectors

for CE phase. a1 and a2 are primitive vectors for lattice without charge,
orbital, and spin ordering. The rounded hexagon encloses the Mn ions
in the basis.

levels. Appendix D discusses this aspect in more detail, in
particular, in relation to the electron numbers on the Mn ions.

Within this effective model, we define d
†
iξσ as the creation

operator of the eg electron with the spin state σ = ↑, ↓ and
orbital state ξ = 1 for (3z2 − r2)/2 and ξ = 2 for

√
3(x2 −

y2)/2 at the Mn site i = (mxa,mya), where mx and my are
integers, as shown in Fig. 3. The electron hopping term [31] is

Ĥhopping = −1

2

∑
i,δδδ,ξ,ξ ′,σ

t
ξξ ′
δδδ (d†

iξσ di+δδδ,ξ ′,σ + d
†
i+δδδ,ξ ′,σ diξσ ). (5)

The vector δδδ = ±ax̂, ± aŷ represents the nearest-neighbor
sites of a Mn ion. The hopping matrices within the MnO2

plane are

tax̂ = t−ax̂ = t0

(
1/4 −√

3/4
−√

3/4 3/4

)
, (6)

taŷ = t−aŷ = t0

(
1/4

√
3/4√

3/4 3/4

)
, (7)

reflecting the symmetry of the eg orbitals. The parameter t0
represents the effective hopping constant between the two
(3x2 − r2)/2 orbitals along the x direction.

The distortion of oxygen octahedron around a Mn ion at site
i is parameterized as follows. u

ζ
i (ζ = x,y) represents the ζ̂

directional displacement of an oxygen ion located between
Mn ions at i and i + aζ̂ from the position for the ideal
undistorted square MnO2 lattice with the average in-plane
Mn-O bond distance. The u+z

i and u−z
i represent the z direction

displacements of the oxygen ions above and below the Mn ion
at site i from the location of the average in-plane Mn-O bond
distance. The parameters, Q1i, Q2i, and Q3i, represent the
distortion modes of the oxygen octahedron, shown in Fig. 4
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FIG. 4. Distortion modes Q1, Q2, and Q3 of oxygen octahedron
around Mn with arrows indicating directions of displacement.

and defined as follows:

Q1i = ux
i − ux

i−ax̂ + u
y
i − u

y

i−aŷ + u+z
i − u−z

i√
3

, (8)

Q2i = ux
i − ux

i−ax̂ − u
y
i + u

y

i−aŷ√
2

, (9)

Q3i = 2uz
i − 2u−z

i − ux
i + ux

i−ax̂ − u
y
i + u

y

i−aŷ√
6

. (10)

The Mn-O bond distances estimated from structural refine-
ment of high-resolution synchrotron x-ray powder diffraction
data for La0.5Sr1.5MnO4 in Ref. [32] indicate Q1 = 0.0531 Å,
Q2 = ±0.1089 Å, and Q3 = 0.0955 Å around the “Mn3+”
sites and Q1 = −0.0531 Å, Q2 = 0, and Q3 = 0.1192 Å
around the “Mn4+” sites.

The Q2 and Q3 distortions break the cubic symmetry of the
oxygen octahedra and interact with the eg orbital state through
the following Jahn-Teller Hamiltonian term [33]:

ĤJT = −λ
∑
i,σ

(
d
†
i1σ

d
†
i2σ

)T (
Q3i −Q2i

−Q2i −Q3i

) (
di1σ

di2σ

)
, (11)

where λ corresponds to the Jahn-Teller coupling constant. The
isotropic Q1 distortion interacts with the total eg electron
number through the following “breathing” electron-lattice
Hamiltonian term [34]:

Ĥbr = −βλ
∑
i,σ

(
d
†
i1σ

d
†
i2σ

)T (
Q1i 0

0 Q1i

) (
di1σ

di2σ

)
, (12)

where β represents the ratio between the strengths of the
breathing and the Jahn-Teller coupling.

We also include the Hund’s coupling of the eg electron spin
state to the classical t2g spin direction,

ĤHund = −JH

∑
i,ξ,σ ′,σ ′′

St2g i · d
†
iξσ ′ τττσ ′σ ′′ diξσ ′′ , (13)

where JH represents the Hund’s coupling constant, St2g i the
t2g spin vector ordered in CE-type structure and τττ is the Pauli
matrix vector.

As in Ref. [31], we also include the 3d-3d on-site Coulomb
interaction,

Ĥdd = U
∑

i

∑
(η,σ )
=(η′,σ ′)

n̂iησ n̂iη′σ ′ , (14)

where n̂iησ = d
†
iησ diησ is the number operator and U represents

the size of the 3d-3d Coulomb interaction. The index η = −,+

represents the local orbital eigenstates of ĤJT with lower and
higher energies, respectively, chosen for the following Hartree-
Fock approximation:

Ĥ HF
dd =

∑
i

(Ui+↑d
†
i+↑di+↑ + Ui−↑d

†
i−↑di−↑

+Ui+↓d
†
i+↓di+↓ + Ui−↓d

†
i−↓di−↓), (15)

where Ui+↑ = U (〈n̂i−↑〉 + 〈n̂i+↓〉 + 〈n̂i−↓〉), etc. [31].
The total Hamiltonian for Mn 3d eg electrons for calcula-

tions of K-edge RIXS initial and final states is then the sum
of the terms described so far,

Ĥd = Ĥhopping + ĤJT + Ĥbr + ĤHund + Ĥ HF
dd . (16)

The CE-type ordering of the t2g spins and the lattice distortions
associated with charge and orbital ordering give rise to the
primitive lattice vectors a′

1 and a′
2 shown in Fig. 3. The

primitive reciprocal lattice vectors are b′
1 = ( π

2a
, − π

2a
) and

b′
2 = ( π

2a
, π

2a
), and the first Brillouin zone is �1BZ = {k| −

π
2a

< kx + ky � π
2a

, − π
2a

< kx − ky � π
2a

}.
In the intermediate state, we must also account for the

presence of the core hole. The 1s-3d on-site Coulomb
interaction is generally expressed as

Ĥsd = −Ucore

∑
i,ξ,σ,σ ′

d
†
iξσ diξσ s

†
iσ ′ s iσ ′ , (17)

where Ucore represents the size of the 1s-3d Coulomb interac-
tion, and s

†
iσ ′ is the creation operator for a 1s core hole with

spin σ ′ at site i. As discussed in Sec. II A, in the limit of
vanishing 1s electron hopping amplitude, the K-edge RIXS
intermediate energy eigenstates can be chosen as states with a
single completely localized 1s core hole, which can be found
from

Ĥtotal,ic = Ĥd + Ĥsd,ic , (18)

with

Ĥsd,ic = −Ucore

∑
ξ,σ

d
†
icξσ dicξσ , (19)

ic representing the 1s core-hole site, and s
†
icσ ′ s icσ ′ = 1 being

used. To calculate the K-edge RIXS spectrum, we need to
represent the eigenstates of Ĥtotal,ic , as a linear combination of
the eigenstates of Ĥd, as described in detail in Appendix B.
The expression of the Hamiltonian Ĥd and Ĥtotal,ic in reciprocal
space for La0.5Sr1.5MnO4 is presented in Appendix C.

Each Hamiltonian term has one parameter. Some of the
parameter values are chosen by modifying corresponding
values for LaMnO3 found in Ref. [31]. The chosen parameter
values are t0 = 0.9 eV, λ = 7.41 eV/Å, β = 1.5, JH |St2g,i| =
2.2 eV, U = 3.5 eV, and Ucore = 4.0 eV. In addition, we vary t0
and λ while maintaining the gap size around 2 eV to examine
how the RIXS spectrum depends on the eg electron hopping
amplitude.
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FIG. 5. (Color online) Electronic density of states (DOS) per site,
for t0 = 0.9 eV and λ = 7.41 eV/Å (a) without a core hole, (b) with
a core hole at a Mn3+ site and (c) with a core hole at a Mn4+ site.
The Lorentzian broadening of 2� = 0.1 eV is used to make the DOS
curve smooth. Vertical lines with a circle on top represent bound
states. (d) and (e) Final (upper panel) and intermediate (lower panel)
electron-hole distribution with a core hole at a (d) Mn3+ and (e) Mn4+

site.

V. RESULTS FROM THEORY AND COMPARISON
WITH EXPERIMENTS

A. Electronic density of states in the absence and in the
presence of the core hole

We first present our results on energy eigenstates and
eigenvalues of the Hamiltonians for a 16×16 Mn site cluster
with periodic boundary conditions. The calculated density of
states (DOS) is shown in Fig. 5(a) in the absence of a core hole.
The occupied band mostly consists of the lower Jahn-Teller
eg levels with spin parallel to the t2g spins at Mn3+ sites,
whereas the lowest empty band mostly consists of similar eg

levels at Mn4+ sites. The excitation between these two bands
is responsible for the 2 eV RIXS peak, which is the focus of

our comparison with experiment data. Due to spin degeneracy
in CE-type antiferromagnetic ordering, the electronic DOS
D↓(ε) for spin ↓, is identical to that for spin ↑, D↑(ε).

We next analyze the Hamiltonian Ĥtotal,ic in the presence of
the core hole at site ic. The t2g spin direction at ic breaks the
spin degeneracy in the DOS. The DOS D

ic=(0,0)
↑ (ε) is displayed

in Fig. 5(b), for the core hole site ic = (0,0) in Fig. 3, which
is a Mn3+ site with t2g spin ↑. The core-hole potential pulls
out bound states from the band continuum [15], identified by
vertical lines with circles on top in Fig. 5(b). The lowest bound
state is at about −4 eV, that is, Ucore below the lowest band
with Mn3+ character. The second bound state is within the
gap. The DOS for the band continuum is almost unchanged,
except that the number of states within each band below and
above the gap is reduced by one because of the bound states
pulled out [15]. By filling the states from the lowest energy
with the same number of electrons in the intermediate states
as in the ground state, as shown in Fig. 5(b), we obtain the
lowest energy intermediate state, s|nic

low〉. Therefore the bound
state below the lowest band is occupied and the bound state
within the gap is empty in the intermediate state. D

ic=(0,0)
↓ (ε)

is almost identical to the DOS without a core hole in Fig. 5(a),
because the electrons with spin ↓ contribute very little to the
screening of the core hole due to the strong Hund’s coupling.

The DOS D
ic=(a,0)
↑ (ε), for the core hole at ic = (a,0) in

Fig. 3, which is a Mn4+ site with t2g spin ↑, is shown in
Fig. 5(c) and has similar features. The lowest bound state is at
around −2 eV, that is, Ucore below the band with the Mn4+ site
character, which is the lowest empty band. Again, the lowest
bound state is filled and the bound state within the gap is empty
for s|nic

low〉, as indicated in Fig. 5(c).
As a comparison, we carry out similar calculations for the

parameter values of t0 = 1.5 eV and λ = 3.51 eV/Å, which
keep the size of the gap approximately 2 eV, but result in a
larger band width. Due to the larger electron hopping, the gap
has more of a hybridization gap character, and the bands are
wider, as shown in Fig. 6(a), which shows the DOS without
a core hole. Similarly to the t0 = 0.9 eV case, Figs. 6(b) and
6(c) show D

ic
↑ (ε), in the presence of a core hole at ic = (0,0)

and ic = (a,0), respectively. The bound states in Fig. 6(c) are
qualitatively similar to those for t0 = 0.9 eV in Fig. 5(c).
However, qualitatively different behavior occurs for the core
hole at a Mn3+ site, as shown in Fig. 6(b). In this case, the
bound state that would be in the gap for smaller t0 resides in
the occupied band and becomes a resonant rather than bound
state, as indicated by the vertical line with “R” on top. Such a
resonant state hybridizes with delocalized states in the band,
unlike bound states. With the bound state below the lower
band and this resonant state occupied, the top of the lower
band is empty in the lowest energy intermediate state s|nic

low〉, as
indicated in Fig. 6(b). This will have a significant consequence
in the screening dynamics, as discussed in following sections.

B. Electron and hole excitations by the core hole
represented along energy axis

Understanding the distributions of the electrons and holes
that are excited by the core hole is essential for the interpreta-
tion of RIXS spectrum. Excited electron and hole distributions
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FIG. 6. (Color online) Similar figures as Fig. 5 for t0 = 1.5 eV
and λ = 3.51 eV/Å. “R” in (b) represents a resonant state, rather than
a bound state. Note that a single state at the top of the lower band in
(b) is empty.

with respect to the energy for the RIXS final state, ne
fin,σ (ε) with

ε > εF and nh
fin,σ (ε) with ε < εF , are defined as follows [15]:

ne
fin,σ (ε) =

εlkσ >εF∑
lk

Ne
2∑

m=1

|〈0|blkσ c†mσ |0〉|2δ(ε − εlkσ ), (20)

nh
fin,σ (ε) =

εlkσ <εF∑
lk

Ne
2∑

m= Ne
2 +1

|〈0|blkσ c†mσ |0〉|2δ(ε − εlkσ ), (21)

where εF represents the Fermi energy in the absence of the core
hole, c

†
mσ is the creation operator for the mth lowest energy

eigenstate of Ĥtotal,ic with spin σ and energy εmσ , and b
†
lkσ

represents the creation operator for the energy eigenstate with
wave vector k and energy εlkσ within the lth lowest band of
Ĥd, and Ne represents total electron number. These are the
electrons and holes that are moved by the scattering process.

For example, ne
fin(ε) corresponds to the projection of occupied

intermediate states to unoccupied initial states. The δ function
makes this distribution represented with respect to the energy
without the core hole.

Similar electron and hole distributions with respect to the
energy for the RIXS intermediate state [15], ne

int,σ (ε) and
nh

int,σ (ε), are defined in the same way as Eqs. (20) and (21),
except that the energy δ function is replaced by δ(ε − εmσ ).
This difference also implies that we have ne

int,σ (ε) for ε < εint
F

and nh
int,σ (ε) for ε > εint

F , where εint
F represents the Fermi energy

in the presence of the core hole.
These excited electron and hole distributions are plotted in

Figs. 5(d), 5(e), 6(d), and 6(e) for σ = ↑. Similar distributions
for spin ↓ state are less than 10% of those for spin ↑ state. The
plots of ne

int,↑(ε) and nh
int,↑(ε) in the lower panels of Figs. 5(d),

5(e), and 6(e) show that the bound states in the intermediate
state, marked in Figs. 5(b), 5(c), and 6(c), respectively, make
the dominant contribution to the electron-hole excitations.

The plots of nh
fin,↑(ε) and ne

fin,↑(ε) in the upper panels of
Figs. 5(d), 5(e), and 6(e), show that, while ne

fin,σ (ε) resembles
the DOS of the unoccupied band, nh

fin,σ (ε) shows a peak at
the top of the occupied band, in particular, in Fig. 6(e). This
represents asymmetric screening dynamics between electrons
and holes.

For the exceptional case of t0 = 1.5 eV and a core hole at
Mn3+ site, the comparison between Fig. 6(b) and the lower
panel in Fig. 6(d) reveals that the occupied resonant state
within the lower band marked by “R” and the empty state
at the top of the occupied band in Fig. 6(b) make dominant
contributions to ne

int,↑(ε) and nh
int,↑(ε). The resonant state is

dominant for electron excitations because this state is pulled
from the initially unoccupied bands, whereas the lowest bound
state comes mostly from the initially occupied band. The
delocalized state at the top of the occupied band predominantly
contributes to the hole excitation, because it is occupied in the
initial state and empty in the intermediate state, which results
in hole excitation very close to the gap shown in the upper
panel in Fig. 6(d). We note that these results are consistent
with the conclusions of Ref. [15], thus validating the present
study.

C. Electron and hole excitations by the core hole
represented in real space

In this section, we present the distribution of electrons and
holes excited by the core hole in real space.

First, in the absence of the core hole, the electron number
〈n̂iησ 〉 is calculated for each spin state σ =↑ , ↓ and orbital
state η = +,− at each site i from the initial ground state |g〉 of
the Hamiltonian Ĥd. The total eg electron numbers calculated
for our 16 × 16 cluster in the absence of the core hole are 0.87
at the nominal Mn3+ site and 0.13 at the nominal Mn4+ site
for the parameter set with t0 = 0.9 eV, indicating a difference
of 0.74 in charge density between these two sites. We note
that these numbers should not be directly compared with the
local density approximation theory results or resonant x-ray
scattering results, because our effective Mn 3d eg states are
not pure atomic Mn orbital states but combinations of atomic
Mn and O orbitals [35]. A proper comparison is described
in Appendix D, which shows that the electron numbers in
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(a) (b)

t0 = 0.9 eV, λ = 7.41 eV/A°

Core hole at Mn3+ Core hole at Mn4+

FIG. 7. (Color online) Screening configuration in real space for
t0 = 0.9 eV with a core hole at (a) Mn3+ and (b) Mn4+ sites. The
volume of the red and blue spheres is proportional to the excited
electron and hole numbers, respectively. The excited electron number
at the core-hole site (the site with the largest red sphere) is 0.11 for
(a) and 0.92 for (b).

our model are consistent with local density approximation
and resonant x-ray scattering results. It is found that most
of these electrons occupy the lower Jahn-Teller level η = −,
approximately

√
3(x2 − z2)/2 or

√
3(y2 − z2)/2 orbital at the

Mn3+ site and the (3z2 − r2)/2 orbital at the Mn4+ site, with
spin parallel to t2g spin at each site, consistent with the orbital
ordering proposed in Ref. [36].

In the intermediate state, these electron numbers change to
screen the core hole. The changes in electron number, that is,
excited electron and hole numbers, are shown in Fig. 7 for
t0 = 0.9 eV and in Fig. 8 for t0 = 1.5 eV, where the volumes
of red and blue spheres are proportional to the excited electron
and hole numbers, respectively. Note that these changes in
electron and hole numbers are consistent with the excited
electron and hole distributions along the energy axis reported in
Figs. 5(d), 5(e), 6(d), and 6(e). The site with the largest electron
number in each panel corresponds to the core-hole site. The
gray solid and dashed lines in the background represent the
zigzag chain with t2g spin ↑ and ↓, respectively. For the

(a) (b)

t0 = 1.5 eV, λ = 3.51 eV/A°

Core hole at Mn3+ Core hole at Mn4+

FIG. 8. (Color online) Screening configuration in real space for
t0 = 1.5 eV with a core hole at (a) Mn3+ and (b) Mn4+ sites, similar
to Fig. 7. The excited electron number at the core-hole site is 1.02 for
(a) and 0.91 for (b) [37].

t0 = 0.9 eV case, Figs. 7(a) and 7(b) show that the excited
electrons are mostly confined right at the core-hole site. The
localization of the electrons in the intermediate state leads
to the relatively broad electron distribution, ne

fin↑(ε), along
the energy axis in the upper panels of Figs. 5(d) and 5(e).
Comparison of the largest solid red spheres in Figs. 7(a) and
7(b) shows that more screening electrons accumulate at the
core-hole site when the core hole is created at the Mn4+ site
(0.92 electron) than at the Mn3+ (0.11 electron). This result
can be understood from the orbital ordering pattern: initially,
the Mn4+ site has less eg electrons on the site itself but more
electrons at its nearest neighbor Mn sites along the zigzag
chain with orbitals pointing toward the Mn4+ site compared
to the Mn3+ site, which allows the core hole at Mn4+ sites to
attract more electrons. Hole distribution in Figs. 7(a) and 7(b)
show that these screening electrons are mostly from the nearest
neighbors along the zigzag chain, accounting for about 90%
of the total hole number. The results show that even though
the hole excitation is not as localized as the electron excitation
and nh

fin↑(ε) is sharper along the energy axis than ne
fin↑(ε) in

Figs. 5(d) and 5(e), the holes are still tightly bound to the
core-hole site forming an excitonlike electron-hole-pair state.

The situation changes for the case of large electron hopping
t0 = 1.5 eV. Figure 8(a) shows the electron-hole excitations
for a core hole at a Mn3+ site. In this case, the hole distribution
becomes delocalized, and only about 8% of the hole is
localized within the nearest neighbors of the core-hole site,
while the majority of the hole is delocalized along the zigzag
chains with the same spin direction as the core-hole site,
consistent with the result in Figs. 6(b) and 6(d). The hole
number does not decay with the distance from the core-hole
site, indicating qualitatively different screening dynamics.
Even for the case with a core hole at a Mn4+ site, Fig. 8(b), the
hole distribution spreads to further neighbors along the zigzag
chain, reflecting the tendency toward delocalization. As we
shall see, such screening patterns in real space can be related
to the variation of the RIXS intensity in reciprocal space. This
will be discussed in Sec. V E.

D. Calculated K -edge RIXS spectrum and
comparison with experimental data

We calculate the RIXS intensity, I (ω,Q) according to
Eq. (3). To make a comparison between the calculated results
and the experimental data, we first examine the experimental
data more closely. In addition to the momentum-dependent
RIXS peak at around 2 eV, the experimental RIXS spectrum
in Fig. 2 shows momentum-independent spectral weight,
in particular, above 3 eV. The shape of the experimental
RIXS spectrum, particularly with small in-plane wave vector
changes, such as Qx = Qy = −0.03 × 2π

a
in Fig. 2(a), indi-

cates that the RIXS spectral weight above 3 eV may have the
same origin as the 4–5 eV O 2p-Mn 3d transition observed in
optical experiments in related manganites [27]. Based on this
assumption, we model the experimental RIXS spectrum with a
momentum-independent peak, shown in dashed lines in Fig. 2,
centered at 4.5 eV and with a half width at half maximum of
1.5 eV similar to the optical peak, and a momentum-dependent
Mn 3d-3d peak around 2 eV, calculated from Eq. (3) using Ĥd

and Ĥtotal,ic . Here and for the rest of the paper, although it does

045111-8



MOMENTUM DEPENDENCE IN K-EDGE RESONANT . . . PHYSICAL REVIEW B 90, 045111 (2014)

0

2

4

E
ne

rg
y 

(e
V

)

)0,0()0,0(

N
or

m
al

iz
ed

 R
IX

S
 in

te
ns

ity

0

0.2

0.4

0.6

0.8

1

1

3

5

(0,0) ,

|H|0 0.5

Experiment

(b)(a)

Theory

Wavevector change,Q
a
π

a
π)( ,a

π
a
π)( ,a

π )( 0 ,a
π)(0

FIG. 9. (Color online) (a) Experimental RIXS intensity. Here we
take experimental data of Fig. 2, subtract the 4.5-eV peak, and fit
the resulting data with a fifth-order polynomial, which is plotted as a
contour plot. (b) Contour plot of the calculated RIXS intensity for the
t0 = 0.9 eV case along the chosen path in reciprocal space. We apply
the Lorentzian broadening of 2� = 1.2 eV along the energy axis and
polynomial fits along the path in reciprocal space.

not affect the results much, we present the RIXS intensity
averaged over twin domains in the crystal with zigzag chains
along the [110] and [1̄10] directions, Iavg(ω,(Qx,Qy)) =
[I (ω,(Qx,Qy)) + I (ω,(−Qx,Qy))]/2. The results in Fig. 2
demonstrate a reasonable agreement between the calculated
spectra shown in solid lines and the experimental data shown
in symbols, considering the experimental noise. The 4.5-eV
peak has a substantial tail even in the range of 1–3 eV.
Such momentum-independent tails have also been observed
in bilayer manganites [38].

To compare just the 2-eV peak between the theory and
experiment, we subtract the 4.5-eV peak from the experimental
data and plot the intensity, as a contour plot in the plane of
energy and Qx = Qy = Hex

2π
a

in Fig. 9(a). This clearly shows
the momentum dependence of the intensity of the 2-eV peak.
The calculated RIXS intensity in Fig. 9(b) for t0 = 0.9 eV
shows good agreement with experimental data. In contrast, in
Fig. 10, we show the calculated RIXS spectrum for t0 = 1.5 eV,
which is not consistent with the experimental data.

E. Energy-integrated RIXS intensity in reciprocal space

To make a more quantitative comparison between theory
and experiment, we integrate the spectrum of the 2-eV peak
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FIG. 10. (Color online) Contour plot of the calculated RIXS
intensity for t0 = 1.5 eV along the chosen path in reciprocal space.
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FIG. 11. (Color online) Solid lines and symbols with error bars
represent the K-edge RIXS intensity, integrated from 1 to 3 eV and
normalized to the maximum, as a function of wave-vector change.
The solid lines are from the theory for several t0 cases for comparison,
while the symbols are from the experiments. Dashed gray line
represents S(Q,ω)P (ω), the dynamic structure factor times a resonant
factor, for t0 = 0.9 eV, integrated from 1 to 3 eV and normalized
with respect to the maximum, which vanishes completely at Q =
(0, 0) unlike theoretical and experimental integrated RIXS intensity.
See Sec. IV E for the comparison between the theoretical and
experimental integrated RIXS intensity, and Sec. IV g for comparison
between the RIXS intensity and the dynamic structure factor.

from 1 to 3 eV after subtracting 4.5-eV peak, for both theory
and experiment. The results are shown in Fig. 11 along the
diagonal direction in reciprocal space, in which the theoretical
results for the various parameter sets, and the experimental
data are normalized with respect to the maximum integrated
intensity. The parameter sets used for the calculations are
(t0,λ) = (0.1 eV, 10.79 eV/Å), (0.9 eV, 7.41 eV/Å), (1.1 eV,
4.81 eV/Å), (1.32 eV, 3.76 eV/Å), (1.35 eV, 3.73 eV/Å), and
(1.50 eV, 3.51 eV/Å), chosen to keep the peak at around 2 eV.
All other parameter values are unchanged. The experimental
data in Fig. 11 shows that the integrated RIXS intensity
increases 4–5 times as the wave vector Q varies from Q =
(0,0) to Q = (π

a
, π

a
). Considering fluctuations in experimental

data, the theoretical results for t0 = 0.1, 0.9, 1.1 eV, all of which
have excitonlike screening electron-hole excitations similar to
Fig. 7, fit the experimental data reasonably well. In contrast,
the theoretical results for t0 = 1.35 and 1.5 eV, all of which have
delocalized hole excitations similar to Fig. 8, are qualitatively
different from experimental data with maximum intensity at
around (± π

2a
, ± π

2a
) instead of (±π

a
, ± π

a
). This provides an

upper limit of about 1.2 eV for the value of t0.
This analysis indicates that, irrespective of the details of

the model Hamiltonian and the particular parameter values,
the rapid increase of the RIXS intensity with a maximum at
(±π

a
, ± π

a
) observed in the experiment is indicative of highly

localized screening dynamics [39] in La0.5Sr1.5MnO4, i.e.,
screening that is more like Fig. 7 than that of Fig. 8.
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FIG. 12. (Color online) K-edge RIXS intensity integrated from
1 to 3 eV, shown in a large reciprocal space for the t0 = 0.9 eV
case. b′

1 and b′
2 represent the primitive reciprocal lattice vectors of

charge-orbital-spin-ordered MnO2 plane of Fig. 3. b1 and b2 are the
primitive reciprocal lattice vectors for MnO2 lattice without ordering.

F. Periodicity of K -edge RIXS spectrum in reciprocal space for
charge-orbital-spin-ordered manganites

As mentioned in Sec. II B, in earlier studies of La2CuO4, it
was shown that the observed K-edge RIXS spectrum reflects
the periodicity of the lattice and is a function of the reduced
wave vector q within the first Brillouin zone, defined as Q =
q + K, where Q is the total x-ray wave-vector change and K
is a reciprocal lattice vector [21].

The experimental data presented in this paper clearly indi-
cate that such periodicity is not present for La0.5Sr1.5MnO4.
The measured RIXS intensity, as well as the calculated RIXS
intensity, seen in Figs. 9 and 11, increases continuously past
the boundary of the first Brillouin zone at ( π

4a
, π

4a
). As discussed

in Sec. II B, the periodicity seen in Ref. [21] applies only to
solids with one core-hole site per unit cell, such as La2CuO4.
For solids with multiple core-hole sites per unit cell due to the
ordering of spin, charge, orbital, or local lattice distortions, the
periodicity in K-edge RIXS spectrum follows the periodicity
of the lattice without ordering, like the square Mn-site lattice
in La0.5Sr1.5MnO4, not the periodicity of the actual lattice
with ordering. Our numerical calculations in Figs. 12 and 13
confirm such periodicity in La0.5Sr1.5MnO4: Fig. 12 shows
energy-integrated RIXS intensity calculated for the t0 = 0.9 eV
case in a larger region of reciprocal space of − 3π

a
< Qx � 3π

a

and − 3π
a

< Qy � 3π
a

. The diamond around (0,0) is the actual
first Brillouin zone of the spin, charge, and orbital-ordered
structure, whereas the outer square domain −π

a
< Qx � π

a

and −π
a

< Qy � π
a

, denotes the first Brillouin zone of the
lattice without ordering. It is evident that RIXS spectrum does
not exhibit periodicity with respect to the actual primitive
reciprocal lattice vectors, b′

1 and b′
2, shown in Fig. 12, but

rather shows periodicity with respect to primitive reciprocal
lattice vectors of the lattice without ordering, b1 and b2, shown
in Fig. 12. Even though it is only a single data point, the
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FIG. 13. (Color online) Similar figure as Fig. 12 for the t0 =
1.5 eV case.

experimental data at around Qx = Qy = 0.68 × 2π
a

in Fig. 11
is consistent with such periodicity. Further experimental data
for |Qx | > π

a
, |Qy | > π

a
are required for the verification of

this periodicity. We note that careful examination of Fig. 12
reveals that the periodicity is only approximate. The small
displacement of the Mn4+ ions of 0.0265 Å along the diagonal
direction from the ideal square lattice [36], included in our
calculations, makes the Mn sites deviate slightly from the exact
square lattice. Figure 13 shows that, even for the t0 = 1.5 eV
case, the periodicity still does not follow the actual reciprocal
lattice, even though the RIXS intensity oscillates more rapidly
in reciprocal space [40].

We next provide a physical explanation of why the K-
edge RIXS spectrum from charge-orbital-ordered manganites
follows the periodicity of the Brillouin zone in the absence of
charge-orbital order. We first consider artificial doubling of the
unit cell for a one-dimensional chain with interatomic distance
a. In Fig. 14, thick (blue) lines, both solid and dashed, and
solid lines, both thick (blue) and thin (red), show a schematic
diagram of the band structure before and after the artificial
unit cell doubling, respectively. The arrows between 1s and
4p bands represent the core hole creation and annihilation by
x rays. Due to the interaction with the core-hole, electron-hole
pairs can be excited into the valence shell, as indicated by
the arrows within the 3d band. Excitations with a transferred
crystal wave vector Q from the state 1 can be either an
intraband transition to the state 2 shown in Fig. 14(a) or
an interband transition to the state 3 shown in Fig. 14(b).
However, the reduced Brillouin zone [− π

2a
, π

2a
] is an artificial

construction and should give equivalent results to the real
Brillouin zone [−π

a
, π

a
], in which the state 3′ in Fig. 14(b)

should be considered instead of the state 3. Therefore, the
intraband and interband transitions correspond to wave-vector
transfers of Q and Q + K, respectively, where K is −π

a
, a

reciprocal lattice vector of the doubled unit cell. This implies
that they occur at two distinct wave-vector transfers and should
be distinguishable. The underlying reason is that not only the
valence bands are backfolded due to the doubling of unit
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FIG. 14. (Color online) Schematic diagrams of a band structure
of a one-dimensional system with a lattice constant a, before [thick
(blue) lines, both solid and dashed] and after [solid lines, both
thick (blue) and thin (red)] artificial unit cell doubling. The thin
black dotted lines in the 3d bands represent the modification of
the band structure after real unit cell doubling due to charge-orbital
ordering. (a) and (b) represent the RIXS processes that result in x-ray
wave-vector transfers of Q and Q + K, respectively, with K = − π

a
,

a reciprocal lattice vector for the lattice with the doubled unit cell.

cell, but also the core level bands. An interband (intraband)
transition in the valence band also leads to an interband
(intraband) transition in the core level band, as shown in arrows
in the 1s band in Fig. 14. We now consider real unit cell
doubling due to charge-orbital order. For a finite but small
charge-orbital order, the band structure would be modified
mostly near the Brillouin zone boundary, as represented by the
thin black dotted lines in the 3d bands in Fig. 14, and the RIXS
that involves states far from the zone boundary, such as the
states 1, 2, and 3, should not dramatically change from those
in the absence of charge-orbital order. Therefore the K-edge
RIXS spectrum I (ω,Q) and I (ω,Q + K) would remain
different even after charge-orbital ordering. Obviously, the
situation becomes more complex when the charge-orbital order
becomes stronger leading to a further mixing of the bands.
However, the schematic figure explains why the periodicity for
charge-orbital-ordered manganites occurs with the Brillouin
zone in the absence of such order.

G. Comparison with dynamic structure factor S(Q,ω)

In this section, we present the dynamic structure factor
S(Q,ω) multiplied by a resonant factor for the CE-phase
La0.5Sr1.5MnO4, and compare it with the K-edge RIXS
spectrum. Dynamic structure factor can be written as follows
for crystals with multiatom bases [41]:

S(Q,ω) =
∑

σ,l,l′,k

∣∣Mll′σ
Qk

∣∣2
δ(ω − εl′,k+Q + εlk), (22)

where

Mll′σ
Qk =

∑
d,ξ

〈k + Q,l′σ |d†
k+Q,dξσ dkdξσ |klσ 〉eiQ·d, (23)

where l and l′ are indices for occupied and unoccupied bands, k
is a vector within the first Brillouin zone, dkdξσ is the Fourier
transform of dRdξσ , that is, the annihilation operator for the
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FIG. 15. (Color online) Contour plot of the calculated
S(Q,ω)P (ω) for t0 = 0.9 eV along the chosen path in reciprocal
space. S(Q,ω)P (ω) vanishes completely at Q = (0, 0), unlike
theoretical and experimental RIXS intensity shown in Fig. 9.

electron in the orbital state ξ and spin state σ at the site d
within the unit cell at R, and |klσ 〉 represents an eigenstate with
spin σ and energy εlk. The resonant factor with the incoming
photon energy fixed at the resonance can be written as [13]

P (ω) = C
1

ω2 + �2
, (24)

where � represents the inverse of the intermediate state
lifetime, chosen approximately as 1 eV, and C is a factor
independent of Q and ω.

The dynamic structure factor S(Q,ω) calculated for
La0.5Sr1.5MnO4 for the parameter set with t0 = 0.9 eV,
multiplied by the resonant factor P (ω), is shown in Fig. 15,
along the same path chosen for Fig. 9. Even though it affects the
results only slightly, the average over twin domains has been
applied to Fig. 15, as done for the RIXS spectrum. Comparison
between Figs. 9 and 15 shows a qualitative similarity, that
is, the growth of the intensity from Q = 0 to Q = (π

a
, π

a
).

However, a close examination reveals that S(Q,ω)P (ω) inten-
sity at Q = 0 vanishes completely, consistent with the general
property of S(Q = 0,ω) = 0 [41], while the experimental and
theoretical K-edge RIXS intensity remains finite at Q = 0,
about 20 % of the maximum. This difference near Q = 0 is
clearly seen in the integrated S(Q,ω)P (ω) between 1 and 3 eV,
normalized with respect to Q = (π

a
, π

a
), shown in dashed gray

line in Fig. 11. We also find that S(Q,ω) is approximately
periodic with respect to b1 and b2, the primitive reciprocal
lattice vectors for MnO2 lattice without ordering, similar to the
periodicity in the K-edge RIXS spectrum shown in Fig. 12.

Qualitative similarity between K-edge RIXS and
S(Q,ω)P (ω) breaks down for t0 = 1.5 eV case, for which
normalized S(Q,ω)P (ω) increases rapidly from zero at Q = 0
up to the maximum around Q = ( π

2a
, π

2a
) and decreases by

about 10 % towards Q = (π
a
, π

a
), unlike the calculated K-edge

RIXS spectrum in Figs. 10 and 11. This breakdown is consis-
tent with the results in Ref. [15], in which it was demonstrated
for a simple model that the energy dependence of the K-edge
RIXS spectrum deviates substantially from the dynamic factor
S(ω) as the band width becomes comparable to or larger than
the gap size. The above comparison shows both usefulness
and limitation of the dynamic structure factor S(Q,ω) in
interpreting the K-edge RIXS spectrum, particularly in the
momentum dependence.
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VI. DISCUSSION

In this section, we discuss what insights the RIXS spectrum
in reciprocal space can provide on the screening dynamics. Fig-
ures 16(a) and 16(b) show nh/nmax

h , that is, the hole density nor-
malized to its maximum, versus distance l from the core-hole
site along the zigzag chain for the case of core hole at a Mn3+
and Mn4+ site, respectively, in a semilogarithmic plot. For t0 �
1.3 eV of Fig. 16(a) and all t0 of Fig. 16(b), the hole density
decreases exponentially and thus can be fit to nh/nmax

h ∝
exp(−l/ ls), where ls can be interpreted as the size of the
screening cloud. We find that the sizes of the screening clouds
are approximately 0.4 and 0.5 interatomic distances for the
Mn3+ and Mn4+ sites, respectively, for t0 = 0.9 eV, and
become larger, as t0 increases, as shown along the horizontal
axis in Fig. 16(c), which includes the result for t0 = 0.6 eV
additionally.

We next look for a correlation between the size of
the screening cloud in real space and the features of the
K-edge RIXS spectrum in reciprocal space. We define γH

as the half width at half maximum in reciprocal space of
the energy-integrated RIXS peak for t0 � 1.3 eV in Fig. 11.
The plot of γH versus ls is displayed in Fig. 16(c), which
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FIG. 16. (Color online) (a) and (b) Semilogarithmic plot of the
excited hole number normalized to its maximum versus the distance
from the core-hole site for a Mn3+, and a Mn4+ core hole site,
respectively. (c) The width of the RIXS peak at (± π

a
, ± π

a
) in

reciprocal space, γH , found from Fig. 11, vs screening cloud size
in real space ls , found from (a) and (b), for various t0 values. (d) γH vs
the ratio between the occupied band width (W ) and the in-gap bound
state energy (�) from the occupied band edge, W/�.

shows a linear correlation. Therefore, the width of the energy-
integrated RIXS peak in reciprocal space in Fig. 11 can be
used to estimate the size of the screening hole cloud. This
correlation is an important result with general implications,
and is inherently rooted in the K-edge RIXS process, which
involves the projection of the intermediate screening state onto
final electron-hole excitations.

The size of the screening hole cloud depends on the
competition between hole hopping and hole binding energies,
which can be parameterized in terms of W , the width of the
occupied band, and �, the energy difference between the top
of the occupied band and the unoccupied bound state within
the gap, or, the hole binding energy. Therefore, from the
connection between ls and γH established above, we examine
whether the width of the RIXS peak γH can also provide insight
on the ratio W/�. The γH versus W/� plot in Fig. 16(d)
confirms a positive correlation between these quantities, in
particular a linear correlation for the case of core hole at Mn4+
site. The results indicate that the width of the RIXS peak can
be a measure of the size of the excitonlike screening cloud in
real space, and a measure of the ratio between the occupied
band width and the hole binding energy.

Recently, K-edge RIXS spectra for bilayer manganites
La2−2xSr1+2xMn2O7 with x = 0.36 and 0.5 have been reported
by Weber et al. [38]. Although not as pronounced as our
results for single layered manganites, Ref. [38] shows an
increase of the 2-eV peak intensity in A-type and CE-type
antiferromagnetic LaSr2Mn2O7, as the x-ray wave-vector
transfer increases from (0,0,Qz) to (π

a
, π

a
,Qz). In the context of

our work above, such results can be interpreted as the formation
of an excitonlike screening cloud in bilayer manganites, the
size of which is likely larger than that for the single-layer
manganites discussed above, considering the less-pronounced
increase of the 2-eV peak intensity.

Finally, we note that Semba et al. calculated the K-edge
RIXS spectrum for LaMnO3, based on the Keldysh-type
Green’s function formalism [16]. The results in Ref. [16] show
about a 10% increase of the 2-eV peak from (0,0,0) to (1,0,0)
in their choice of x and y axes, which are equivalent to Q =
(0,0,0) to Q = (π

a
, π

a
,0) in our notation. The results again can

be interpreted as the formation of excitonlike screening clouds,
consistent with our calculations, even though the core-hole
state for the intermediate eigenstates is chosen as delocalised
in Ref. [16]. The periodicity of the RIXS spectrum discussed in
Secs. II B and V F was also identified in Ref. [16], even though
the association of such periodicity with the approximate square
lattice of the core-hole sites was not specifically mentioned.

VII. SUMMARY

We have presented a formalism to calculate the K-edge
RIXS spectra in transition metal oxides based on tight-binding
Hamiltonians and a local 1s–3d Coulomb interaction, in
which the choice of intermediate eigenstates with a completely
localized 1s core hole allows for the interpretation of the data in
terms of screening dynamics in real space. We have also found
that the periodicity of K-edge RIXS spectrum follows the reci-
procal lattice vectors of the lattice without the ordering of spin,
charge, orbital, or local lattice distortions, rather than the re-
ciprocal lattice vectors of the actual lattice with such ordering.
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We have applied our formalism to the highly-
momentum-dependent K-edge RIXS spectrum observed for
La0.5Sr1.5MnO4 in CE-type spin-orbital-structure ordering. It
is found that the sharp increase of the 2-eV peak intensity
from the center toward the corner of the first Brillouin zone
of the lattice without ordering is an indication of a highly
localized screening cloud in La0.5Sr1.5MnO4 with a typical size
of 0.4–0.5 Mn-Mn distances. We also showed that there exists a
positive correlation between the width of the energy-integrated
K-edge RIXS intensity peak in reciprocal space, the size of
the excitonlike screening cloud in real space, and the ratio
between occupied bandwidth and hole binding energy.

The analysis in this paper was performed for the case
of an intermediate strength core-hole potential, that is Ucore

comparable to the 3d electron bandwidth. In fact, this is
appropriate for most transition metal oxides and therefore the
present approach should have general applicability. One of the
important results is that this approach highlights the connection
between K-edge RIXS and the impurity problem in strongly
correlated electron systems, and we show that this technique
is a new probe of momentum-dependent screening dynamics
of localized impurities. The dynamics of the screening is
important information embedded in K-edge RIXS spectrum.
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APPENDIX A: RIXS FORMULA DERIVATION

As explained in Sec. II A, we get the following formula
from the Kramers-Heisenberg formula, Eq. (1), in the limit of
completely localized core hole,

I (ω,k,k′,εεε,εεε′)

∝
∑
f

∣∣∣∣∣
∑

R

∑
d

∑
nR+d

〈f |D′†|nR+d〉〈nR+d|D|g〉
Eg + �ωk − End + i�nd

∣∣∣∣∣
2

× δ(Eg − Ef + �ω), (A1)

where |nR+d〉 represents the intermediate energy eigenstate
with the core hole at a site R + d within the unit cell at a

lattice point R. Further applying the dipole approximation to
the K-edge scattering amplitude, we obtain

〈f |D′†|nR+d〉〈nR+d|D|g〉
= e−i(k′−k)·(R+d)εεε′ · 〈f |r|nR+d〉εεε · 〈nR+d|r|g〉. (A2)

Two many-body states |�0〉 and |�R〉, which have total
momentum �κκκ and identical wave functions in two different
coordinate systems with the coordinates for |�R〉 shifted with
respect to the coordinates for |�0〉 by R, are related to each
other by a phase factor |�R〉 = e−iκκκ·R|�0〉. Assuming that |g〉
and |f 〉 have net momenta of zero and �kf , respectively, we
obtain the following relation [42]:

〈f |r|nR+d〉 = e−ikf ·R〈f |r|nd〉, (A3)

〈nR+d|r|g〉 = 〈nd|r|g〉. (A4)

Therefore the sum over lattice vectors R for the combined
factor of e−i(k′−k+kf )·R from Eqs. (A2)–(A4) leads to the
conservation of the crystal momentum δ(k′ − k + kf + K),
where K represents the reciprocal lattice vectors. This results
in the following expression for the RIXS intensity:

I (ω,k,k′,εεε,εεε′)

∝
∑

K

∑
f

∣∣∣∣∣
∑

d

∑
nd

e−i(k′−k)·d εεε′ · 〈f |r|nd〉 εεε · 〈nd|r|g〉
Eg + �ωk − End + i�nd

∣∣∣∣∣
2

× δ(Ef + �ωk′ − Eg − �ωk) δ(kf + k′ − k + K).

(A5)

By further assuming special experimental setups in which the
polarization vectors εεε′ and εεε give rise to a constant factor, as
mentioned in Sec. II A, and neglecting a constant factor from
the dipole moment between 4p and 1s wave functions, we
obtain Eq. (2) in Sec. II A.

APPENDIX B: EXPRESSION OF THE MATRIX
ELEMENTS IN THE K -EDGE RIXS FORMULA IN

TERMS OF EIGENSTATES IN THE PRESENCE AND
ABSENCE OF CORE HOLE

In general, we transform Ĥd and Ĥtotal,ic into the reciprocal
space as follows:

Ĥd =
∑
k,k′

∑
K,K′

∑
ξ,ξ ′

∑
σ

H d
k+K,ξ,k′+K′,ξ ′,σ d

†
k+K,ξ,σ dk′+K′,ξ ′,σ ,

(B1)

and

Ĥtotal,ic =
∑
k,k′

∑
K,K′

∑
ξ,ξ ′

∑
σ

H
total,ic
k+K,ξ,k′+K′,ξ ′,σ

× d
†
k+K,ξ,σ dk′+K′,ξ ′,σ , (B2)

where k and k′ represent vectors within the first Brillouin
zone �1BZ, K and K′ the reciprocal lattice vectors within the
extended “first Brillouin zone” �ExZ defined by the core hole
site i. Spin states are represented by σ , and orbital states by ξ

and ξ ′.
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From the eigenstates |lkσ 〉 of Ĥd with the wave vector k ∈ �1BZ within the lth lowest energy band, and the mth lowest energy
eigenstate |mσ 〉 of Ĥtotal,ic , we define βlkmσ = 〈lkσ |mσ 〉. In the RIXS formula Eq. (3), 〈nd

low|s†d|g〉 and 〈lekelhkhσ |sd|nd
low〉 are

found from

〈
nd

low

∣∣s†d|g〉 =
∏

σ=↑↓

∣∣∣∣∣∣∣∣∣

β1k11σ β1k12σ · · · β1k1
Ne
2 σ

β1k21σ β1k22σ · · · β1k2
Ne
2 σ

...
...

. . .
...

βlmax
h kNk

1σ βlmax
h kNk

2σ · · · βlmax
h kNk

Ne
2 σ

∣∣∣∣∣∣∣∣∣
, (B3)

〈lekelhkhσ |sd|nd
low〉 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1k11σ β1k12σ · · · β1k1
Ne
2 σ

β1k21σ β1k22σ · · · βσ1k2
Ne
2

...
...

. . .
...

βl′′hk′′
h1σ βl′′hk′′

h2σ · · · βl′′hk′′
h

Ne
2 σ

βleke1σ βleke2σ · · · βleke
Ne
2 σ

βl′′′h k′′′
h 1σ βl′′′h k′′′

h 2σ · · · βl′′′h k′′′
h

Ne
2 σ

...
...

. . .
...

βlmax
h kNk

1σ βlmax
h kNk

2σ · · · βlmax
h kNk

Ne
2 σ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣

β1k11σ̄ β1k12σ̄ · · · β1k1
Ne
2 σ̄

β1k21σ̄ β1k22σ̄ · · · β1k2
Ne
2 σ̄

...
...

. . .
...

βlmax
h kNk

1σ̄ βlmax
h kNk

2σ̄ · · · βlmax
h kNk

Ne
2 σ̄

∣∣∣∣∣∣∣∣∣
, (B4)

where Ne represents the total electron number, Nk is the number of k points in �1BZ, lmax
h is the index for the highest occupied

band, and σ̄ = −σ . In Eq. (B4), the set of band and momentum indices, (l′′h , k′′
h) and (l′′′h , k′′′

h ), represent the occupied states right
before and right after the hole state represented by (lh, kh) when the eigenstates of Ĥd are ordered according to the band index
and momentum index [43].

APPENDIX C: EXPRESSIONS OF THE HAMILTONIANS IN RECIPROCAL SPACE WITH AND
WITHOUT A 1s CORE HOLE FOR La0.5Sr1.5MnO4

In the absence of the core hole, the Hamiltonian for a single layer of La0.5Sr1.5MnO4 has the following form in reciprocal
space:

Ĥd =
∑

σ,k∈�1BZ

d
†
kσ

(
H

d,nonint
kσ + H

dd,HF
kσ

)
dkσ , (C1)

where

d
†
kσ = (

d
†
k+K1,1,σ ,d

†
k+K1,2,σ ,d

†
k+K2,1,σ ,d

†
k+K2,2,σ ,d

†
k+K3,1,σ ,d

†
k+K3,2,σ ,d

†
k+K4,1,σ ,d

†
k+K4,2,σ ,

d
†
k+K5,1,σ ,d

†
k+K5,2,σ ,d

†
k+K6,1,σ ,d

†
k+K6,2,σ ,d

†
k+K7,1,σ ,d

†
k+K7,2,σ ,d

†
k+K8,1,σ ,d

†
k+K8,2,σ

)
(C2)

with K1, K2, K3, K4, K5, K6, K7, and K8 representing (0,0), (π
a
,0), (0, π

a
), (π

a
, π

a
), (− π

2a
, − π

2a
), ( π

2a
, − π

2a
), (− π

2a
, π

2a
), and

( π
2a

, π
2a

), respectively,

H
d,nonint
kσ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1 + W3u −Gσ Gσ W1s + W3s W2s Gσ Gσ W2s

−Gσ M2 + W3u W1s + W3s Gσ Gσ W2s W2s Gσ

Gσ W1s + W3s M3 + W3u −Gσ Gσ W2s W2s Gσ

W1s + W3s Gσ −Gσ M4 + W3u W2s Gσ Gσ W2s

W2s Gσ Gσ W2s M5 + W3u −Gσ Gσ W1s + W3s

Gσ W2s W2s Gσ −Gσ M6 + W3u W1s + W3s Gσ

Gσ W2s W2s Gσ Gσ W1s + W3s M7 + W3u −Gσ

W2s Gσ Gσ W2s W1s + W3s Gσ −Gσ M8 + W3u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(C3)

Mj =

⎛
⎜⎜⎝ − t0

2
[cos(kx + Kj,x) + cos(ky + Kj,y)]

√
3t0

2
[cos(kx + Kj,x) − cos(ky + Kj,y)]

√
3t0

2
[cos(kx + Kj,x) − cos(ky + Kj,y)] −3t0

2
[cos(kx + Kj,x) + cos(ky + Kj,y)]

⎞
⎟⎟⎠ , (C4)
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G↑ =
(−JH Sc/2 0

0 −JH Sc/2

)
, (C5)

G↓ =
(

JH Sc/2 0
0 JHSc/2

)
, (C6)

W1s =
(−βλQ1s 0

0 −βλQ1s

)
, (C7)

W2s =
(

0 λQ2s

λQ2s 0

)
, (C8)

W3u =
(−λQ3u 0

0 λQ3u

)
, (C9)

W3s =
(−λQ3s 0

0 λQ3s

)
, (C10)

Q1s = 0.053 Å, Q2s = 0.054 Å, Q3u = 0.107 Å, and Q3s =
−0.012 Å (Ref. [32]). The element of the 16 × 16 matrix
H

dd,HF
kσ is independent of k,

(
H

dd,HF
kσ

)
2(j−1)+ξ,2(j ′−1)+ξ ′ =

∑
iu,η

Uiuησ

8
e−i(Kj −Kj ′ )·iu(Riuη

)
ξξ ′ ,

(C11)

where η = +,−, j,j ′ = 1,2, . . . ,8, and ξ,ξ ′ = 1,2. Further,
iu represents the position of the Mn ions within the unit cell,
that is, (0,0), (a,0), (2a,0), (3a,0), (a, − a), (2a, − a), (a,a),
and (2a,a) in Fig. 3, and

Riu− =
(

cos2 θiu cos θiu sin θiu
cos θiu sin θiu sin2 θiu

)
, (C12)

Riu+ =
(

sin2 θiu − cos θiu sin θiu
− cos θiu sin θiu cos2 θiu

)
. (C13)

θi is defined from the local lower (−) and upper (+) Jahn-Teller
eigenstates,

d
†
i−σ = d

†
i1σ cos θi + d

†
i2σ sin θi, (C14)

d
†
i+σ = −d

†
i1σ sin θi + d

†
i2σ cos θi. (C15)

At Mn3+ sites in the x/y directional legs of the zigzag chain
in Fig. 3,

tan θi = ±
Q3u + Q3s −

√
(Q3u + Q3s)2 + 4Q2

2s

2Q2s
. (C16)

At Mn4+ sites, θi = 0. The matrix for the number operator in
reciprocal space is necessary to evaluate Uiuησ and its element
is given below:(

n
iuησ

k

)
2(j−1)+ξ,2(j ′−1)+ξ ′ = e−i(Kj −Kj ′ )·iu (

Riuη
)
ξξ ′ . (C17)

We find the eigenstates and eigenenergies of the 16 × 16
matrix H d

kσ = H
d,nonint
kσ + H

dd,HF
kσ at chosen set of k points

through the Hartree-Fock iterative calculations, which are used
to find the electronic DOS in the absence of the core hole shown
in Figs. 5(a) and 6(a).

The Hamiltonian in the presence of the core hole at a site ic
for N × N cluster model of La0.5Sr1.5MnO4, with N multiple

of 4, is presented below:

Ĥtotal,ic =
∑

σ, k,k′∈�1BZ

d
†
kσ

(
H

d,nonint
kσ δkk′

+H
dd,HF
kk′σ + H

sd,ic
kk′σ

)
dk′σ , (C18)

where(
H

dd,HF
kk′σ

)
2(j−1)+ξ,2(j ′−1)+ξ ′

=
∑
i,η

Uiησ

N2
e−i(k−k′)·i e−i(Kj −Kj ′ )·i (Riη

)
ξξ ′ , (C19)

(
H

sd,ic
kk′σ

)
2(j−1)+ξ,2(j ′−1)+ξ ′

= Ucore e−i(k−k′)·ic e−i(Kj −Kj ′ )·ic δξξ ′ , (C20)

with η = +,−, j,j ′ = 1,2, . . . ,8, and ξ,ξ ′ = 1,2. For the
evaluation of Uiησ , the number operator in reciprocal space
is necessary, shown below:

n̂iησ =
∑

k,k′∈�1BZ

d
†
kσ n

iησ

kk′ dk′σ , (C21)

where(
n

iησ

kk′
)

2(j−1)+ξ,2(j ′−1)+ξ ′ = e−i(k−k′)·i e−i(Kj −Kj ′ )·i(Riη)ξξ ′ .

(C22)

Eigenvectors and eigenvalues are found for the 2N2 × 2N2

matrix of Ĥtotal,ic for each spin direction σ in the presence of
the core hole, through the Hartree-Fock iterative calculations.
When necessary, the Pulay mixing method is used to reach
a convergence [44,45]. The eigenstates and eigenenergies in
the absence of the core hole for the same cluster are found
by setting Ucore = 0 and repeating the Hartree-Fock iterative
calculations. The two sets of eigenstates and eigenvalues give
εlkσ , εmσ , and βlkmσ , which are used for the K-edge RIXS
spectrum calculations of La0.5Sr1.5MnO4.

APPENDIX D: ELECTRON NUMBERS
AT MN3+ AND MN4+ SITES

In this Appendix, we discuss the electron numbers on Mn
ions. In our effective Hamiltonian, the state created by d

†
iξσ is

a hybridized state of atomic Mn 3d orbital and surrounding
atomic O 2p orbitals. Therefore eg electron numbers of 0.87
and 0.13 found for “Mn3+” and “Mn4+” sites in our effective
Hamiltonian do not represent the actual numbers on Mn ions,
which can be measured by resonant x-ray scattering. For a
proper comparison, we carry out an analysis in terms of atomic
Mn 3d and O 2p orbitals, similar to Ref. [46]. In the basis of
|d4〉 and |d5L〉, where dn and L represent the presence of n

electrons in atomic Mn 3d level and a hole in the ligand O 2p

level of eg symmetry, the Hamiltonian for the states with one
eg electron is

Hone eg
=

(
0 2tdp

2tdp �

)
, (D1)

where tdp represents the O 2p – Mn 3d electron hopping
amplitude and � is the energy difference between Mn 3d
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and O 2p levels. Similarly, the Hamiltonian for the states with
zero eg electron is

Hzero eg
=

(
0 2tdp

2tdp � − Uatomic

)
, (D2)

in the basis of |d3〉 and |d4L〉, where 3d–3d Coulomb
interaction Uatomic is included to account for one less 3d

electrons in |d4L〉 than in |d5L〉.
The lower-energy eigenstates of Hone eg

and Hzero eg
,

|one eg electron〉 = μ1|d4〉 + ν1|d5L〉, (D3)

|zero eg electron〉 = μ0|d3〉 + ν0|d4L〉, (D4)

correspond to the states with one and zero electron in
hybridized eg levels considered in our effective Hamiltonian
Ĥd. Therefore |one eg electron〉 state has 4|μ1|2 + 5|ν1|2

electrons in atomic Mn 3d levels, whereas |zero eg electron〉
state has 3|μ0|2 + 4|ν0|2 electrons in atomic Mn 3d levels.
Therefore neg

electrons in the hybridized eg levels obtained
from Ĥd corresponds to natomic Mn electrons on the atomic Mn
3d levels, defined as

natomic Mn = neg
(4|μ1|2 + 5|ν1|2)

+ (1 − neg
)(3|μ0|2 + 4|ν0|2). (D5)

For typical values of tdp = 1 eV, � = 4 eV, Uatomic = 7 eV,
and neg

= 0.87 and 0.13 obtained for eg levels around “Mn3+”
and “Mn4+” sites for t0 = 0.9 eV case, we find natomic Mn =
4.10 and 3.84 for nominal Mn3+ and Mn4+ ions [35], and the
difference is only about 0.26, which is much smaller than the
difference of 0.74 between neg

’s and is consistent with 0.15–0.3
suggested by resonant x-ray scattering at the Mn K-edge and
bond valance sum method [32,47].
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