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As a proof of principle, self-consistent Kohn-Sham calculations are performed with the exact exchange-
correlation functional. Finding the exact functional for even one trial density requires solving the interacting
Schrodinger equation many times. The density matrix renormalization group method makes this possible for
one-dimensional, real-space systems of more than two interacting electrons. We illustrate and explore the
convergence properties of the exact KS scheme for both weakly and strongly correlated systems. We also explore

the spin-dependent generalization and densities for which the functional is ill defined.
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I. INTRODUCTION

Eighty-seven years ago, the authors of [1,2] conceived
of a simple theory saying that, although all particles are
waves [3], their densities can be simply calculated [1,2].
Now the community is engaged in a great electronic structure
debate, testing whether Kohn-Sham theory [4], or any density
functional theory [5], can work properly for strongly correlated
systems. A portion of this paper discusses a final convergence
proof [6] and will be of interest to those who have worked to
develop the constrained search [7] and similar approximations
[8—10] so that the ground state can be found.

Kohn-Sham (KS) [4] density functional theory (DFT) is
now a widely used electronic structure method, attaining
useful accuracy with present approximations [11]. The method
finds the ground-state energy of a many-electron, interacting
system by solving an effective noninteracting problem. This
noninteracting problem must be solved self-consistently, be-
cause its potential (the KS potential) is a functional of the
electron density. The most vital piece of this KS potential is
derived from the mysterious exchange-correlation functional,
which can be computed exactly with great cost [12,13]. This
exact functional provides the formal foundations of KS DFT
for all electronic systems (with some caveats) [7]. However,
the utility of KS DFT derives from simple and computa-
tionally efficient approximations to the exchange-correlation
(XC) energy [8-10], which can be surprisingly reliable and
usefully accurate for broad classes of systems, yet fail badly
for others.

Traditionally, study of the exact XC energy functional
focused on finding general exact properties that can either
be built into approximations or used to understand their
failures [10,14-16]. In studying the exact theory, we learn
what is and is not reproduced by the exact functional, e.g.
that the highest occupied molecular orbital-lowest unoccupied
molecular orbital (HOMO-LUMO) gap of the KS system is not
equal to the fundamental (charge) gap of the system [17,18].
As computational power and algorithms evolved, it also
became possible to take a highly accurate solution of the
Schrodinger equation, extract the ground-state density, and
find the exact KS potential for the system of interest, notably
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for few-electron systems [19-28]. These inversions are often
quite demanding, since all quantities must be sufficiently
accurate to extract the small differences in energies and
potentials that form the various components of exchange and
correlation.

However, even such heroic efforts do not produce a way of
solving the KS equations with the exact XC functional. This
is because, in an actual KS calculation, the XC functional is
needed not just for the ground-state density of the system to be
solved, but for a sequence of trial densities that ultimately
converges to the solution for that problem. To find the
XC functional for some trial density, one must solve the
Schrodinger equation for the potential for which that density
is the ground state, for both interacting and noninteracting
electrons. Worse still, these potentials are a priori unknown.
Advancing just one step in the KS calculations thus requires
solving many interacting electronic problems in order to find
the right potential that yields the trial density. We call this an
interacting inversion, and previous examples have been limited
to two electrons [13,29,30].

In this paper, we detail how to find the exact XC functional
for realistic models of electrons in one dimension. By realistic,
we mean models whose properties mimic those of real systems
and whose treatment with approximate density functionals
yields results similar to those for real systems [28]. We use
the density matrix renormalization group [31-33] to solve the
Schrodinger equation, because of its tremendous efficiency
for one-dimensional (1D) systems. In Ref. [6], we used this
capability to explore the convergence of a simple algorithm
for the KS scheme, ultimately proving that, no matter how
strongly correlated, convergence can always be achieved in a
finite number of iterations. Various approximate functionals
have their own convergence proofs [34,35], but here we detail
exactly how the exact calculations are done and test further
properties of the exact functional.

II. BACKGROUND

Typical solid-state and quantum chemistry investiga-
tions into electronic structure begin with the nonrelativistic
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continuum Hamiltonian in the Born-Oppenheimer approxi-
mation,

H=T+V+ V.,
N

N 1 1 1
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— ' (__VI + U(ri)) + - - |,—

) ey
r; |

which describes the quantum behavior of N electrons in an
external potential v(r) determined by the (classical) nuclei via
the operators: the electron kinetic energy T, their potential
energy V, and the electron-electron interaction V.. The
eigenstates W; and eigenvalues E; (the energies) of the
Hamiltonian A determine all the properties of the system.

Despite Eq. (1) being the key to everyday electronic
structure, an accurate solution for even the ground-state energy
E and wave function W is not presently tractable for large
molecules. This problem continues to inspire the development
of new approximations and methods to solve the many-body
problem. Some methods—such as Hartree-Fock theory [36],
quantum Monte Carlo [37], and coupled cluster [36]—attempt
to approximate, sample, or construct the wave function.
Density functional theory, on the other hand, approaches the
many-body problem quite differently.

While W allows one to characterize the system completely,
the much simpler ground-state electron density n(r) was
proven by Hohenberg and Kohn (HK) to also determine all
the properties of the system [5]. Their theorem allows us to
formally work with the density as the basic variable instead
of the wave function [7]. The keystone of this far-reaching
proof is the one-to-one correspondence between the ground-
state density n(r) and the potential v(r) of a system, which
characterizes the system completely. This one-to-one mapping
is explored in greater detail in Sec. III, since it is crucial for
calculating the exact functional.

As an important mathematical aside, the potential corre-
sponding to a given density is unique if it exists, but there are
some densities n(r) which are not ensemble v representable,
i.e., not the ground states of any potential v(r) [38]. We explore
this complication later, in Sec. IV G.

A simple corollary of the HK theorem is that the ground-
state energy of a system can be determined by minimizing over
trial electron densities [5],

E, = min E,[n], 2)

E,ln] = F[n]+/d3rn(r)v(r), 3)
where F[n] accounts for the electronic kinetic energy and
electron-electron repulsion energy, and is universal, i.e.,
independent of the external potential v(r). When degeneracy
is not an issue [39], the functional F[n] can be found
by minimizing the expectation value of 7 + V. over all
properly antisymmetric wave functions W that yield the density
n(r) [7,12],

Fln] = min(W[{T + Vec}| ), @)
and the minimizing W is denoted W[n]. This is the pure-state

formulation of DFT. The generalization for degenerate systems
involves replacing the expectation value in Eq. (4) with a trace
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over the ground-state ensemble I" [7]. The only known way to
exactly calculate the functional thus implicitly requires use of
a wave function (or a density matrix for degenerate systems).

‘We now turn to the formulation of the most popular of DFT
implementations, KS DFT [4]. Kohn-Sham theory creates a
doppelganger of the interacting system: a set of noninteracting
electrons with the same density. This noninteracting system,
the KS system, is characterized by its potential, vs[n](r),
defined implicitly so that a system of N noninteracting
electrons in this potential has density n(r). This means that
after solving the noninteracting Schrodinger (i.e., KS) equation
and obtaining the KS orbitals ¢;(r) (in Hartree units),

{=3V2 + us[nl(0)};(r) = €; ¢, (D). &)

One finds the density n(r) by occupying the N /2 lowest-energy
orbitals,
N/2
n(r) =2 |¢;() (6)
j=1
(where for simplicity we assume that the system is spin
unpolarized). Obtaining the KS potential vs[n](r) for a density
n(r) is an inverse problem, on a firm foundation through
the HK theorem applied to noninteracting systems. (Some
densities, however, will prove to be non-v-representable [40],
so the potential vs[r](r) is unique, up to a constant, but only
if it exists.) Many algorithms to invert a density to find its
KS potential have been suggested [21,23,26,41-44]; ours is
described in Sec. III.
As a descendent of DFT, KS DFT determines the energy
of a system by knowledge of the density alone. Within the KS
framework, the universal functional F[n] is written as

Fln] = T[n] + Uln] + Exc[n], (N

where Ti[n] is the kinetic energy of the KS orbitals,

N/2

Tin] = — Z / ) ®)
U[n] is the Hartree energy,
3 3 n(r) n(r/)
Uln] = /d /d T ©))

and Ey.[n] is the XC energy, defined by Eq. (7). Very
successful (albeit crude) approximations to Ex[n] have been
developed [8-10], which make KS theory a standard and
practical approach to electronic structure. Our work focuses on
the exact Ey[n], with a few comparisons to the simplest den-
sity functional approximation, the local density approximation
(LDA) [8].

The KS framework offers a convenient way to minimize
E,[n] as in Eq. (2), by solving noninteracting systems with an
effective potential. We guess an input density n{)(r) and use it

to calculate a trial KS potential v(” (r),
v (1) = v(r) + o[ 1@) + vxc 1), (10)
where vy[n](r) = 6U[n]/dn(r) is the Hartree potential,

n(r’)

vulnl(r) = fd3r’ , (11)
[r — 1|
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FIG. 1. (Color online) The KS scheme.

and vxc[n](r) = §Excl[n]/én(r) is the XC potential. The
Hartree and XC potentials together account for two-body
interactions [45] and are found by taking functional derivatives
of their parent energy functionals.

After calculating vg )(r) for the given input density, we solve
the trial KS system [i.e., Eq. (§) with our trial KS potential] to
obtain an output density nff&l(r). If the output density equals
the input density, we have achieved self-consistency and have
found a stationary point of E,[n]. This may be quantified by
calculating a simple criterion for convergence,

1
=5 / &*r [nQm) — )], (12)

declaring the calculation converged when n®¥ < §. If the
calculation has not converged, a new guess density n{*(r),

such as nom(r) is plugged into Eq. (10) for the next iteration,
and we repeat until converged. For the exact XC functional,
the converged density is the ground-state density of interacting
electrons in the potential v(r) [6]. This iterative-convergence
procedure is known as the KS scheme [46] and is illustrated
in Fig. 1. The possibility of finding other stationary points
besides the ground state for the exact functional is addressed
in Sec. IV.

The KS DFT approach to electronic structure thus converts
the many-body problem into a noninteracting problem which
must be solved self-consistently. The exact procedure requires
finding the many-body system with a given density, with
wave function W[n], to determine Exc[n] and vxc[n](r), and
thus is as costly as solving the original many-body problem
(see Sec. IV). However, the KS scheme would be neither
useful nor practical at such a computational cost. Evaluating
vxc[n](r) at each iteration of the KS scheme is (usually) a
trivial and inexpensive step with present approximations, since
the functional derivative is known explicitly.

III. INVERSIONS

Inverting a density n(r) to find its KS potential vg[n](r),
or to find its external potential v[n](r) (for real, interacting
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electrons) is not a straightforward task. In this section we
discuss how to do this for an arbitrary v-representable density.
As a by-product of these inversions, we obtain the implicitly
defined KS orbitals and interacting wave function W [r], which
allow us to evaluate the XC potential and energy in Sec. I'V.

Noninteracting inversions are performed to find the KS
potential of exact densities for a variety of systems [20,24,28].
The notation we use for the potential corresponding to the
density n(r) of noninteracting electrons is vs[n](r), which we
have already seen in Eq. (5). This inversion is a simple matter
for one or two electrons with opposite spins, since the KS
equation can be rearranged to obtain

1 V2/nE)

vslnl(r) = 3 ol +¢,

where € is a constant (the only occupied KS eigenvalue). For

more electrons, one can use an iterative procedure to determine

vs[n](r). Initially, a potential USI)(I') is guessed, e.g., Eq. (13).
Then, starting with i = 1, use the following steps.

(1) For the potential Us) (r), solve the noninteracting

(N <2), 13)

Schrodinger equation for orbitals ¢;)(r), doubly occupying

to obtain the density n”)(r).
(2) If n®(r) is within tolerance of n(r), we are done; i.e.,
Us (r) = vg[n](r) and ¢;(r) = ¢ (r) Otherwise, continue.

(3) A new potential vé’ 'H)(r) is chosen, based on how
different n”)(r) is from n(r). Roughly speaking, where n”)(r)
is too low, the new potential vé’ +1)(r) is lowered from the old

vé’ )(r), and where n”)(r) is too high, the new potential is raised.

(4) Increment i and repeat steps (1) to (4).

The only difference between different inversion algorithms
is how the new potential is determined in step (3). The problem
can be reduced to finding the root of a nonlinear function
of many variables, which can be treated at various levels of
sophistication [47]. We discuss Broyden’s method at the end of
this section. With the KS potential vs[n](r) and orbitals ¢;(r),
we can evaluate functionals such as Ts[n] using Eq. (8).

Interacting inversions are rarely done, since they are far
more expensive than noninteracting inversions and require
solving the many-body problem many times. Only two-
electron problems have been studied, in one case to understand
the adiabatic approximation within time-dependent density-
functional theory [29,30] and in another to study the self-
interaction error within LDA [13]; though we have recently
studied four-electron systems [6]. The potential v[n](r), which
corresponds to the interacting system of electrons with density
n(r), can be found using the same algorithm as for vg[n](r),
though in step (1) we must solve an interacting problem for the
many-body wave function W) rather than the noninteracting
Schrodinger equation for orbitals ¢§.’) (r). At the end of the
inversion we obtain W[n], the wave function which minimizes
F[n]in Eq. (4), allowing us to compute F[n] for that specific
density.

To illustrate the theory behind KS DFT, we solve interacting
systems using the density matrix renormalization group
(DMRG) [31,32], which is the most efficient wave-function
solver in 1D, capable of handling both strong and weak
correlation. We apply DMRG to model 1D continuum systems
by discretizing space into N, grid points with a small grid
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FIG. 2. (Color online) Density inversion of arbitrary four-
electron density for noninteracting and interacting potentials. Solving
either the interacting Schrodinger equation in the potential v[n](x)
or solving the noninteracting Schrodinger equation in the potential
vs[n](x) yields the density in the top panel.

spacing A [28,48]. With this method, we can invert 1D
systems with more than 100 electrons [48]. For our model
systems we employ a softened Coulomb interaction between
electrons [28,29,48-50]:

Vee() = 1/v/u? + 1. (14)

Figure 2 shows a four-electron example of an interacting
inversion [51]. For some arbitrary density like this one
(meaning a density we would not find in nature), we want
to find the associated KS and interacting potentials. This is the
problem we encounter during the self-consistent calculation
of the KS equations. Since we ultimately find W[n] at the end
of the inversion, we can evaluate F[n] (given soft-Coulomb
interactions); likewise, with ¢ ;(r) we can obtain Ts[n]. For the
example density of Fig. 2 we find F[n] = 3.07, Ts[n] = 0.843,
Uln] = 3.628, so Exc[n] = —1.397. The XC energy is thus
calculated using simple energy differences, and we obtain
the XC potential in the same way. We further describe these
matters in the next section.

To close this section, we describe our recipe for step (3) of
the inversion algorithm. The idea is to build an approximation
for the density-density response matrix, x, which determines
how a small change in the potential will change the density:

/d3r/x(r,r’)8v(r/) = én(r). (15)

Restricting our attention to 1D, we recast this equation as the
matrix equation x §v = dn, where x is an (unknown) N, x N,
matrix, and §v, én are vectors with N, components, where N,
is the number of grid sites in the system. A constant change
in the potential (i.e., v = ¢;) will give zero change in the
density (6n = 0), and a constant change in the density (6n =
cp) is impossible since N is fixed. Therefore, we consider
orthonormal basis functions for changes in the potential and
density which integrate to zero, encoded as columns in the
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matrices W and M, respectively [52]. Within this basis, the
density-density response matrix can be approximated by a
smaller matrix, A:

x~MAWT. (16)

This factorization of the matrix x looks very much like (and
is inspired by) the singular value decomposition (SVD) of ,
which would give an exact breakdown of x into optimal bases
M and W, with A being diagonal. We do not know x a priori,
but an approximation to x (or A) can be iteratively improved
using a quasi-Newton method (we use Broyden’s method from
Ref. [53]). We construct appropriate basis vectors for M and
W using orthonormalized differences of trial densities from
the target density. As A is refined, the bases M and W can be
optimized (if desired) by computing the SVD of A, a procedure
which is also useful to compute A~!, and thus x ~!. The next
trial potential for step (3) is determined by v¢/*+D = v® +
x~'(n — nD). Typically around 20 basis vectors in M and W
are required to obtain a trial density indistinguishable from the
target density on the scale of Fig. 2.

IV. RESULTS

‘We have now sufficient machinery to calculate the exact XC
energy and potential for any trial density, as encountered in the
KS scheme. For convenience, we define Exxc[n] = U[n] +
Exc[n], which can be evaluated [using Egs. (4) and (7)] as

Enxcln] = (W[nI{T + Vee}|¥[n]) — Ts[nl.  (17)

From Sec. III, we know how to obtain W[n] and 7s[n] using
inversions. Therefore, the exact Exc[n] is no obstacle in
principle, but extremely computationally expensive in practice.
Similarly, the HXC potential is

vaxc[n](r) = vs[n](r) — v[n](r), (18)

which are available from interacting and noninteracting inver-
sions. The construction of the exact functional using inversions
is illustrated in Fig. 3.

To algorithmically implement the KS scheme, we must
choose our input densities n{)(r) for each iteration i; each
output density nf)’gt(r) is determined by solving the KS
equations (5). Although more sophisticated algorithms are
used in practice [34,55-60], we choose the simple algorithm
given below. We emphasize that we make no claims as to the
efficiency of this particular algorithm. We expect many other
algorithms to be more efficient. However, this simple choice
allows a simple proof of convergence and provides an initial
framework to study convergence rate questions.

The first input density n{!(r) is arbitrarily chosen. The
subsequent input densities are calculated via the linear density
mixing algorithm,

niDr) = (1 — 0 nd ) + 1nl (@), (19)

where A is a parameter between O and 1, which aids
convergence. At A = 1, no density mixing is performed, and
the output density of iteration i is used as the input for iteration
i + 1. While this might allow for quick convergence, there
is the danger of repeatedly overshooting the ground-state
density and not converging. If this happens, smaller steps
must be taken, i.e., small A (A = 0 not allowed) must be used.
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Euxc[n] = (P[] {7 + Vee}|¥[n]) — Ts[n]

vaxc[n](r) = vs[n](r) — v[n](r)

Guess initial potential Guess initial potential
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FIG. 3. (Color online) To determine the Eyxc[n] and vyxc[n](r),
our exact calculation requires a computationally demanding inversion
algorithm to find the one-body potential v[n](r) of the interacting
system whose density is n(r), with KS orbitals ¢(r), in addition to
a noninteracting inversion to find vs[n](r). In case of degeneracy,
mixed states should be used instead of pure-state wave functions in
both noninteracting and interacting inversions [7,54]. The right-hand
side differs from the left in that it describes an interacting inversion.

These convergence issues are discussed more thoroughly in
Sec. IV B, where we investigate how small this density mixing
A needs to be in order to converge the calculation.

A. Illustration

In this section we use the exact functional within the KS
scheme for a model 1D continuum system, demonstrating
convergence to the true ground-state density. We also explain
why the only stationary point of the exact functional is the true
ground-state density.

In our model 1D system, electrons are attracted to the nuclei
via the potential [28]

Ve-nue(X) = —1/v x2 41, (20)

and electrons interact with the corresponding repulsive poten-
tial as already mentioned via Eq. (14).

In Fig. 4, we plot the trial densities and KS potentials for
a four-electron, four-atom system. The interatomic spacing R
is chosen to make correlations moderate. Choosing a density
mixing of A = 0.30 affords fairly rapid convergence. We find
that the final density, calculated within our KS algorithm, is
equal to the true ground-state density of the system. We plot
the final converged KS, Hartree, and XC potentials in Fig. 5.

Regarding stationary points of the exact functional, we find
that, in all the cases we ran, our KS algorithm converged to
the true ground-state density. An analytic result confirms that,
given v-representable densities, the only stationary point of the
exact KS scheme is the ground-state density of the system [61].
We can see this by plugging the exact vyxc[n](r) from Eq. (18)
into the KS update (10). The exact scheme then proceeds as

vs(r) := vs[nin](r) + {v(r) — v[ni ()}, 2y
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FIG. 4. (Color online) KS procedure for a moderately correlated
four-electron system (four hydrogen atoms separated by an inter-
atomic spacing of R = 3), using a fixed A = 0.3 and showing the first
few iterations of (a) differences in the trial output densities from the
ground-state density (shown in Fig. 5) and (b) trial KS potentials.
Data are taken from Ref. [6].

with self-consistency reached when v(r) = v[n,](r). This
occurs at precisely one density, the ground-state density n5(r),
which is unique by the HK theorem. Thus, the exact KS scheme
has only one stationary point for v-representable densities.

In DFT, there is no guarantee that a KS potential exists
for a given physical system. The guarantee is that if it does
exist, it is unique and, as we pointed out above, the only
stationary point of the KS equations. Densities with legitimate
KS potentials are called noninteracting v representable. We
have performed many noninteracting inversions on accurate
ground-state densities of atomic chains and have always found
their KS potentials to exist, even when the bond lengths are
stretched. Since standard density functional approximations
usually become inaccurate for strongly correlated systems,

H, with R=3

n(x)

— external
-—-- — Hartree

B ! ! ! I
213 6 0 6 12

FIG. 5. (Color online) External, KS, Hartree, and XC potentials,
as well as the ground-state density, for a moderately correlated four-
electron system (four hydrogen atoms separated by an interatomic
spacing of R = 3).
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such as when bonds are stretched, a potential pitfall for
KS DFT is that such systems may fail to be noninteracting
v representable. While there are subtleties to identifying
whether a density is v representable or not (as discussed
further in Sec. IV G), v representability does not appear to
be the main issue when strong correlation is involved [62-65].
Instead, good approximate functionals simply are missing at
present [66,67]. If v representability were to blame, the entire
KS apparatus, despite being exact in principle, could not be
applied to such systems. Happily, our results show no evidence
of such a disastrous situation.

B. First steps

Knowing that there is only one stationary point of the KS
scheme (for v-representable densities) tells us nothing about
the difficulty in finding it. In this section we consider the
most basic part of the KS scheme—a single step in the KS
algorithm—which will help us understand the convergence
behavior of the exact functional for different systems. We
will see why strongly correlated systems are more difficult
to converge than weakly correlated systems.

To explore how the KS scheme converges, we calculate the
energy of the system which interpolates between the input and
the output densities for a single step of the algorithm, measured
against the ground-state energy,

AER) = Ey[m;] - Ey, (22)

where n, (r) linearly interpolates between the input density (at
A = 0) to the output density (A = 1), justasin Eq. (19). We plot
A E(A) as well as the input, output, and exact densities for vari-
ous systems in Figs. 6 and 7. As can be seen, the output density
is in the right direction to minimize E,[n], but it overshoots the

KS step from NI density KS step from PU density
08——F——7——T7"— 08— F—— 77—

(@ AN (b)

AE(A)

FIG. 6. (Color online) A single step in the KS scheme for a
weakly correlated system (Hy with R = 2) away from two different
initial densities: noninteracting electrons in the external potential (NI)
and a pseudouniform electron density (PU). These initial densities are
the dashed curves in (a) and (b), and the solid curves are the output
densities for each KS step; for comparison, the dotted curve is the
exact density. Panel (c) plots Eq. (22), the energy of the system as it
interpolates from the input to the output density.

KS step from NI density

KS step from PU density
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FIG. 7. (Color online) A single step in the KS scheme for a
strongly correlated system (Hy with R = 4) away from two different
initial densities: noninteracting electrons in the external potential (NI)
and a pseudouniform electron density (PU). These initial densities are
the dashed curves in (a) and (b), and the solid curves are the output
densities for each KS step; for comparison, the dotted curve is the
exact density. Panel (c) plots Eq. (22), the energy of the system as it
interpolates from the input to the output density.

minimum. Starting the next iteration of the KS scheme with
this output density would not (in general) allow convergence;
therefore, a mixture of the input and output densities is used as
the next input, thus motivating Eq. (19). The optimal mixing
A minimizes E,[n;] on the interval (0,1] and could be found
using a line search. However, even with the optimal mixing,
neither of the chosen starting points (a noninteracting and a
pseudouniform density) produces the ground-state density on
the first iteration, so it takes a few iterations to converge. It
is perhaps surprising, however, that a single iteration of the
KS scheme could get so close to the ground state. For the
weakly correlated system (Fig. 6), the noninteracting starting
point gets within AE = 0.001 of the ground-state energy with
A = 0.45, whereas the pseudouniform starting point minimizes
AE = 0.004 with A = 0.45. For the strongly correlated system
(Fig. 7), the optimal A’s are smaller and the AE’s are larger:
The noninteracting initial point minimizes at AE = 0.002
with A = 0.44, and the pseudouniform initial point minimizes
AE at 0.094 around A = 0.21.

Figures 6 and 7 each plot only two cuts through the infinite-
dimensional functional landscape.

Figure 6 models a weakly correlated system—a four-atom
system with an interatomic spacing of R = 2—where a
Slater determinant [68] of noninteracting electrons is a good
approximation to the underlying wave function. However,
as we stretch the bonds to R =4 for Fig. 7, strong static
correlation arises, and the KS wave function is less like the
true wave function of the interacting system than that of
Fig. 6. Thus, the density of a noninteracting system in the
external potential is a poor start for the KS scheme, and
energy differences from the ground state are larger for the
strongly correlated system than for the weakly correlated
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system. Besides the scale, one might ask how the functional
landscape differs between strongly correlated systems and
weakly correlated systems. While the two NI curves in Figs. 6
and 7 are deceptively similar, the PU curves begin to reveal the
treacherous landscape of the strongly correlated system near
the minimum.

We now look at the second iteration of the KS scheme to
see if there is a difference between the strongly and weakly
correlated systems. We choose the NI-path density from Fig. 7
with a good (but not optimal) mixing of A = 42% as input
into the KS equations. For the weakly correlated system of
Fig. 6, the second KS step (not shown) looks much like the
first step, though with a much smaller energy scale involved.
Thus, a fairly large A may be used when correlations are weak,
and convergence is rapid. However, it is not the same for
the strongly correlated system. As shown in Fig. 8, the next
iteration of the KS procedure does not allow us to make the
same giant stride as in the first iteration. For the new A-mixed
density, we again evaluate A E(A) from Eq. (22) and find that
it reaches a minimum much sooner. Thus, a much smaller
L—around 6%, as seen in the inset—must be chosen in order
not to go far off track. Furthermore, choosing even the optimal
A does not result in a much better energy as it did in the first
iteration. This makes convergence a long and difficult process,
since we can only afford to take small steps.

In the last part of this section, we give some formulas which
may aid in determining the optimal A each step. We consider
derivatives of E,(A) = E,[n;,] with respect to A. For example,
large E(A) = d?E,[n;] /dk2 relative to the magnitude of
E! (1) = dE,[n;]/dx requires a smaller A to lower the energy.
Given some bound on E//(A), one could analytically determine
a safe (i.e., not too large or too small) approximation to
the optimal A [69]. The derivatives of E,(A) may be taken

KS step from near density

n(x)

0.2 e -

2"
<

0.1 "o 0.1 02 _-~ b

FIG. 8. (Color online) Taking a second step in the KS scheme for
a strongly correlated system (Hs with R = 4). Panel (a) shows the
input density which is near to the exact density (the A = 42% density
of the NI input density of Fig. 7) and the resulting output density,
which is far from the ground state. Panel (b) plots Eq. (22), and the
inset (c) magnifies the small A region.
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analytically [6,70]:

E/(}) = /d3r SE,[n]

3n(0) [71(r) — no(r)]

n,(r)
_ / &r (o) + vixcln ()
— s O () — o], 23)

E!(}) = / d’r / d*r’ [ny(r) — no(r)]

x { fuaxcln](0,r) — xg 'm0, )} () — no(r)],
(24)

where 1n1(r) = nyy(r) and ng(r) = n;,(r) for the current KS
step of interest, the HXC kernel fyxc[n](r,r') is

fuxclnl(r,r) = xg ' [nlx,r) — x ' [n](r.r), (25)

and  xg'[n](r,¥') = Sus[nl(r)/n(x)  [x'[nl(r,r) =
dv[n](r)/8n(r)] is the noninteracting [interacting] inverse
density-density response matrix. Calculating fyxc[n](r,r’) is
quite challenging and has recently been evaluated with time
dependence for some simple systems [71].

We emphasize that ny,(r) is a functional of n;,(r) and does
not depend on A at all. Thus, Egs. (23) and (24) are strictly
functionals of the input density ny(r) alone.

Towards the end of approximating the optimal A, one may
fit E,[n,] given some information on the derivatives. At the
end points the derivatives simplify to

E,(0) = /d3r [vs,1(r) — vs,0(0)][11(r) — no(r)], (26)

E(1)= / &r [Vfixe(®) — Vixe®][n1(X) — np@1, (27

where vs ;(r) = vs[n;](r) and v‘}’IXC(r) = vuxcln;1(r). We
find that in many systems a Hermite spline fit [47] [using
E,(0), E,(1), and the derivatives E(0) and E;(1)] is a good
approximation to the energy curve E,()), or at least to where it
attains the minimum. However, this fit requires an inversion to
find E,(0) and E;(0), which may be impractical for standard
KS calculations.

C. Why convergence is difficult for strongly correlated systems

In this section, we discuss an important reason why
convergence is difficult for strongly correlated systems and
mention some algorithms which counteract the underlying
problem. Frequently, systems with strong static correlation
possess a small gap [72], which in turn makes convergence
difficult [56]. We can understand this difficulty by considering
the noninteracting density-density response matrix xs(r,r’),

o
wser) =23 Lty mgrmsrans o). e8)

iz 1T €
where 0 < f; <1 is the Fermi occupation of orbital ¢;(r).
For a small gap system, €; ymo — €nomo i particularly small,
making that term in ys(r,r’) especially large. This means that
small changes in the KS potential can produce large changes
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in the density, which makes convergence in the KS scheme
difficult. We can visualize this property by performing a SVD
on xs(r,r’), as in Eq. (16). Equivalently, since yxs(r,r’) is
symmetric in r,r’, we can diagonalize — xs(r,r’),

Xs(r.r) = =Y agMp(r)My(r), (29)
B=1

where Mg(r) (ag) are the eigenvectors (eigenvalues) of
—xs(r,r’). Since xs(r,r’) is negative definite, we can order
ag = agy1 > 0. The breakdown in Eq. (29) physically means
that a change in the KS potential along the direction —Mg(r)
produces a change in the density along Mg(r) with a magnitude
given by ag, at least to first order. We therefore call Mg(r)
the density response vectors and ag the response amplitudes
of ys(r,r’). The amplitudes depend on the normalization of
Mg(r), and the standard squared (L?) norm is not the most
natural choice. Because Mg(r) corresponds to a change in
density, we choose fd3r [Mg(r)| =2 so that Mg(r) can be
thought of as moving an electron from one region [where
Mg(r) < 0] to another [where Mg(r) > 0]. Finally, because
ag are ordered by importance, xs(r,r’) can be accurately and
efficiently represented by truncating the sum once ag drops
below some tolerance.

We can easily find the density response vectors Mg(x)
for the 1D Hy systems we have already discussed at length,
which allows us to diagnose our convergence difficulties. In
Fig. 9, we plot the first few most important Mg(x). The first
two (B = 1,2) look similar for the weakly correlated and the
strongly correlated systems, though the response amplitudes
ag are quite different. If the potential changes in the direction
—M,(x), it drives a strong density response in the direction
M (x) due to the large response amplitude a; = 4.75at R =2
and a; = 27.4 at R = 4. Luckily, we can assume reflection

Density response vectors for H
0‘4 T { T { T { T { T { T 4!

FIG. 9. (Color online) The most important density response
functions Mg(x) from Eq. (29) and their response amplitudes ag for
the weakly correlated system (R = 2) in the top panel and the strongly
correlated system (R = 4) in the bottom panel. The locations of the
atoms are shown in solid gray circles.

PHYSICAL REVIEW B 90, 045109 (2014)

symmetry, so that in the iteration of the KS equations we do
not have to worry about contributions from these 8 = 1 terms.
However, now consider the symmetric § = 2 terms. If the KS
potential changes in the direction —M;(x), the density will
respond by changing in the direction M,(x), and the response
amplitude is very strong for the R = 4 system (a, = 16.3).
These (ground-state) response properties can be used to
explain the problems that we have converging the strongly
correlated Hy. If the initial KS potential puts most of the density
around the central two atoms, to compensate the next trial KS
potential (10) will increase in the central region and decrease
for the edge atoms. In response, the new density will place
too many electrons on the edge atoms. We have already seen
this in Figs. 6 and 7 with the NI starting densities. The reverse
can also happen, where most of the input density is on the
edge atoms, and the output density is more centralized. For the
strongly correlated Hy, this “sloshing” back and forth can be
particularly strong because the response amplitude a; is quite
large; this problem plagues densities even very close to the
ground state, as seen in Fig. 8. As R — 00, a, diverges, making
it more and more difficult to converge. To ameliorate these
problems, some convergence schemes artificially increase the
gap [55] or populate otherwise unoccupied orbitals [73].
For other discussions on this matter, see Ref. [74], and for
implications for time-dependent DFT, see Ref. [75].

D. Convergence as correlations grow stronger

In this section, we explore convergence within the simplest
density functional approximation, the LDA [4], in order to
understand some basic limits on convergence as well as its
dependence on the KS gap, i.e., the HOMO-LUMO gap. A
simple expression for the LDA is available for our model 1D
systems [28,50]. We expect the LDA to converge in a similar
way to the exact functional, especially when the KS gap of
the system is close for both self-consistent LDA and exact
solutions [76]. We therefore use it to study more broadly the
convergence behavior of the KS scheme applied to H, with
variable bond length. As before, changing the bond length
allows us to tune the strength of the correlation: At small
bond lengths the system is weakly correlated and at large
bond lengths strong static correlation arises [28]. To aggravate
convergence difficulties, we choose the initial density to be
entirely centered on one atom [6] and determine the A values
for which the KS scheme will converge, as well as how quickly.
Furthermore, we enforce spin symmetry, so while the restricted
LDA energy is wrong in the R — oo limit [28], we expect to
see convergence behavior similar to the exact functional [6].

In Fig. 10, we plot the number of iterations required to
converge an LDA calculation to < 108 as a function of A,
for a variety of bond lengths R. Each curve ends at A.(R), the
largest A for which the damped KS algorithm converges from
this initial density. For a weakly correlated system (e.g., R =
2), a very large A will produce convergence, and the optimal A
to converge in the fewest iterations is also fairly large (around
0.5 for R = 2). As the bond length is stretched, both the critical
A, A:(R), as well as the optimal A (R), decrease. In response,
the minimum number of iterations Np;,(R) to converge to a
tolerance 1 < 1078, increases. For example, Npin(R = 2) =
12 for Lo (R = 2) =~ 0.5. Considering the iterations it takes to
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FIG. 10. (Color online) The number of iterations required to
converge an LDA calculation to n < 1078 (12), as a function of A, for
various bond lengths R of the H, molecule, starting with an initial
density of H™ on the left atom. The asymptotic form for small A can
be well approximated by 7/A for the data shown.

converge as a function of A, we see that as A decreases past the
optimal A, it begins to take longer to converge the calculation.
For . — 0, we approach an asymptote that appears valid for
all values of R, given this initial starting point in the H;
system: Nygym(A) = 7/A. While this is by no means a universal
asymptote for all systems, we recognize there is a fundamental
limit to how quickly we can converge as A — 0.

In Fig. 11, we plot the convergence-critical A value as a
function of the bond length R, as well as the KS gap of both
the LDA and the exact systems. The LDA KS gap decays at
about the same rate as the critical A, an observation that makes
sense given that the KS gap has such an important role in
convergence; the smaller the gap, the more difficult it is to
converge the calculation [76]. For bond lengths R < 4, the
LDA KS gap is quite close to the exact KS gap, so that we
expect similar convergence behavior for the exact functional.

Convergence of LDA KS algorithm
0.8 T N T N T N T

L + LDA critical A i
— 2.27 exp(-0.606 R )
0O LDA KS gap —
— 0.81 exp(-0.570R)
¢ exact KS gap

<
o
I

KS gap and critical A
=
\
!

e
o
I
|

1 l 1 l 1 1
0 3 4
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FIG. 11. (Color online) Plotting A. for an LDA calculation as a
function of the bond length R of a stretched hydrogen molecule,
starting with the exact H™ density on one atom, as well as KS gaps
for both the LDA and exact systems.
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However, as R increases, the true KS gap decays more quickly
than the LDA KS gap, so that the exact calculation has an
even greater difficulty converging [6]. It could be that some
values of A larger than X, allow for convergence if the density
fortuitously lands close enough to the ground state in some
iteration, but there is no systematic approach to find these A.

E. Classifying convergeability

In this section, we want to mathematically investigate the
the space of densities that allow convergence and how quickly
that occurs. That is, given some initial density and a fixed
value of A, can we determine whether the KS scheme will
converge within some given number of iterations? With A too
large, the KS scheme will be doomed to repeatedly overstep
the ground-state density.

To quantify these ideas, define n* [n](A) to be the value of
n defined by Eq. (12) after M iterations of the KS equations
with a fixed mixing of A, starting with the input density n(r).
Then define the density set:

S () = {n(r) such that n*[n](1) < ¢}. (30)

This set describes the densities n(r) which converge to n < ¢
in a finite number of iterations (M), given a fixed-A iteration of
the KS equations. For example, S; = S; (A = 1) is the set of
input densities nj,(r) that are within n < ¢ of their output
densities. (For one step, A does not matter.) This set (30)
allows us to quantify various levels of convergence. S} is the

lowest level, and includes the ground-state density. S?( 1)is the
second level and also includes the ground-state density. As M
becomes large (but remains finite), S, ?” (1) reaches out to the
Mth level: the set of densities which converge to within n < ¢
within a finite number of full-KS-step iterations. All other
densities belong to the . = 1 limbo density set, densities which
are doomed never to converge. Similarly, there are less-strict
convergence sets for A < 1, which describe a sort of density
purgatory.

It might be hoped to connect these abstract convergence
sets with some concrete measure, say some metric between
the ground-state density and the density inputted into the KS
scheme, n[n,n®*]. Here we simply define the metric similarly
to our 1 convergence quantifier:

Nl ] = / Er @ —m@P/N. 31

The idea of a metric on the set of densities is not new [77,78].
Unfortunately, current metrics are not guaranteed to correlate,
e.g., a given input density n(r) with a given convergence set
S é" (1). That is, there is likely no function gé” (1) for which
nln,n®] < g?”()») = n(r) € Sé”()»). In Fig. 12 we show why.
For A, the accumulated A throughout the KS scheme, we
see that the metric n[n,, ,n®%] tracks well with the how close
the energy E,[n,,] is to the ground-state energy (at least for
this example, 1D Hy in LDA). Despite this nice relationship
between the energy and the metric, a small n[n,n%] does not
necessarily mean we can take a large step in A each iteration.
Therefore, we do not know how many steps it will take nor
how small a A is required based on the metric alone. More
physically motivated metrics might remedy this issue, but we
must leave this question open.
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FIG. 12. (Color online) The first few steps (numbered) in the KS
scheme from some arbitrary starting density for Hy with R =4 in
the LDA approximation. Numerical precision makes the energy data
noisy. Metric distances are compared with the LDA ground state.
Panel (a) plots the energy and panel (b) the metric as a function of
the accumulated A step. The density n;(x) with the lowest metric
distance is not the energetic minimum, but they are fairly close.

F. Spin DFT

In this section we extend the exact functional to include
spin dependence. We test the exact spin-dependent functional
on the case of stretched Hj, starting our KS scheme with a
broken-spin-symmetry solution, to determine whether or not
the exact functional will find the correct spin-singlet ground
state [6].

Treating the up-spin and down-spin electrons separately
leads to much improved density functional approximations, as
well as new challenges [79,80]. If an unbalanced spin state is
provided as input to the KS scheme, approximate spin-density
functionals may find a broken spin symmetry when the ground
state should be a singlet. This is the case for many open-shell
systems as bonds are stretched. The simplest such system, and
a paradigm of DFT failures, is stretched H, [28,81-83]. In
this case, it is clear that the exact XC spin-density functional
does not break symmetry at the solution density, since the
ground state of any two-electron system is a singlet (in the
absence of external magnetic fields) [82]. This is true of both
the interacting wave function and the KS Slater determinant,
which is then just a doubly occupied molecular orbital.

To investigate these issues, we must first add spin depen-
dence to our functional, which is simple enough in principle.

PHYSICAL REVIEW B 90, 045109 (2014)

The added challenge is needing the ability to solve an
interacting system with different potentials for spin-up and
spin-down electrons, i.e., electrons in a collinear magnetic
field. Similar to (18), the HXC potential for spin-o electrons is

vuxc,o (1,1 ](r) = vs[2n,](r) — ve[ny,n ](r), (32)

where the KS potential for the up electrons can be inverted
independently of the down electrons by doubly occupying
the up density [84] (and vice versa for down electrons), and
Vs[n4,n, ](r) is the spin-o potential necessary to produce spin
densities n4(r) and n (r) from an interacting Hamiltonian. We
now investigate the use of the exact spin-dependent functional
in a system where standard approximate functionals have
multiple stationary points.

To test whether the exact functional can find the singlet
solution for the stretched H, case, we start the exact KS
calculation with a spin-polarized initial density, with the up
electron on the left atom and the down electron on the right.
With this input, the KS scheme using the local spin-density
approximation converges to a broken symmetry solution [28].
However, as seen in Fig. 13, the exact functional finds the
correct spin-singlet density without much trouble. (For this
system, a large density mixing was used, namely A = 50%.)
Aslong as the spin-densities are v representable, the arguments
of Ref. [61] apply, and there is only one stationary point of the
exact functional, the true ground-state density. This is true not
only in 1D (as we have illustrated) but also in 3D.

G. Non-v-representable densities

An important question that has haunted DFT since the
proofs of HK is that of v representability [46], i.e., for a given
density n(r), does there exist a one-body potential v[n](r) for
which it is the ground-state density? The constrained-search
formulation of Levy [12] and of Lieb [7] bypasses this

Exact KS for 1d H,
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5; 0.2 —
o L i
| 0
—
® L : i
< 02+ —i=1 —
2 L i=6 |

i=16
S04 }:34 | I | ]
0 — final ‘ ‘ ‘

FIG. 13. (Color online) Starting an exact KS calculation of
stretched H, with a spin-polarized density still converges to the
correct spin-singlet density. Through the iterations i, we plot (a)
the polarization density n4(x) — n,(x) and (b) the up KS potentials
vs 1 (x); the down potentials are the mirror images.
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issue by defining the functional F[n] as an infimum over a
given class of wave functions. However, our methodology
of performing both interacting and noninteracting inversions
essentially requires v representability in both the interacting
and noninteracting systems. (In fact, vgxc[n](r) is ill defined
if n(r) is not v representable [7,40,85].) In all our calculations
to date, we have had no difficulty with v representability, but
in the present section, we explore its meaning in more detail.

To be clear, we consider a density to be v representable
if it is emsemble v representable. The generalization to
mixed states (ensembles) is important for degenerate sys-
tems, where not every density comes from a pure-state
wave function [7,39,43,54]; these practical details impact
the calculations for and the values of the functionals F[n]
and Ts[n] [6,7,86], but they are not our primary concern. In
addition, we focus on noninteracting v representability; the
challenges for interacting v representability are similar, though
the sets of interacting and noninteracting v-representable
densities may, in principle, be different.

Definitive work by Chayes et al. [87] proves that, on a
grid, certain simple restrictions on the density determine the
set of ensemble v-representable densities (in both interacting
and noninteracting cases). This result explains why we were
always able to find potentials for a given density on a grid
in 1D, where there is no degeneracy except for spin. The
work of Chayes et al. is reassuring, but not the final word
on v representability. On a grid, the kinetic energy operator
(proportional to the Laplacian) is always bounded, whereas
in the continuum it is not. In such cases, inverting a density
for the KS potential as in Eq. (13) may lead to unacceptable
divergences, even for reasonable densities. Proofs of v
representability on a grid [52] therefore do not guarantee
v representability in the continuum. Complicating matters,
properties which make for reasonable densities and potentials
differ based on the dimensionality of the problem [7]. In
this section, we therefore move away from our 1D grids and
instead concentrate on real 3D systems in the continuum.

In principle, one can invert any density n(r) with N < 2
for its KS potential vg[n](r), as in Eq. (13). Such an inversion,
however, may lead to a potential which is singular and which
does not have a well-defined ground state. In order to avoid
these problems, the potential should satisfy two key properties:
(1) the KS Hamiltonian (5) being bounded from below and (2)
the KS Hamiltonian being self-adjoint [88]. Properties which
make the potential reasonable translate into properties that
the density should satisfy. In three dimensions, our reasonable
potentials are in the set L3/? 4+ L>, which describes potentials
of atoms, molecules, and solids [90]. The density space whose
dual is L3? 4+ L™ is L' N L3, and this space is a good start
for the set of reasonable densities [7]. The L? space consists
of functions whose p norm is finite,

1/p
L? = {f(r) : [fd3r|f(r)l”] < 00}7 (33)

where the integral is taken in the Lebesgue sense [92].
Thus, our densities n(r) should at least be in L' N L3 and
our potentials in L3? + L. (This set includes Coulomb
potentials [7].) For a density whose inverted potential is not in
L3? 4 L™, we say this density is non-v-representable.
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To avoid unphysical densities, one should impose non-
negativity and finite kinetic energy on the density, as articulated
first by Lieb [7,40,86],

/d3r nr)=N < oo, n(r) >0Vr, T¢V[n] < oo, (34)

where the von Weizsacker kinetic energy is

2
TSVW[n] = /d3r —|V8’;((l;))| ,

which is a lower bound to the true kinetic energy T'[n] of
the system. We refer to such Lieb-allowed densities [which
satisfy Eq. (34)] as reasonable. Reasonable densities comprise
a subset of L'NL3 (by Sobolev’s inequality, Ref. [7]),
so they have many useful properties. For example, for a
reasonable density n(r) in a reasonable potential v(r) [i.e.,
v(r) is in L> + L3/?], the potential energy |V [n]| < oo [7].
A density n(r) which fails to satisfy Eq. (34) can safely be
regarded as having an infinite F'[n] (or Ts[n] for noninteracting
systems) [7] and thus will be avoided in any iteration of
the KS equations. Reasonable densities are not always v
representable, however: The inverted potential may not be
in L™ + L3%. However, in these instances, there always
exists a v-representable density 7i(r) that approximates the
reasonable density n(r) to any desired accuracy and which
allows the energies F[ii] and Tsl[7i] to be calculated [7,40].
In the remainder of this section, we explore such an example
within the realm of noninteracting v representability, or vg
representability for short.

We consider a density which satisfies Eq. (34) but which
is not vg representable. Inspired by the fourth example of
Englisch and Englisch [38], we choose

(35)

np(r) = A(L + |r — 1]/, (36)
where we normalize to two electrons with
256¢%
A= (37)
7(596e% + 273 B 4+ 506 C)
~ 0.196 521, (38)

with

=2 1 2 ﬁd 2 39
B =+ T ,
1 \/_/0 t exp(t”) 39)

2
C:i{r[é}_/ dteXp](t)}. (40)
2% 4 0 ti

This pathological density np(r) is not vg representable due
to the kink encountered at » = 1, which would require an
inadmissible infinite discontinuity in the KS potential. To see
this, we attempt to invert np(r) for its KS potential via Eq. (13),

) 1 3 1
vs[npl(r) = 577 + 41+ [r — 1P/ |:_8|r TR

s(r—1) sgn(r — 1) 1
M TR P T (17)] @D

where we have used 9, |x| = sgn(x), 83 |x] = 28(x), and sgn(x)
is the sign function. The worst offender is the term proportional
to 8(r — 1)/|r — 1|'/4, which fails to be in the set L3> 4+ L.
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This makes np(r) non-vs-representable, since it may not even
be the ground state of Eq. (41). Furthermore, calculating Ts[n]
using the second-derivative formula of Eq. (8) is ill defined,
due to this discontinuity. Nevertheless, np(r) is reasonable: Its
TSVW[np] is finite, as we soon show. So, despite the density
being reasonable, it is non-vs-representable. Also, while we
are focusing on noninteracting electrons, it is clear that np(r)
would be troublesome for interacting electrons as well.

We obtain TSVW[np] by first calculating its kinetic energy
density. Due to spherical symmetry, we have

17d 2
3V [npl(r) = 3 [—\/ np(r)} (42)

dr
A 3sgn(r — D7* _
= |-1—|r—1Pre=—__| %
(43)
so that
o0
7¢V[np] = 4n / dr r? 3% [npl(r) (44)
0
= AT w0+ 93B—130) (45
T 1282 ¢
~ 0.996519. (46)

Calculating Ts[np] via the second-derivative formula (8) seems
like a simple integration by parts,

Ts[n] = —%/d%/n(r)v%/n(r)

(N<2), ¢47)
= — [ @@y vsini)
but due to the discontinuities in vs[np](r) (41), this integral is
ill defined for np(r).

We now illustrate how to obtain a vs-representable density
that is arbitrarily close to our reasonable density np(r). As a
bonus, this procedure also gives a well-defined kinetic energy
using the second-derivative formula. Consider a function
fy(x) that smooths out the |r — 1] in Eq. (36), but which
has a parameter which can be continuously adjusted so that
lim,_,¢ f,(r — 1) = |r — 1]. We choose

) = Va2 +y2, (48)

setting
ny(r) = A, [1+ £ — DPPe™. (49)

(Note that the density must be renormalized for each value of
y.) For small y, the metric distance between np(r) and n, (r),
nlnp,n,] (31), is proportional to y*7; and n,(r) remains v
representable for all ¥y > 0 (see Fig. 14). In the iterations
of the KS scheme, tolerances between densities are already
built into the method—namely as in Eq. (12)—so we need
no greater accuracy than that when finding a v-representable
density close enough to the target density.

As already mentioned, even though TSVW [np]is finite, Ts[np]
via Eq. (47) is ill-defined. However, by using the smoothed
density of Eq. (49), we can calculate Ts[n,] and take the
limit y — O (see Fig. 15). The result is the the same as
TS"W[np], and this must be so based on simple mathematical
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FIG. 14. (Color online) Inverting n, (r) of Eq. (49) for the KS
potential. As y becomes smaller and smaller, the changes in potential
near r = 1 become larger and larger.

considerations [87]. Two conjectures might be made after
consider the foregoing.

(1) A density being v representable requires some bounds
on the Laplacian (or second derivative) of the density. On
a grid, this is not an issue because the Laplacian is always
bounded.

(2) Finite energies F[n] and Ts[n] may be extracted from
reasonable but non-v-representable densities. This can be
done by suitably smoothing (or discretizing) the density and
carefully taking limits, so as to remove divergent terms. For
N <2, TSVW [n] should give the limit of T5[r] properly, and
for N > 2 one should be able to use

N/2

Tsin] =) f &’r|Ve;m) (50)
j=1

to avoid any singular divergences from second derivatives.
For some concluding remarks, recall that the exact Eyxc[n]

is defined using both interacting and noninteracting systems.

This means that we need n(r) to be vs and v representable to
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FIG. 15. (Color online) Kinetic energy convergence of np(r)
from Eq. (49) by smoothing out the kink as in Eq. (36). While the
von Weizsacker kinetic energy (vW) may be evaluated and integrated
using only one derivative of the density, higher-order derivatives of
the density develop nonintegrable features.
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calculate Eyxc[n]. While, in principle, vs-representable den-
sities comprise a different set than v-representable densities,
we can use the methods of this section to calculate Exxc[n]
for any reasonable density. The prescription is to find a vg-
representable density 7ig(r) and a v-representable density 7i(r)
which are within some small tolerance of n(r) and each other.
With the inverted potentials is(r) and ¥(r), self-consistent
KS calculations are possible, given vyxc[n](r) = Us(r) — 9(r)
as in Eq. (18). We hope to further explore the connections
between interacting and noninteracting v representability in
future work.

As a final note, all of our numerical inversions have used
pure-state wave functions. This is justified for spin-singlet 1D
systems and for this simple spin-singlet example in 3D. In
systems with degeneracy, however, the ensemble formulation
of DFT should be used, not only because the ensemble
E,[n] is convex [6], but also because the class of pure-state
v-representable densities is smaller than the class of ensemble
v-representable densities [7,40,43]. Outside of this section, we
always worked on a grid, which means that v-representability
difficulties were not an issue [87]. We found no cases where,
as the grid spacing goes to zero, the potential diverged as in
the example here.

V. CONCLUSIONS

Our investigations into the exact functional demonstrate
that it is possible to solve the KS equations with the exact XC
functional for simple model systems at great computational
cost. Our calculations involve mapping the functional land-
scape for more than just the ground-state density, enabling us
to address questions of convergence within the KS scheme.
We tested many systems, and found that strongly correlated
systems pose a greater challenge, not only from a theoret-
ical standpoint in finding accurate approximations, but also
practically within the KS scheme, where smaller steps must
be taken (or more sophisticated methods used) to converge
the calculation. In a word, the exact functional landscape
for strongly correlated systems is more treacherous, but not
impossible, for a simple KS algorithm to navigate.

Despite the surmountable convergence difficulties for
strongly correlated systems, the only stationary point of the KS
equations is the ground-state density of the original problem,
given v-representable densities as inputs. This is simply a
reaffirmation of the HK theorem, that there is a one-to-one
correspondence between ground-state densities and potentials.
This is the case even for stretched systems, where approximate
functionals would prefer to break spin symmetry; the exact
spin-density functional has only one stationary point, at the
correct ground-state spin densities. All changes in density
away from that point cause the energy to rise. Thus, the
lowest energy stationary point with an approximate functional
has the same energy landscape as the true functional and
should be treated as the prediction for the energy with that
approximation, regardless of how many symmetries have been
broken. This reaffirms the conclusions of Ref. [82].

The density mixing algorithm used to prove convergence
of the KS scheme is one of the simplest ways to explore the
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infinite-dimensional set of possible densities, and it provides
insight into the gradient-descent nature of the KS scheme.
While this algorithm is too primitive for modern practical
implementations, its main purpose here is to provide a
definite framework in which convergence questions can be
studied.

There is another avenue of research, but it cannot be pursued
in these model 1D systems: the effects of orbital degeneracy
within exact KS theory, especially due to angular momentum.
An ensemble of degenerate densities may easily not be pure-
state v representable [7,40], and the extent of the challenges for
exact DFT warrants investigation. Unfortunately, this avenue
cannot be explored for these 1D systems, in which there is
no angular momentum. Exploring these concepts in 3D would
shed light on how DFT handles strong correlation effects due
to exact degeneracies, in contrast to the near degeneracies [93]
we have investigated (e.g., in stretched H;) for which exact
DFT performs well in 1D [6].

Finally, we discuss the consequences of our example of
a non-v-representable density. The example we give is a
reasonable density, meaning it is in the domain in which the
Levy-Lieb density functional is defined: It is normalized and
non-negative and has finite kinetic energy. Consistent with
the proof of Chayes er al. [87], on any finite grid, it has a
well-behaved KS potential. However, as the grid spacing is
brought to zero, divergences appear in that potential, so that
it is ill defined in the continuum limit. So this is an example
of a density that is v representable on a lattice, but is not
v representable in the continuum. Similarly, one can remain
in the continuum and introduce a small parameter () which
rounds off the cusp in the density. For any finite value of y,
no matter how small, the potential is finite and well behaved.
Thus, our cuspy density is arbitrarily close to a v-representable
density. These are the standard arguments given in the
physics literature for why v representability is not an issue
in DFT.

However, our example shows that there is still something
to worry about. Either regularization procedure (finite grid
spacing or finite y) fails in the limit, and anyone doing
an inversion on such a density should check whether their
KS potential converges to a well-defined limit. Our example
density fails this test.

The important question is not whether some artificially
created density is v representable. The real question is—given
the densities of atoms, molecules, and solids, i.e., densities
generated by solving the Schrodinger equation with Coulomb
interactions—are there features like that of our example that
produce ill-behaved KS potentials? This is all that matters, and
practical experience suggests that such situations are rare, if
they occur at all.
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