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Entanglement entropy of compressible holographic matter: Loop corrections from bulk fermions
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Entanglement entropy is a useful probe of compressible quantum matter because it can detect the existence
of Fermi surfaces, both of microscopic fermionic degrees of freedom and of “hidden” gauge-charged fermions.
Much recent attention has focused on holographic efforts to model strongly interacting compressible matter of
interest for condensed matter physics. We complete the entanglement analysis initiated by Huijse et al. [Phys.
Rev. B 85, 035121 (2012)] and Ogawa et al. [JHEP 1 (2012) 125] using the recent proposal of Faulkner et al.
(arXiv:1307.2892) to analyze the entanglement entropy of the visible fermions which arises from bulk loop
corrections. We find perfect agreement between holographic and field-theoretic calculations.
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I. INTRODUCTION

Holographic duality [1–3] provides a fundamentally new
way to understand the physics of quantum many-body systems
(quantum field theories) by mapping them to dual gravitational
systems. Furthermore, when the quantum field theory of inter-
est is strongly coupled and has many degrees of freedom, the
corresponding dual gravity picture becomes weakly fluctuating
and has few degrees of freedom [4,5]. Although the simplest
holographic systems, namely large-Nc non-Abelian gauge
theories, are unconventional from a laboratory point of view,
universality gives us hope that suitable strongly interacting
problems arising in experiment might nevertheless be usefully
approximated using holographic machinery.

Within condensed matter physics, experiments on a variety
of materials have brought attention to the problem of strongly
interacting compressible phases of matter [6]. The simplest
such phase is the Fermi liquid, which has the property that
even with strong bare interactions, there remain renormalized
quasiparticle degrees of freedom in terms of which the
physics is transparent. We can also easily obtain compressible
phases by breaking the U (1) symmetry (a superfluid) or by
breaking translation invariance (a crystal). The search for and
understanding of more exotic examples of compressible phases
is a major open problem.

There is an intuition that any compressible phase which
does not break U (1) and translation symmetries must involve
fermions in its description (see the discussion in Ref. [7]). Cer-
tainly the Fermi liquid is an example with microscopic fermion
degrees of freedom, but other kinds of compressible phases
can occur in systems with only microscopic bosonic degrees
of freedom in which there are nevertheless emergent fermionic
fields. In examples we understand that these emergent fermions
couple to some kind of emergent fluctuating gauge field, a
situation which is already more analogous to the sorts of gauge
theories commonly met in holographic systems. In this vein, a
great deal of effort has been expended modeling compressible
matter using holography [7–17]. However, one immediately
encounters a difficulty: since gauge-charged fermions are not
gauge-invariant operators, one cannot define the Fermi surface
in a conventional way, e.g., via singularities in the fermion
spectral function. How then can we detect and characterize
such hidden Fermi surfaces? Or can holography perhaps even
give us examples of symmetric compressible phases without
Fermi surfaces, hidden or otherwise?

If we restrict ourselves to the class of compressible phases
where there are Fermi surfaces of some kind present, one
approach to characterizing such Fermi surfaces is to use their
special entanglement properties. Given a spatial region A, the
entanglement entropy of A (defined below) typically satisfies
a boundary law S(A) ∼ |∂A|, so if A has linear size L, then
S(A) ∼ Ld−1 (d is the spatial dimension) [18,19]. Remarkably,
conventional Fermi gases and Fermi liquids violate this law
by possessing an entropy S(A) ∼ (kF L)d−1 ln (kF L), where
kF is the Fermi momentum [20–25]. Hence, not only does
the entanglement entropy detect the existence of the Fermi
surface; it also gives a quantitative measure of the Fermi
surface via kF . The proposal of Refs. [8,9] is to use the
existence of a logarithmic violation of the boundary law as a
signature of a hidden Fermi surface. This proposal, combined
with other evidence (e.g., Friedel oscillations), provides a
coupling-independent method to detect Fermi surfaces even
if they are “hidden.”

In the models we consider below, we are explicitly inter-
ested in gauge-invariant fermions and associated Fermi-liquid-
like states coexisting with strongly interacting compressible
degrees of freedom [7,26,27]. To motivate this study, the
following conjecture provides a sharp question to address:
all compressible phases which do not break a symmetry have
an Ld−1 ln (L) term in their entanglement entropy (perhaps
in addition to other terms). We do not know whether this
conjecture is true, but there is circumstantial evidence for this
conjecture in that all understood examples of compressible
phases which do not break a symmetry involve Fermi surfaces
(see, e.g., [28,29]). Moreover, the thermal to entanglement
entropy crossover analysis of Ref. [30] suggests that sys-
tems with thermal entropy Sthermal ∼ LdT (d−θ)/z have such a
logarithmic violation of the boundary law when θ = d − 1.
Here z is the dynamical exponent, so that the dimensionless
variable is LT 1/z, and θ is the hyperscaling violation exponent.
θ = d − 1 is precisely what arises in a system with Fermi
surfaces.

The above conjecture motivates our work because making
a complete case for the presence of hidden Fermi surfaces
will probably require including in the analysis both monopoles
[31,32] and quantum corrections to the entropy. Here we begin
along this path by studying the simpler problem of quantum
corrections to the entropy in the presence of bulk fermions
which describe a boundary Fermi liquid state. An additional
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motivation for our work is to provide a nontrivial check on
the holographic formula for the first quantum correction to
entanglement entropy.

In Ref. [9] an extensive analysis of the entanglement prop-
erties of a certain class of holographic compressible phases
known as hyperscaling violation geometries was considered.
The goal of the analysis was to demonstrate that entanglement
in these hyperscaling violation geometries was consistent with
the presence of hidden Fermi surfaces (although such hidden
Fermi surfaces were not definitely established). A crucial part
of that analysis was the verification of Luttinger’s relation
which roughly states that the size of a Fermi surface is related
to the density of fermions in a system. It was shown that bulk
charge conservation was equivalent to Luttinger’s relation,
so that in a system composed of “visible” gauge-invariant
fermions and “hidden” gauge-charged fermions, the kF which
appears in the entanglement entropy was controlled just by
the “hidden” charge density. This is sensible because within
the large Nc or classical approximation, the holographic
entanglement entropy calculation only detects hidden Fermi
surfaces. It was also shown that the coefficient of the “hidden”
Fermi surface contribution was independent of the presence of
“visible” bulk fermions. The contribution of “visible” fermions
is suppressed in the 1/Nc expansion and represents a loop
correction to the classical area formula [33].

In this paper we use the recent proposal of Ref. [34] to
complete the analysis begun in Ref. [9] by analyzing quantum
corrections to the entanglement entropy in systems with bulk
fermions at finite density. We show with a simple argument that
the “visible” bulk fermions are, as far as entanglement entropy
is concerned, dual to Fermi-liquid-like degrees of freedom
in the dual field theory, just as was anticipated by previous
studies. Furthermore, because the entanglement entropy of
such a Fermi liquid state is known purely on the field theory
side, we are able to provide a strong check of the proposal
in Ref. [34] by showing that the holographic and field theory
results agree.

In particular, while there are many subtleties concerning
the physical interplay of various cutoffs, e.g., the bulk UV
cutoff and the bulk IR/boundary UV cutoff, the logarithmic
violation of the boundary law we investigate bypasses these
issues. We need only compare the loop contributions of bulk
fermions with and without a finite charge density. Hence
all complications associated with the bulk UV cutoff are
irrelevant to the logarithmic violation because it is a bulk
infrared effect. Similarly, as we describe in more detail
below, the finite density of bulk fermions also sits near a
given value of the radial coordinate and does not explore
the full bulk minimal surface. Hence bulk IR/boundary UV
cutoff effects are also irrelevant because the bulk charge is
insensitive to the whole bulk minimal surface. Thus our results
provide a very clean test of the proposed loop correction in
Ref. [34].

The remainder of the paper is structured as follows. First,
we review the proposal of Ref. [34] and comment on related
evidence. Second, as a warmup we discuss the case of a
holographic Fermi liquid realized in a hard-wall geometry.
Third, we discuss the entanglement entropy of bulk fermions
in hyperscaling violation geometries. Finally, we discuss some
related problems and future directions.

II. QUANTUM CORRECTIONS TO HOLOGRAPHIC
ENTANGLEMENT ENTROPY

Given a quantum field theory with a tensor product Hilbert
space, the density matrix of a subsystem A is given by

ρA = trB(ρAB), (1)

where ρAB is the state of the whole system, typically a pure
ground state or a mixed thermal state. The entanglement
entropy S(A) of A is the von Neumann entropy of ρA:

S(A) = −tr[ρA ln (ρA)]. (2)

When ρAB is a pure state, then S(A) indeed measures
entanglement between A and its complement B.

To compute the entanglement entropy of a region A in a field
theory with a holographic dual in the semiclassical limit, we
must construct the bulk minimal surface W (A) with ∂W = ∂A

at the boundary of AdS. The entanglement entropy of A is then

S(A) = |W (A)|
4GN

, (3)

in close analogy with the Bekenstein formula for black hole
entropy [33]. We emphasize that this gives only the classical
approximation to the entanglement entropy. This prescription
passes many checks and gives sensible answers for the
entanglement entropy [35–38].

It is convenient to compute the entanglement entropy using
the replica formulation:

S(A) = −tr[ρ ln (ρ)] = − lim
n→1

∂ntr
(
ρn

A

)
. (4)

The partition function which computes tr(ρn
A) has a geometric

interpretation in terms of a branched space for each integer n.
The analytic continuation to noninteger n is the main difficulty
with this approach.

To make some progress, one can consider a Lorentz-
invariant quantum field theory. Then when the surface ∂A

at t = 0 (a spacetime codimension two surface) is a Killing
horizon, the branched space possesses additional symmetry
and one can extend the geometry to noninteger n. For example,
consider d + 1 Minkowski space in which the Killing vector
which generates x boosts is

ξ = x∂t + t∂x. (5)

Using the conventional Minkowski metric η, the pseudonorm
of this vector is

η(ξ,ξ ) = −x2 + t2, (6)

which vanishes on the light cone. In particular, the point x =
t = 0 is a Killing horizon. Hence when A is the half space
x > 0, the replicated geometry possesses an extra symmetry.
In imaginary time, this extra symmetry is simply rotation about
the origin. Now, the importance of this symmetry is that we
can use it to define the replicated geometry at noninteger n in
a precise way. To do so, we use the quantum generator K of
the boost or imaginary time rotation to write tr(ρn

A) as

tr
(
ρn

A

) = tr(e−2πnK ). (7)

Since K has a direct geometrical meaning, a simple spacetime
interpretation of this expression is possible even for noninteger
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n using (in imaginary time) a spacetime with a conical
singularity.

Stationary black hole horizons are also of the type just
considered. For example, in the Schwarzchild black hole, the
Killing vector ∂t has zero pseudonorm on the event horizon.
This is not surprising since the near horizon region is actually
equivalent to the half-space situation just considered. The
procedure above then leads to the result that the entropy is
proportional to the area of the black hole horizon. However,
one also learns that quantum corrections due to matter fields
can be effectively included by computing the entanglement
entropy of the field theory degrees of freedom in the black
hole background.

In the context of holographic duality, the minimal area
formula [33] was put forward as a heuristic generalization of
the black hole entropy computation to more general surfaces.
The interpretation of the entropy was that it represented
entanglement between degrees of freedom in the dual field
theory. Recently, Ref. [39] gave an argument for this formula
which turns on the idea that for n �= 1, there is an effective
spacetime defect � whose equation of motion requires that the
bulk area |�| be minimal. More recently still, Ref. [34] argued
that the picture of quantum corrections around black hole
geometries also generalized to the minimal surface situation.
See also Ref. [40] for a similar earlier argument.

An easy check of this argument is possible when the
entangling surface is spherical and the dual field theory is
conformal. As shown in Ref. [35], this situation maps to a
holographic computation in which the boundary is a hyperbolic
space. Furthermore, in this special case the bulk minimal
surface happens to coincide with a stationary black hole
horizon, so the black hole machinery immediately implies
not only the correctness of the classical area formula but also
the validity using the bulk entanglement of matter fields as the
leading quantum correction. In this paper we will give another
justification of this proposal in a rather different setting and
for arbitrary entangling surface using fermions.

To summarize, the proposal of Ref. [34] is that the leading
quantum correction comes from the bulk entanglement entropy
of all nonmetric variables across the minimal surface in the
classical background. There may also be additional terms
which can be written as integrals over the bulk minimal surface,
for example, a shift in the value of GN or integrals of the
curvature. As long as these terms associated to the minimal
surface cannot change the qualitative behavior of the classical
result, then we may just look to the bulk entanglement entropy
for new physics.

III. WARMUP: HARD-WALL CASE

We wish to study a quantum field theory with a conserved
U (1) current Jμ and a fermion 	 which carries charge q of
this current. The dual gravitational degrees of freedom are a
metric g, a gauge field A, and a fermion ψ of charge q under
A. The dual gravitational action is

S =
∫

d4x
√

g

[
R

2κ2
+ 1

4e2
F 2 + iψ̄(� · D + m)ψ

]
, (8)

where D is the covariant derivative with couplings to both the
gauge field and the spin connection.

Following Ref. [16] we choose the metric to be

ds2 = −dt2 + dr2 + dx2 + dy2

r2
(9)

with the asymptotic boundary (field theory UV) at r = 0 and
a hard-wall boundary condition at r = rm. The gauge field is
taken to be At = ih(r) and we require that h(r → 0) → μ (the
chemical potential). Treating h(r) as a fixed background field
to be determined self-consistently, the solution to the equations
of motion is determined by the Dirac equation. Reducing the
four-component equation to a two-component equation as in
Ref. [16] and studying energy eigenstates χ,k with energy
E,k and x momentum k, we have(

iY
d

dr
− X

m

r
− kZ − qh

)
χ,k = E,kχ,k. (10)

X,Y,Z are Pauli matrices and  labels different discrete energy
levels at a given momentum k.

As r → 0, the solutions χ behave as χ ∼ rm, while at
r = rm we demand the Dirac operator be self-adjoint, which
requires

χ
†
1 (rm)Yχ2(rm) = 0. (11)

The χs are normalized according to∫ rm

0
drχ

†
,kχ,k = 1. (12)

This completes the specification of the Dirac problem.
At zero temperature the ground state of the Dirac fermions

is obtained by filling up all energy states with E,k < 0. The
situation is familiar from the band theory of solids: each
label  describes a continuous band of states labeled by k.
Rotational invariance guarantees that the result depends only
on the magnitude of k. All negative energy states within each
such band are then filled, and thus as far as the x-y physics
is concerned, we simply have a set of partially filled bands.
In the simplest case, some set of bands with  < 0 will
be partially filled with spherical Fermi surfaces and Fermi
momenta kF,, and all bands with  � 0 will be empty. Note
that all charges and energies are measured relative to the zero
chemical potential state.

Given this energy level filling picture, the ground state of
the fermions is

|μ〉 =
∏
<0

∏
|k|<kF,

c
†
,k|vac〉. (13)

The creation operators c
†
,k are defined by the expansion of the

field operator as

ψ(x,t,r) =
∑



∫
d2k

4π2

[
χ,k(r)eikx−iE,k t c,k + ...

]
. (14)

To compute the correction to the dual field theory entanglement
entropy due to these bulk fermions, we must compute their bulk
entanglement entropy across the bulk minimal surface arising
from the classical approximation.

Let us recall the classical approximation to the holographic
entanglement entropy. We choose a region A in the field theory
and study the minimal surface W with the property that ∂W

at r = 0 is equal to ∂A. At r = rm we allow the bulk minimal
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FIG. 1. (Color online) Sketch of the minimal surface when L �
rm. The red dashed lines show cuts through the bulk minimal surface.
The bulk minimal surface hangs straight down from the boundary to
the hard wall so that the shape of the surface with a fixed r plane is
independent of r .

surface to terminate at the hard wall. This is sensible to describe
a theory without an extensive entropy (as would arise if the
minimal surface had to the run along the infrared wall) and
mimics the situation obtained in AdS soliton geometries. Now
for a region A of linear size L satisfying L � rm, the minimal
surface will reduce to a surface in pure AdS and will reproduce
the conformal result. On the other hand, when L � rm (see
Fig. 1), the minimal surface will hang approximately straight
down to the hard wall and a strict area law will be obeyed:

S(A) = |∂A|
4GN

∫ r=rm

r=ε

dr

r
= |∂A|

4GN

(
1

ε
− 1

rm

)
. (15)

What happens then we turn on a finite chemical potential
and consider the bulk fermions? When L � rm,μ−1 the bulk
fermions hardly contribute since the boundary at r = 0 repels
the fermion wave functions (because AdS is like a box).
However, when L � rm,μ−1, we find that the fermions make
a significant contribution. Recall that in this case the minimal
surface approximately falls straight down to the hard wall.
Crucially, the shape of the minimal surface at a plane of
constant r is independent of r and is set by ∂A. Hence when
we trade r for the band index , each band may be treated
as if it is a two-dimensional system of fermions in which we
are computing the entanglement across a surface of shape ∂A.
In more detail, each fermion wave function factorizes into a
function of x and a function of r , so because the bulk surface
is approximately independent of r in the relevant region, we
may make a basis transformation from r to  and hence trace
over all r or all  to the same effect.

The bulk fermion entanglement entropy, using the Widom
formula [21,22], is

Sbulk fermion =
∑
<0

kF,|∂A|
6π

ln (kF,L), (16)

where we have assumed all Fermi surfaces are spherical. No-
tice that although this correction is formally 1/Nc suppressed

(no factor of G−1
N ), for a fixed UV cutoff ε this term eventually

dominates the classical contribution.
The retarded bulk fermion two-point function has the form

GR(k,ω,r,r ′) =
∑



χ
†
,k(r)χ,k(r ′)

ω − E,k + iδ
. (17)

This expression implies that the field theory two-point function
GR

bdy has the same singularity structure as the bulk fermion
two-point function. In particular, the χs only contribute a
finite quasiparticle residue related to their asymptotic value
near z = 0. Thus the boundary fermion spectral function,
obtained from A ∼ Im(GR

bdy), has the Fermi liquid form:
A ∼ Zδ(ω − E,k). It has been established on general grounds
[41,42], rigorously proven in some models [43], and even
checked numerically [44] (except possibly in the limit of
very strong interactions) that the quasiparticle residue does
not effect the leading Ld−1 ln (L) entanglement term, so we
find precise agreement between the dual field theory entropy
calculation and the bulk entropy calculation.

There is also the possibility of additional surface terms
localized on the bulk minimal surface [34]. In the hard-wall
geometry such terms will clearly not lead to any logarithmic
modification of the area law, so the bulk fermion contribution
is indeed the leading correction.

IV. HYPERSCALING VIOLATION GEOMETRIES

We can also consider more general situations. By including
into the above setup an extra scalar field, the dilaton φ, we can
construct new types of compressible solutions. As detailed in
Ref. [9], the metric can be written in the form

ds2 = −f (r)dt2 + g(r)dr2 + dx2 + dy2

r2
(18)

for some functions f and g. As above, the asymptotic boundary
(field theory UV) is at r = 0. First ignoring the bulk fermion
	 but including the dilaton φ, the solution is roughly divided
into two regions, a near boundary AdS-like region near r =
0 and a deep IR region approaching r = ∞. The deep IR
region is called a hyperscaling violation geometry because
the metric transforms only up to a conformal factor under
rescaling transformations. The crossover between these two
regimes occurs at r ∼ Q−1/2 where Q = Qh is the “hidden”
charge density. When explicit bulk fermions are included, in
the fluid approximation they are also found near r = Q

−1/2
h

where Qh = Q − Qv , Q is the total charge density, and Qv is
the charge density in the bulk fermions. The precise location of
the fluid depends on the details including the dilaton potential,
but we argue below that these details have no effect on the
entanglement entropy. Finally, note that in the Thomas-Fermi
approximation, the bulk fermions are confined within a finite
extent in the r direction.

The essential points then mirror the calculations for the
hard-wall case; see Fig. 2. In the fluid approximation, there are
many bulk fermions and they form a Fermi liquid ground state
which may be treated in a hydrodynamic approximation. At
this level of approximation, the quantum state of the fermions
still consists of a series of filled bulk Fermi seas. And just as
above, when the linear size L is much greater than Q

−1/2
h , the
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FIG. 2. (Color online) Sketch of a one-dimensional slice through
the hyperscaling violation geometry with d = 2. The near boundary
region is AdS-like while the deep IR is of hyperscaling violation
form. The crossover (red line) is roughly at r ∼ Q

−1/2
h where the

bulk fermions (blue region) also reside (for Qv � Qh). The dashed
curve is an exaggerated representation of the bulk minimal surface
which hangs down much below all other scales and is approximately
a straight cylinder in the region occupied by the bulk fermions.

bulk minimal surface hangs down straight through the region
where the bulk fermions reside. Thus as far as the bulk fermions
are concerned, the entangling surface might as well be a
straight cylinder of the form ∂A × [0,∞), and the arguments
above immediately imply that the bulk entanglement entropy
is a sum of many Fermi surface contributions:

�S =
∑



kF,|∂A|
6π

ln (kF,L) + ..., (19)

where ... denotes subleading terms obeying the boundary law.
More generally, there will be some leakage of the bulk

fermion wave functions outside of the region where the bulk
minimal surface is well approximated by a cylinder. These
wave function tails are expected to give rise to subleading
corrections to the leading L ln (L) result.

We must also consider the possibility of terms localized to
the minimal surface. However, while such terms will effec-
tively modify the value of GN and hence the coefficient of the
classical entropy result, the modification should be essentially
the same as that occurring in the zero-density state. This is
because the bulk fermions reside only near r ∼ Q

−1/2
h ; hence

for sufficiently large A, the extra effect of the finite density of
bulk fermions is negligible relative to the zero-density radiative
correction. This result implies that while the prefactor of the
minimal surface contribution is modified, the modification is
approximately independent of the state of the bulk fermions.
Hence, just as in Ref. [9] the coefficient of the “hidden”
L ln (L) contribution is independent of the state of the “visible”
fermions apart from a trivial dependence on the density. We
emphasize that this is a nontrivial feature of the classical
geometry which persists in the leading quantum correction.

Below we give some more details of the argument in
hyperscaling violation geometries.

A. Minimal surface structure

In this section we demonstrate our earlier claim that the bulk
minimal surface effectively hangs straight down, i.e., may be
approximated by the cylinder ∂A × [0,∞)r as far as the finite
density of bulk fermions is concerned. We begin by analyzing
the case of a spherical entangling region before giving a more
general argument for any shape.

To gain intuition, it is useful to consider first the case when
the subregion is a d ball. For concreteness, we work with
the case of d = 2 spatial dimensions in the field theory. The
disk A is taken to have radius L. We consider the background
in Eq. (18) and we parametrize the bulk minimal surface by
giving ρ =

√
x2 + y2 in terms of r . The bulk surface area is

then

|W (A)| = 2π

∫ r�

ε

dr
ρ
√

g + (ρ ′)2

r2
, (20)

where ρ ′ = ∂rρ and r� is defined by ρ(r�) = 0. The equation
of motion following from minimizing |W | is

∂r

(
1

r2

ρρ ′√
g + (ρ ′)2

)
=

√
g + (ρ ′)2

r2
. (21)

We consider in turn the case of pure AdS, g = 1, and the
hyperscaling violation geometry, g = r2. Our goal is to solve
the above differential equation perturbatively near r = 0,
where ρ(0) = L. Set ρ(r) = c1 + c2r

p + ... with c1 = L and
c2 and p to be determined. For pure AdS (g = 1), we find to
leading order near r = 0

c1c2p(p − 3)rp−4 = r−2, (22)

so we have a solution for p = 2 in which case c2 = −1/(2c1).
Thus the radius ρ(r) of the minimal surface in a fixed r plane
only decreases by roughly r2/L provided r � L. Thus the bulk
minimal surface has almost the same radius as the boundary
value provided we are interested in r � L. In the hyperscaling
case, with g = r2, we look for a solution of the form ρ(r) =
c1 + c2r

p ln r . Assuming p > 2, so that we may neglect ρ ′
compared to g as r → 0, we find

∂r (c1c2r
p−4(p ln r + 1)) = r−1, (23)

which requires p = 4 and c2 = 1/(4c1). Note that even though
c2 is positive, the ln r term is negative for small r , so ρ still
decreases as r increases. Thus in the hyperscaling violation
case, the rate of change of ρ is comparatively even smaller
near r = 0. Hence the bulk minimal surface will change very
little for r � L.

Now we give a similar calculation for small r and large but
generic ∂A that again demonstrates that the shape of ∂A is only
distorted by a small amount for any r � L. Consider a small
section of the bulk minimal surface parametrized by giving
H = xd as a function of r and x1,...,xd−1. The infinitesimal
area element is then

d|W (A)| ∼ drdx1...dxd−1

√
g

r2

×
√√√√1 +

d−1∑
j=1

(∂jH )2 + g−1(∂rH )2. (24)
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The equation of motion, specializing to the case of d = 2, is

∂x

(√
g

r2

∂xH√
1 + (∂xH )2 + g−1(∂rH )2

)

+ ∂r

(√
g

r2

g−1∂rH√
1 + (∂xH )2 + g−1(∂rH )2

)
= 0. (25)

Taking g = r2, using the ansatz H = h(x) + σ (x)rp ln r + ...,
and simplifying, we find

∂x

(
1

r

∂xh√
1 + (∂xh)2

)
= −∂r

(
1

r3

rp−1(p ln r + 1)σ√
1 + (∂xh)2

)
. (26)

So we must have p = 4 in which case we have a relation for
σ in terms of h as

σ = −
√

1 + (∂xh)2

p
∂x

(
∂xh√

1 + (∂xh)2

)
. (27)

Using all these results we see that even for arbitrary ∂A, as
long as r � L, the bulk minimal surface in a fixed r plane is
close to the same shape as ∂A. It might also be interesting,
however, to systematically study the subleading terms arising
in this analysis.

B. Including the fluid

For a large enough entangling region, the minimal sur-
face hangs straight down into the bulk, and close to the
boundary it has very small dependence on the holographic
direction. We verified this both in an AdS geometry as
well as in a hyperscaling violation geometry. We now verify
numerically that this is also true for the holographic setup
we considered in our previous work [9]. Here the visible
fermions are incorporated as a fluid in a geometry that is
hyperscaling violating in the IR and AdS in the UV. The fluid
description corresponds to the Thomas-Fermi approximation,
where the fermion wave functions are strongly localized, and
has the advantage that it takes into account the backreaction of
the visible fermions on the metric [45]. It follows that in this
case there is a crossover region from the hyperscaling violation
geometry to the AdS geometry and that there is a backreaction
on the metric in the region where the fluid is present. We will
see that these two features do not change the expected result,
namely that for a large enough entangling region, the minimal
surface hangs straight down through the fluid region.

The numerical setup is precisely as in our previous work [9]
and we refer the reader to Sec. IV A of that work for details.
Here we give a brief summary. The action we consider is the
Einstein-Maxwell-dilaton-fluid action,

LEMDF = 1

2κ2

(
R − 2(∇�)2 − V (�)

L2
AdS

)

− Z(�)

4e2
FμνF

μν + p(μloc),

where R is the Ricci scalar and � is the neutral scalar dilaton
field, with V (�) its potential and Z(�) its coupling to the
Maxwell fields. The Maxwell flux Fμν is associated with the
vector potential Aμ in the usual way and p is the pressure
of the fluid. The pressure is a function of the local chemical

potential

μloc = At√−gtt

.

Finally, κ is the surface gravity and LAdS the AdS radius. The
pressure of the fluid describing fermions with mass m can be
expressed in terms of the energy and charge density:

−p̂ = ρ̂ − h√
f

σ̂ , σ̂ = β̂

∫ μ̂loc

m̂

ε
√

ε2 − m̂2dε,

ρ̂ = β̂

∫ μ̂loc

m̂

ε2
√

ε2 − m̂2dε,

for m̂ < μ̂loc, and zero otherwise. We introduced the dimen-
sionless variables

p = 1

L2
AdSκ

2
p̂ , ρ = 1

L2
AdSκ

2
ρ̂ , σ = 1

eL2
AdSκ

σ̂ ,

β̂ = e4L2
AdS

κ2

1

π2
, m̂2 = κ2

e2
m2 , μ̂loc = κ

e
μloc .

We choose V (�) and Z(�) such that they interpolate between
AdS in the UV, where r → 0 and � → 0, and hyperscaling
violating in the IR, where r → ∞ and � → ∞. In the UV
and IR they thus take the following forms, respectively,

V (�) = −6 + 2M2
�L2

AdS�
2, Z(�) = 1 in the UV,

V (�) = −V0 exp(α�/3), Z(�) = exp(α�) in the IR.

For computational convenience we will take the dilaton mass
to satisfy M2

� = −2/L2
AdS, such that the dual operator O has

scaling dimension � = 2. Explicitly, we take the following
expressions,

V (�) = −V0

2 cosh(α�/3)
+

(
V0

2
− 6

)
[1 − tanh(α�/3)2],

Z(�) = exp(α�),

with V0 = 24(α2 + 6)/α2 to get the desired dilaton mass in
the UV. Finally, without loss of generality we take α = 3 for
computational convenience.

As we explain in more detail in [9,46], we can numerically
solve the equations of motion for this theory and we find
a one-parameter family of solutions. The free parameter,
φ0/|μ̂|, is the dimensionless combination of the boundary
chemical potential μ̂ and the coupling, φ0, which is the
coupling to the relevant operator O, the operator dual to the
dilaton. For large values of φ0/|μ̂| we find that there is no
fluid; i.e., μ̂loc < m̂ everywhere in the bulk. It follows that
Qv = 0 and the total charge Q = Qh + Qv = Qh. This is
the fully fractionalized phase. When we dial down φ0/|μ̂|,
there is a third-order transition to the partially fractionalized
phase, where the fluid is present in the bulk in a region given
by r1 < r < r2. As we argued before, the region is centered
around r ∼ Q

−1/2
h , while the width of this region grows

with increasing Qv . This can be seen nicely in Fig. 3. We
note that it may be possible to shift the location of the fluid
region around a bit by choosing a different dilaton potential;
however, since there is only one scale in the problem, this
cannot lead to any parametric change in the location.

To check that the minimal surface hangs straight down
through the fluid region, provided the entangling region is
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FIG. 3. (Color online) We plot the region, r1 < r < r2, where
the fluid resides, with r1 in red and r2 in blue, as a function
of the dimensionless parameter, φ0/|μ̂|. The dashed magenta line
is the center of the region (r1 + r2)/2. All radii are multiplied by a
factor

√
Qh to obtain dimensionless units. It is clear that the fluid

region is centered around r ∼ Q
−1/2
h .

large enough, we compute the minimal surface of a disklike
entangling region for two values of φ0/|μ̂|. We choose
φ0/|μ̂| ≈ 7.1, for which Qv/Q ∼ 10−5, and φ0/|μ̂| ≈ 0.12,
for which Qv/Q ∼ 10−1. Finally, for comparison, we also
compute the minimal surface in the fully fractionalized phase;
i.e., Qv/Q = 0. To compute the minimal surface we solve the
equation of motion, (21), for the numerically obtain metric.
It turns out that stability of the numerics requires solving the
equation of motion by shooting out to the boundary from r∗,
defined by ρ(r∗) = 0, instead of shooting in from the boundary.
The solution of the equation of motion near r∗ takes the form

ρ(r) = g(r∗)r∗√r∗ − r + . . . . (28)

It is clear from Fig. 4 that neither the crossover between
AdS and hyperscaling violation nor the presence of the fluid
changes the conclusion that for large enough entangling region
the minimal surface hangs straight down in the region where
the fluid resides.

V. MUTUAL INFORMATION, RENYI ENTROPY, AND
SUBLEADING OSCILLATORY TERMS

In this section we consider more general measures of
entanglement and correlation. Of particular interest is the
mutual information I (A,B) between two regions A and B

defined by

I (A,B) = S(A) + S(B) − S(AB). (29)

It is also useful to generalize the entanglement entropy to the
Renyi entropy Sn(A) defined by

Sn(A) = 1

1 − n
ln

[
tr
(
ρn

A

)]
. (30)

We now discuss both quantities in the context of hyperscaling
violation geometries.

In Ref. [47] the mutual information of a Fermi gas was
computed. Those results, when applied to the bulk fermion

Qh 1 2
r

L

ρ r

Qh 1 2
r

L

ρ r

Qh 1 2
r

L

ρ r

FIG. 4. (Color online) We plot the coordinate ρ of the minimal
surface as a function of the holographic direction r . The entangling
region is a disk of radius L in dimensionless units. From top to
bottom, we have Qv/Q = 0, Qv/Q ∼ 10−5, and Qv/Q ∼ 10−1. The
fluid region r1 < r < r2 is indicated by the shaded area, with r1 in
red and r2 in blue. We also indicate the location of r = Q

−1/2
h by the

black dashed line.

state, imply that in both the hard-wall and hyperscaling viola-
tion geometries, the bulk fermions give a mutual information
which decays as −3 in the large- limit where  is the distance
between A and B. The equal time 	 two-point function at
separation �x decays as |�x|−3/2 and hence the decay of the
mutual information is consistent with the bound

〈OAOB〉2
c � ||OA||2||OB ||2I (A,B), (31)

where 〈OAOB〉c is the connected two-point function.
We may also consider the Renyi entropy. As shown in

Ref. [47], the bulk Renyi entropy of the bulk Fermi gas also
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scales like L ln (L) and goes like

Sbulk fermion,n =
∑
<0

1

2

(
1 + 1

n

)
kF,|∂A|

6π
ln (kF,L) + ..., (32)

where again ... denotes subleading terms. Assuming that the
dual fermion two-point function, which has a quasiparticle
pole, is indicative of a Fermi liquid state in the dual field theory,
the Renyi entropy of the dual Fermi liquid also has the same
n-dependent factor. Hence again we find agreement between a
holographic and a field theory calculation. However, in the case
of the Renyi entropy, the holographic prescription is not really
known. Our calculation here leads us to conjecture that the bulk
Renyi entropy across the minimal surface must be involved
in the computation of loop corrections to the field theory
Renyi entropy. Nevertheless, it must be emphasized that the
minimal surface prescription fails already at the classical level
when considering Renyi entropies and it is not known whether
there is a simple way to compute the leading contribution to
the Renyi entropy using properties of an unbranched (n = 1)
geometry (the formal answer is given by the partition function
of the branched geometry).

Finally, it is worth noting that among the many subleading
terms coming from the bulk entanglement entropy, the pres-
ence of bulk Fermi surfaces implies the existence of special
oscillating terms tied to the Fermi wave vector [48]. These
oscillating terms are expected on general grounds and using
the results of Ref. [48] we see that they have the precise form
expected of the dual Fermi liquid state. Curiously, it seems that
here too the quasiparticle residue is irrelevant as confirmed in
a solvable model [43]. Friedel oscillations have been obtained
holographically in one dimension using monopoles [49], but
it remains to be seen whether we can access Friedel-like
oscillations in correlation functions or entanglement due to
hidden Fermi surfaces in higher dimensions.

VI. DISCUSSION

In this work we have applied the proposal of Ref. [34]
to compute quantum corrections to the entanglement entropy
of the dual field theory in compressible phases with bulk
fermions. The corrections were shown to violate the boundary
law and to conform precisely to the Fermi gas form. Since
the dual fermions are expected to be in a Fermi liquid state,
we find agreement between the holographic and dual field
theory computations of the entropy. In terms of the hidden
charge density Qh and the visible charge density Qv we find

an entropy going like

S ∼ s1
(
Q

1/d

h L
)d−1

ln
(
Q

1/d

h L
) + s2

(
Q1/d

v L
)d−1

ln
(
Q1/d

v L
)
.

Crucially, s1 and s2 are independent of any other details of the
state, and moreover, s2 may be computed both holographically
and in the field theory with perfect agreement. We also
reproduced the detailed shape dependence of the Fermi liquid
contribution to the entanglement. Finally, we studied the
mutual information and made some observations about Renyi
entropies and oscillating terms. The structure of correlation
functions in the hyperscaling violation geometries is still
mysterious [50,51], but the physics of entanglement seems
to agree well with the hidden/visible Fermi surface scenario.

Based on our analysis, it seems that to obtain non-Fermi-
liquid behavior in the loop correction, we must have bulk
fermions that either exist throughout the whole IR geometry
or we must imagine the bulk fermions are themselves in a
non-Fermi-liquid state, e.g., as may occur in dense neutron
stars. An interesting attempt to study more general backreacted
geometries in which the fermions might explore more of the
geometry may be found in Ref. [52].

There is also the question of how to interpret the fact
that fermions sitting near a definite value of r in the
bulk are nevertheless associated with gapless modes. This
observation (and related issues, e.g., bulk Goldstone modes)
raises questions about the generality of the radius to RG
scale correspondence once loop corrections are considered.
Certainly some modification is expected once the geometry
begins to fluctuate. In our case, it seems that the fact that
the fermions sit near a definite value of r indicates that they
are sharp excitations in the dual field theory. By comparison,
fermions spread throughout the geometry might indicate the
lack of a sharp quasiparticle.
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