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We present a theory of the scaling behavior of the thermodynamic, transport, and dynamical properties of a
three-dimensional metal at an antiferromagnetic (AFM) critical point. We show how the critical spin fluctuations
at the AFM wave vector q = Q induce energy fluctuations at small q, giving rise to a diverging quasiparticle
effective mass over the whole Fermi surface. The coupling of the fermionic and bosonic degrees of freedom
leads to a self-consistent relation for the effective mass, which has a strong coupling solution in addition to
the well-known weak-coupling spin-density-wave solution. We use the recently introduced concept of critical
quasiparticles, employing a scale-dependent effective mass ratio m∗/m and quasiparticle weight factor Z. We
adopt a scale-dependent vertex correction that boosts the coupling of fermions and spin fluctuations. The ensuing
spin fluctuation spectrum obeys ω/T scaling. Our results are in good agreement with experimental data on the
heavy-fermion compounds YbRh2Si2 and CeCu6−xAux for 3D and 2D spin fluctuations, respectively.
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I. INTRODUCTION

Quantum phase transitions in metallic compounds have
attracted considerable interest over the last two decades. These
systems exhibit deviations from the standard Fermi liquid
model. This “non-Fermi liquid” behavior is a consequence
of the interaction of the fermionic (Landau) quasiparticles
with bosonic critical fluctuations. Early theories [1,2] of
quantum critical behavior, formulated in the framework of
a Ginzburg-Landau-Wilson action of the order parameter field
φ, found that the effective dimension of the corresponding
φ4-field theory is increased to deff = d + z where d, z are
the spatial dimension of the fluctuations and the dynamical
critical exponent, respectively. In many cases of interest deff is
above the upper critical dimension, so that the fluctuations are
effectively noninteracting and the theory is of the Gaussian
type (for a review see Ref. [3]). While this theory is well
founded in the case of nonmetallic systems, for metallic
systems the question arises whether the fermionic degrees of
freedom may be easily integrated out. In this paper, we show
that it is often not possible to reduce the description to that
of Hertz and Millis [1,2]. Rather, the interplay of fermionic
and bosonic degrees of freedom generates critical behavior
of the fermionic quasiparticles, acting back on the spectrum
of bosonic fluctuations. Then, a strong-coupling regime with
respect to the fermion-boson coupling may be reached.

Experimentally well-studied candidate systems we shall
focus on are the heavy-fermion compounds CeCu6−xAux

(CCA) for which, guided by experiment, we consider quasi-
two-dimensional antiferromagnetic (AFM) spin fluctuations at
the quantum critical point (QCP) x = 0.1 [4] and YbRh2Si2
(YRS), for which we assume AFM fluctuations of three-
dimensional character at the magnetic field-tuned quantum
critical point H = Hc at temperatures T less than 0.3 K,
crossing over to three-dimensional ferromagnetic fluctuations
at higher T [5].

An issue that has hampered progress in developing a strong-
coupling theory of criticality that involves AFM fluctuations
has been that they transfer a large momentum of the order

of the ordering wave vector q = Q. As a consequence, the
self-energy in one-loop order becomes highly anisotropic,
being critical only at so-called “hot spots” on the Fermi surface
that are connected by Q. However, scattering by two AFM
fluctuations, which may be viewed as a spin exchange-energy
fluctuation [6], may transfer a small total momentum and thus
connect cold regions of the Fermi surface. This is because the
intermediate fermion state is far from the Fermi surface and
thus off-shell. We argue here that the one-loop order process
of such energy fluctuations is dominant in providing a renor-
malization of the fermionic quasiparticle effective mass that is
approximately uniform over the Fermi surface. Thus, we con-
sider here the simplest case, in which the fermion self-energy is
only weakly momentum dependent. A different way by which
the effect of the critical AFM fluctuations may be distributed all
over the Fermi surface is by means of impurity scattering [7,8].

However, a problem with multiple fluctuation exchange is
that each additional fluctuation propagator gives rise to an
additional energy integration and will thus contribute a small
phase space factor, anywhere from ω2 to ω, depending on the
critical momentum dependence. As we will show below, such
factors may be offset by inverse powers of the Fermi-liquid
renormalization factor Z−n � 1, provided the quasiparticle
weight factor Z tends to zero, as the excitation energy ω or the
temperature T tends to zero. As discussed in previous work
by two of us [7,8], even if Z → 0 in the limit (ω,T ) → 0 the
quasiparticle picture may still be applicable at nonzero ω,T ,
since the quasiparticle width � gets renormalized by a factor of
Z, which helps to keep it smaller than the excitation energy ω,
a necessary condition for the existence of a quasiparticle peak
in the single-electron spectral function.

A careful identification of the effects of the quasiparticle
critical behavior on the bosonic (AFM) propagator is at heart
of our theory. This includes the determination of critical
vertex corrections of various types. The interplay of spin
fluctuations and fermonic excitations has also been considered
by Abanov and Chubukov [9,10] and Abanov, Chubukov, and
Schmalian [11], and a renormalization group treatment has
been given by Metlitski and Sachdev [12]. However, these
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authors did not consider the quasiparticle renormalization in
the strong-coupling regime.

The quantum critical point in heavy-fermion compounds
has often been associated with a breakdown of the Kondo
effect and therefore a breakdown of the picture of heavy
quasiparticles [13–15]. In this approach, it is assumed that
at the critical point the energy scales of the Kondo effect and
the exchange interaction between the localized f spins (in
the absence of the Kondo effect) are approximately equal.
Some of these scenarios have been developed enough to allow
comparison with experimentally observed critical exponents,
in particular for CeCu5.9Au0.1 and for YbRh2Si2 [16,17].
However, experimentally the quasiparticle mass does not
appear to be drastically reduced (by orders of magnitude)
when the QCP is approached, as would be expected if the
Kondo effect were to be suppressed. We argue here that in
the cases we consider, the Kondo effect, or more precisely
the heavy-quasiparticle picture, remains intact. However, the
quasiparticles experience an AFM spin-exchange interaction
responsible for the ordering of their spins in the AFM state. In
other words, we propose that the ordered state is an itinerant
heavy-quasiparticle SDW state, at least in the neighborhood
of the critical point. The resulting small ordered magnetic
moment is in agreement with observation. Roughly speaking,
the ordered moments provide a magnetic field acting on the
Kondo ions. As long as the f -electron Zeeman splitting caused
by this field is small compared to the Kondo temperature, the
Kondo effect is only weakly suppressed.

In this report, we present a semi-phenomenological theory
of the scaling behavior near an AFM QCP. As discussed above,
we show how spin-exchange energy fluctuations may lead to
a momentum-independent critical quasiparticle self-energy.
The feedback of the critical quasiparticle properties (the
Z factor) into the spin and energy fluctuation spectrum leads to
a self-consistent equation for the quasiparticle self-energy and
effective mass m∗/m ∝ Z−1. This allows a strong-coupling
solution in the form of a fractional power law Z(ω) ∝ ωη.
The value of η for different circumstances will be discussed in
Sec. IV. In Sec. V, we show that the dynamical structure factor
satisfies ω/T scaling within the quantum critical region of the
phase diagram. The free energy obeys scaling characterized
by fractional power laws; this is described in Sec. VI. In
Sec. VII, we present an alternative derivation of our results
in the framework of the spin-fermion model. Comparison of
our theory with experimental data is discussed in Sec. VIII and
we summarize our findings in Sec. IX.

The above scenario depends sensitively on the detailed
nature of spin fluctuations in a given system. For example,
3D AFM fluctuations do not lead to true critical behavior;
i.e., a Gaussian fluctuation theory is applicable, [1,2] provided
the effective mass enhancement by critical fluctuations is
not too large. We argue below that in CCA there is a wide
region of 2D antiferromagnetic fluctuations, which gives rise
to a substantial enhancement of the effective mass and may
drive the system into a strong-coupling regime of 2D or 3D
antiferromagnetic fluctuations. In YRS, on the other hand,
ferromagnetic fluctuations in the temperature regime 0.3 K �
T � 20 K lead to a substantial enhancement of the effective
mass when the system crosses over into a 3D antiferromagnetic
fluctuation regime below 0.3 K.

II. CRITICAL QUASIPARTICLES

Our starting point is a heavy Fermi liquid as in an Anderson
lattice model of correlated f electrons (on-site interaction U )
hybridizing with conduction electrons. The energy scale of the
heavy-fermion band is given by the “coherence temperature”
Tcoh, which is well above the temperature regime for which
“non-Fermi liquid” behavior is observed near a QCP. On
top of the heavy-fermion quasiparticle renormalization, the
critical fluctuations cause a further renormalization on which
we focus here. The single-particle Green’s functions may
be decomposed into a quasiparticle term and an incoherent
contribution, G(k,ω) = ZGqp + Ginc, where the quasiparticle
weight factor Z determines the quasiparticle effective mass m∗
and is defined by Z−1 = 1 − ∂Re�(ω)/∂ω = m∗/m. Here,
�(ω) is the electron self-energy, whose real and imaginary
parts determine the quasiparticle properties. The quasiparticle
Green’s function is given by Gqp(k,ω) = [ω − Ek − i�]−1,
with Ek = (m/m∗)vF (k − kF ), where vF is the Fermi velocity
of the heavy-fermion band and the quasiparticle width is
� = Z Im�(Ek).

The condition for the quasiparticle picture to be valid
is � < |Ek|, which is satisfied in the Fermi-liquid regime,
(� = cE2

k � |Ek| in the limit Ek → 0). Here, we argue that
this quasiparticle stability condition may be satisfied even in
non-Fermi-liquid situations. We extend the usual quasiparticle
picture by recognizing that the parameter Z = m/m∗, as
defined above, depends on the energy scale, Z = Z(ω). Since
the (retarded) self-energy is an analytic function in the upper-
half ω plane, the real and imaginary parts of any nonanalytic
term (in the lower half plane) are locally connected. Even
in a true non-Fermi-liquid phase with �(ω) ∝ −i(i|ω|)1−η,
η < 1 so that Im�(ω) ∝ Re�(ω) ∝ |ω|1−η and Z ∝ (|Ek|)η,
one finds �/|Ek| = tan(π

2 η) < 1 for 0 < η < 1/2. In this case,
although Z = 0 at the Fermi surface, the spectral function for
nonzero excitation energy may be peaked sharply enough to
separate a quasiparticle contribution from the incoherent part.
In Fig. 1, we show the spectral function Im G(k,ω) for various
choices of this “non-Fermi-liquid exponent” η, demonstrating
that there is still a well-defined quasiparticle peak.
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FIG. 1. (Color online) Non-Fermi-liquid spectral function, for
self-energy �(ω) ∝ −i(i|ω|)1−η, with η = 1/8,1/3,3/4 (red, green,
blue, resp.).
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III. CRITICAL FLUCTUATION SPECTRUM

We assume that in the paramagnetic phase of a metal close
to an antiferromagnetic quantum critical point, the self-energy
for the single-particle Green’s function is determined by the
interaction with magnetic fluctuations. We take the imaginary
part of the renormalized retarded dynamical spin susceptibility
for wave vectors near the AFM ordering wave vector Q to be
of the form

Imχ (q,ω) = N0
(
ωλ2

Q/vF Q
)

(
r + q2ξ 2

0

)2 + (
ωλ2

Q/vF Q
)2 , (1)

where q is measured from the ordering wave vector Q. Here,
N0 is the bare density of states at the Fermi surface, vF is
the bare Fermi velocity, and ξ0 � k−1

F is the microscopic AFM
correlation length. The control parameter r is a function of both
the tuning field and the temperature. The factor λQ is the low-
energy vertex for the AFM fluctuation—electron scattering.
A microscopic derivation of Ward identities valid at nonzero
momentum q, which shows that λQ ∝ Z−1 ∝ ω−η, is available
[18]. The singular enhancement of the vertex is present even
if only one of the fermions entering the vertex is on-shell. In
what follows, we use this result. We expect it to have singular
behavior, e.g., λQ ∼ ω−φ , similar to that of the q = 0 vertex
for which φ = η, the Z-factor exponent, by virtue of a Ward
identity. In what follows, we use the results of Ref. [18] and
choose φ = η also for λQ. In fact, we show in this paper that
this choice enables excellent agreement with experiment.

At T = 0, the control parameter r vanishes at the QCP as
a fractional power r ∝ |r0|2ν , where r0 ∝ (H − Hc) or r0 ∝
(P − Pc), for magnetic field or pressure tuning, and ν is the
correlation length exponent. In the Appendix, we show that
ν = 1/(2 + zη) [Eq. (A1)], where z is the dynamical exponent,
determined in Sec. V. The non-Fermi-liquid exponent η is
self-consistently determined in Sec. IV.

We now define an energy-fluctuation propagator χE(κκκ,ω)
by combining two spin fluctuation propagators, in the form

Im χE(κκκ,ω) =
∑
q1,ω1

Gk+q1Gk+q1−κ Imχ (q1,ω1)

× Imχ (q1 − κκκ,ω1 − ω)[b(ω1 − ω) − b(ω1)],
(2)

where b(ω) is the Bose function. The Green’s functions
Gk+q1 ,Gk+q1−κ are off-shell for most values of the momentum
q1 and each may be replaced by 1/εF . Performing the
d-dimensional momentum integration by Fourier transform,
we get

ImχE(κκκ,ω) ≈ N3
0 λ−2

Q

(
ωλ2

Q

vF Q

)d−1/2 1( ωλ2
Q

vF Q
+ κ2ξ 2

0 + r
)(d+1)/2

.

(3)

IV. SELF-CONSISTENT DETERMINATION OF
QUASIPARTICLE SELF-ENERGY

Now we set up a self-consistent determination of the
quasiparticle self-energy via the leading term in a skeleton

graph expansion in terms of the boson propagator χE . The
imaginary part of the self-energy is given by

Im�(k,ω) = −λ2
E

∫
dν1

π

∑
q

ImG(k + q,ω + ν1)

× ImχE(q,ν1)[b(ν1) + f (ω − ν1)]

≈ vF QZ−2
(
ωλ2

Q/vF Q
)d−1/2

∝ |ω|d−1/2−η(2d+1). (4)

The interaction vertex λE = λ2
Qλv , where λv is ∝Z−1, as it

arises through a Ward identity connected to energy conser-
vation. We used λQ ∝ Z−1, as discussed above, below Eq.
(1). The Fermi and Bose functions f (ω),b(ω) confine the
ν1 integration at low T to the interval [0,ω]. In Eq. (4),
we used the power law Z(ω) ∝ |ω|η. The scale-dependent
contribution to Re �(ω) follows from analyticity as Re �(ω) ∝
(ω/vF Q)d−1/2Z−(2d+1). This leads to the self-consistency
relation for Z(ω)

Z−1(ω) = 1 − ∂Re�(ω)/∂ω

≈ 1 + Z−2d−1(ω/vF Q)d−3/2. (5)

We now explore the consequences of the scale-dependent
Z. In general, the ω and T dependence of Z is obtained
by substituting

√
ω2 + a2T 2 for ω, where a is a constant of

order unity. For frequencies less than the temperature, we may
replace ω by T . As long as Z−2d−1(T/vF Q)d−3/2 � 1 for any
T , the system will be in the Gaussian fluctuation regime all
the way down to the critical point. If, however, the initial value
of Z−1(T ), when one enters the AFM fluctuation regime, is
sufficiently large, such that Z−2d−1(T/vF Q)d−3/2 � 1, a new
regime is accessed, which is of a strong-coupling nature. We
find the characteristics of this new regime within the present
approximation by solving the self-consistent Eq. (5), to get

Z(T ) ∝ (T/vF Q)η, (6)

where the exponent η is found to be

η = (2d − 3)/4d. (7)

In the case of only AFM fluctuations in a clean system, it is
difficult to satisfy the strong-coupling condition of sufficiently
large Z−1(T ). However, if on the initial approach to the critical
point, fluctuations dominate that lead to a growing Z−1(T )
with decreasing T , the condition may be met at some point.
The precise crossover point is determined by the crossover of
these precursor fluctuations to the critical AFM fluctuations
and by the condition above that leads to Eq. (6). As discussed
in [7,8] impurity scattering helps to enhance the effect of AFM
fluctuations on Z(T ). In addition, there are clear indications
in the data on YbRh2Si2 of 3D FM fluctuations [19]. In that
case, one finds Z−1(T ) ∝ ln(T0/T ), so that indeed Z−1 grows
as T → 0.

V. CRITICAL EXPONENTS AND DYNAMICAL SCALING

The critical behavior of the spin-excitation spectrum as
discussed above, see Eq. (1), is given by [employing units

045105-3
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(vF Q,ξ−1
0 ) for (ω,q)]

Imχ (q,ω) ∝ ω1−2η

[ξ−2 + q2]2 + (ω1−2η)2
, (8)

where

ξ = r−1/2. (9)

By equating the terms q2 and ω1−2η in the denominator, we
find the dynamical critical exponent as

z = 2/(1 − 2η) = 4d/3. (10)

Thus, in the critical region, the leading temperature depen-
dence of the correlation length is given by ξ (Hc,T ) ∼ T −1/z

and using Eq. (A1), we find the correlation length exponent
ν = 3/(3 + 2d). The boundary of the critical region—the
“critical cone”—in the (H,T ) phase diagram is found from
ξ (H,T = 0) = ξ (Hc,T ) as T ∼ |H − Hc|zν .

Then 1/ξ (r0,T ) has the form

1/ξ (r0,T ) = T 1/zg(r0T
−1/νz), (11)

where g(x) ≈ 1 + xν . The (ω,T ) dependence of Z may be
accounted for with the form Z(ω,T ) ∝ T ηζ (ω/T ), where
ζ (x) ∝ (x2 + a2)η/2.

Then

Imχ (q,ω) ∝ T −2/z (ω/T ζ 2)

[g2 + T −2/zq2]2 + (ω/T ζ 2)2
, (12)

which, with the use of Eq. (8), shows the following general
scaling relation:

Imχ (q,ω) ∝ T −2/z�

(
ω

T
,qξ ; r0T

1/zν

)
. (13)

Inside the critical cone, we may set r0 = 0 so that g = 1
and ξ−1 ∝ T 1/z. Defining x = ωξz = ω/T and y = qξ , we
find the scaling form

Imχ (q,ω) ∼ ξ 2�(x,y), (14)

�(x,y) = x/ζ 2(x)

(1 + cqy2)2 + [x/ζ 2(x)]2
, (15)

where cq is a constant.

E/T

theory

data

T
3
/
4
χ

FIG. 2. (Color online) Inelastic neutron scattering: Comparison
of theory Eq. (16) and experimental data [20] for CeCu6−xAux at the
critical concentration x = 0.1.

At the ordering wave vector, y = 0 so the spin excitation
spectrum obeys ω/T scaling inside the critical cone:

Imχ (Q,ω) ∼ T −2/z ω/T ζ 2(ω/T )

1 + [ω/T ζ 2(ω/T )]2
. (16)

A comparison of this scaling form with neutron scattering data
on CeCuAu is shown in Fig. 2, where we used d = 2, so that
z = 8/3 and η = 1/8.

VI. FREE ENERGY

The critical part of the free energy density may be derived
from the expression for the entropy density in terms of the
self-energy [21]:

S

V
= 1

2π
N (0)

∫
dωω

T 2 cosh2 ω
2T

[ω − Re�(ω)]. (17)

Substituting the critical self-energy found above and integrat-
ing over temperature, we find the scaling form of the free
energy density in the case of d-dimensional spin fluctuations
(d = 2,3) in a 3D metal

f (H,T ) = ξ−(2d+1)�f (r0ξ
1/ν,T ξz). (18)

The correlation volume Vc ∼ ξ (2d+1) is understood as
follows: The underlying critical degrees of freedom in
the very low temperature Anderson lattice picture are the
heavy-fermionic quasiparticles described by the propagator
G(k,ω)−1 = ω − vk − �(ω) with �(ω) ∝ ω1−η. Therefore,
their dynamical exponent zf = 1/(1 − η) and their dimension-
ality is df = 1 [22]. The entropy of the system is determined
by hyperscaling for the fermions: S ∝ T df /zf . Therefore, since
ξ ∝ T −1/z, where z = 4d/3, the free energy density f ∝
T 1+df /zf ∼ ξ 2d+1 . Here, z and d are the bosonic exponents
discussed above.

The specific heat coefficient follows as

C/T ∝
{
T (2d+1−2z)/z, critical regime,
r

ν(2d+1−2z)
0 , Fermi liquid regime.

(19)

For the critical part of the magnetization we find

M − M(Hc,0) ∝
{−T , critical regime,
−r

ν(2d+1)−1
0 , Fermi liquid regime.

(20)
The susceptibility has a critical part

χ − χ (Hc,0) ∝
{−T 1−1/νz, critical regime,
−r

ν(2d+1)−2
0 , Fermi liquid regime.

(21)

Using ∂M/∂T = −constant, we find the Grüneisen ratio in
the critical regime:

�G = −∂M/∂T

C
∝ 1

C
∝ T (z−2d−1)/z, (22)

while in the Fermi liquid regime, we have the universal result

�G = − Gr

H − Hc

, Gr = −
(

z − 2d + 3

3

)
ν. (23)

The critical scaling of transport properties is obtained
by observing that the quasiparticle relaxation rate scales as
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� ∝ ξ−z��(r0ξ
1/ν,T ξz). Then the resistivity behaves as

ρ − ρ(Hc,0) ∝ m∗

m
�

∝
{
T (z+2)/2z, critical regime,
−|r0|(2−3z)ν/2T 2, Fermi liquid regime.

(24)

For the thermopower S we get, using S ∝ m∗T , S ∝ C in both
the critical regime and the Fermi liquid regime.

VII. SCALING PROPERTIES WITHIN THE
SPIN-FERMION MODEL

The results of the phenomenological theory, presented in
the previous sections, can alternatively be derived within an
approach based on the spin-fermion model [11,12], assuming
fermions ψ to couple to a spin-1 boson field φ describing
collective antiferromagnetic spin fluctuations according to

Sint = g

∫
ddxψ†σψ ·φ. (25)

As mentioned in Sec. I, the role of critical fluctuations for
the fermionic spectrum was traditionally studied at and near
hot spots or lines of the Fermi surface, where εkF

= εkF +Q
with magnetic ordering vector Q. For example, the self-energy
in one-loop approximation at hot spots behaves [11] as
�h(ω) ∝ g2iω|ω| d−3

2 for a d-dimensional system. Note that in
this section, ω is a Matsubara frequency. Thus for d � 3 one
obtains deviations from Fermi liquid behavior [23], �FL(ω) ∝
iω, for hot momenta. Up to order g2, Fermi liquid behavior
occurs for generic, cold quasiparticles. However, Hartnoll
et al. [6] demonstrated that higher order processes, involving
fermions which effectively couple via off-shell intermediate
states to φ2, affect the cold regions as well, albeit with less
strong singularities in the single-particle excitation spectrum.
Generalizing their findings to arbitrary dimension, one finds a
self-energy contribution on the cold parts of the Fermi surface
�c(ω) ∝ g4iω|ω|d− 3

2 , as we previously obtained in Eq. (4).
Even though this behavior is subleading with respect to Fermi
liquid behavior for d > 3

2 , it constitutes a singular correction. It
is at the heart of our theory to show how this singular correction
may be boosted within a self-consistent approach.

To extract this important physics, we “patch” the Fermi
surface into hot and cold regions (h,c) and start from a bare
action that sums over the patches (whose details are described
in what follows):

S =
∑
j=h,c

∫ [
ψ

†
j

(
iω − ε

j

k

)
ψj + gψ

†
j σψj · φ + λψ

†
j ψjφ · φ

]

+1

2

∫
(r0 + q2)φ · φ. (26)

Here, and in what follows, the boson field φ has momentum �q,
the fermion field ψj has momentum �k within the patch j , and
the integrations are over all these momenta. In Eq. (26), λ is the
coupling of quasiparticles to a pair of bosons via intermediate
off-shell fermionic states [6], as mentioned above. If we couple
an external magnetic field to the electron spin,

∫
h · ψ†σψ ,

we may shift φ′ = φ − h/g and obtain the relation χ (q,ω) =

D(q,ω) − r−1
0 , which connects the spin susceptibility χ (q,ω)

and the propagator D(q,ω) of the bosons. Let �(q,ω) be the
full bosonic self-energy. Then

D(q,ω) = 1

r0 + q2 − �(q,ω)
.

Close to the critical point at the ordering vector (q = 0), r0 �
�(Q,0). This model is valid up to the bandwidth, W .

We now set up a matching procedure by first integrating out
all states down to an energy � < W . This introduces boson
and (hot and cold) fermion self-energies into the bare action
of Eq. (26) as well as renormalized couplings � among the
fields. The effective low-energy action is

Slow =
∑
j=h,c

∫
ψ

†
j [iω − vk − �>

j (k,ω) + �>
j,gσ · φ]ψj

+ 1

2

∫
[r0 + q2 − �>(q,ω)]φ2 +

∫
�>

λ ψ†
cψcφ

2.

(27)

We have taken the bare Fermi velocities of both hot and
cold electrons to be equal, for simplicity. The relevant bare
couplings are g and λ � g2/EF . Here �>

j (k,ω), etc., refer
to scattering processes that involve energies above �. The
behavior in the high-energy region is governed by the bare
action [Eq. (26)], while the behavior for energies below � is
governed by Slow. In what follows, we shall match the low-
and high-energy sectors at �.

We parametrize the self-energy and vertex functions as

�>
j (k,ω) = (1 − Yj,ω)iω + v(Yj,k − 1)k,

�>
j,g(k,q,ω,�) = gYj,g, (28)

�>
λ (k,q,ω,�) = λY 2

c,gYλ.

The Yj are all functions of �.
Introducing quasiparticle operators ψj,r = ψjY

1/2
j,ω , we ar-

rive at the low-energy quasiparticle action

Sr =
∑
j=h,c

∫ [
ψ

†
j,r (iω − v∗

j k)ψj,r + g∗
j

∫
ψ

†
j,rσψj,r · φ

]

+ 1

2

∫
[r0 − �>(q,0) + q2]φ2

+ λ∗
∫

ψ†
c,rψc,rφ

2 (29)

that is governed by renormalized velocities and cou-
pling constants: v∗

j = vYj,k/Yj,ω, g∗
j = gYj,g/Yj,ω, and λ∗ =

λY 2
c,gYλ/Yc,ω. In the following, we shall label the self-energies

of the ψr field by a subscript “qp”.
There are no singular corrections to the boson self-energy;

its nonsingular frequency and momentum behavior can be ab-
sorbed into the existing frequency and momentum dependence
and it is unnecessary to introduce a renormalized φ operator.
Finally, the boson self-energy �qp(q,ω) is determined pertur-
batively; see below.

The renormalization of the coupling constant λ is a
consequence of the composite nature of its coupling and
reflects the fact that the coupling to energy-density fluctuations
is affected by renormalizations Yg of the coupling constant g.
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The key idea is to develop a perturbation theory in the low-
energy sector in terms of the renormalized coupling constants.
To this end, we take advantage of the fact that the momentum
dependence of the self-energy is weak, so that Yj,k ≈ 1. In
addition we use the small-q Ward identity Yλ = Yc,ω, which
reflects energy conservation.

Making contact with the earlier sections, we introduce
Z−1

j = Yj,ω for the quasiparticle weights. Zc is to be identified
with the Z of Secs. I–IV. We obtain v∗

c = vZc, v∗
h = vZh,

g∗
c = ZcYc,g , g∗

h = gZhYh,g , and λ∗ = λY 2
c,g . This leaves us

with three unknown renormalization factors. At a quantum
critical point one expects power-law solutions of the kind
Yh,g ∝ Yc,g ∝ |ω|−φ (we have assumed that the two Yj are gov-
erned by the same exponent φ, which we leave undetermined
until the end of this section), Zh ∝ |ω|ηh , and Zc ∝ |ω|ηc .
These three exponents lead to corresponding dynamic scaling
exponents of the critical degrees of freedom: spin fluctuations,
hot quasiparticles, and cold quasiparticles. In the case of the
fermionic degrees of freedom, we obtain dynamic scaling
exponents zf,c = 1

1−ηc
for cold and zf,h = 1

1−ηh
for hot portions

of the Fermi surface. For the bosonic self-energy due to a
quasiparticle loop, it follows from low-energy perturbation
theory that

�qp(q,ω) ≈ �qp(Q,0) − γ |ω|
with the coefficient of the Landau damping γ =
(g∗

h/v
∗
h)2/Q = (gYh,g/v)2/Q.

Inserting this result into the bosonic propagator, we find at
the critical point the dynamic bosonic scaling exponent

z = 2

1 − 2φ
. (30)

As pointed out earlier, an anomalous dynamic critical ex-
ponent, as seen in the experiments by Schröder et al. [20],
requires a nontrivial exponent φ in the vertex renormalization.
A straightforward perturbation theory (at T = 0) with respect
to λ∗ yields the self-energy of renormalized quasiparticles on
the cold parts of the Fermi surface:

�qp,c(iω) ∝ λ∗2

v∗
c

γ d−5/2sign(ω)|ω| 2d−1
2 , (31)

while perturbation theory with respect to g∗
h yields for hot

carriers

�qp,h(iω) ∝ g∗2
h

v∗
h

γ d/2−3/2sign(ω)|ω| d−1
2 . (32)

Thus far, high- and low-energy processes have been treated
rather differently. Yet, they meet at the scale �. The matching
is realized as follows: For each sector (hot, cold), the Green’s
function G generated by the action Slow is matched to Gqp, the
one generated by the low-energy “quasiparticle” action Sr of
Eq. (29). We find

G(ω = �) = Zs(ω = �)Gqp(ω = �), (33)

where 1/Zs(ω) = 1 − ∂�>(ω)/∂ω.
In a genuine strong-coupling regime, we expect that the

quantum critical behavior is not confined to low energies but
extends to high energies. Then the scale � is not a physically
motivated crossover scale, but rather an arbitrary intermediate

scale. Therefore, we can generalize Eq. (33) and request that
for arbitrary ω,

�qp(ω) = Zs(ω)�>(ω), (34)

where the left-hand side is given by the perturbative results
of Eqs. (31) and (32). In addition, the matching yields that
Zs is identical to Z = 1/Yω of earlier paragraphs. Knowing
the power-law behavior of �qp, we may look for power-law
solutions Zj ∝ ωηj , with the result that

ηc = d − 3

2
+ φ(1 − 2d), (35)

ηh = 3 − d

2
+ φ(d − 1). (36)

Low-order perturbation theory within the spin-fermion model
yields φ = 0 for d > 2; i.e., there are no singular renormaliza-
tions of the fermion-boson coupling g and correspondingly
no changes in the dynamic scaling exponent z, Eq. (30),
from its mean-field value z = 2. In this limit, we obtain for
hot carriers that ηh(φ = 0) = 3−d

2 . Most interestingly, we do
obtain a nontrivial result for the anomalous exponent of the
cold carriers η(φ = 0) = d − 3/2. Thus, even at the lowest
level the self-consistent perturbation theory presented here
yields genuine non-Fermi-liquid behavior on the entire Fermi
surface.

Our phenomenological framework developed here allows
furthermore to go beyond the spin-fermion model to include
effects of higher order perturbation theory or due to additional
interaction channels. For example, as shown recently [24],
the actual derivation of the q = 0 Ward identity requires the
resummation of an infinite class of diagrams, including, in
particular, diagram structures of the Azlamazov-Larkin type
[25]. Recently, new Ward identities for the spin vertex that are
valid at any wave vector q have been discovered [18], which
relate the spin vertex to the effective mass enhancement. As
discussed above, we can explore the implications of this result,
that the Ward identity for the spin-vertex at q = 0 carries
over to the vertex at momentum transfer q = Q, which means
Yh,g = Z−1

c . This relation immediately implies φ = ηc, which
turns Eq. (35) into a self-consistent equation for ηc and yields

ηh = 3 + d

4d
, ηc = 2d − 3

4d
, (37)

as was obtained in the phenomenological theory presented
above, in Eq. (7), including the dynamic scaling exponent
z obtained earlier in Eq. (10). In fact, (Zc, ηc) should be
identified with (Z,η) of previous Secs. I–IV.

VIII. COMPARISON WITH EXPERIMENTS
ON CeCu6−xAux

The above results, in the case of 3D fluctuations, are
identical to the ones obtained by two of us previously, [7,8],
where impurity scattering was invoked to give rise to a critical,
weakly momentum-dependent self-energy. In particular, the Z

exponent η = 1/4 found there, and the ensuing critical indices
z = 4,ν = 1/3, are the same as the ones found in the present
work for the clean system. The excellent agreement of the
theory [7,8] with the experimental data on YbRh2Si2 (YRS)
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C/T = −3 + 4 T−1/8
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FIG. 3. (Color online) Specific heat: Comparison of theory
Eq. (19) and experimental data [26] for CeCu6−xAux at the critical
concentration x = 0.1.

in the regime close to the QCP therefore applies to the present
theory as well. In contrast to that earlier work, the present
results do not depend on the impurity concentration. Indeed,
in experiment, the critical parts of, e.g., the specific heat do
not show a dependence on the impurity content of the sample.

We turn to a different case, CeCu6−xAux (CCA), for
which a QCP has been found at the concentration x = 0.1
at ambient pressure in the absence of a magnetic field
and at slightly different concentrations at a critical pressure
and/or an applied critical field. As suggested by the neutron
scattering data, the magnetic fluctuations there appear to be
quasi-two-dimensional. We therefore compare our results for
d = 2 with the available data. In doing this we keep in mind
that generically in the case of quasi-two-dimensional spin
fluctuations in a three-dimensional metal, the hot regions
on the Fermi surface (the regions where both partners of a
particle-hole excitation at q = Q are near the Fermi surface
(εk ≈ εk+Q ≈ 0) occupy a finite fraction of the Fermi surface
(the scenario of quasi-two-dimensional fluctuations in the 3D
metal CCA was first proposed by Rosch et al. [27] in the
framework of Hertz-Millis theory). We assume this fraction
to be sufficiently small, such that over a wide intermediate
temperature range, quasiparticles on the cold parts of the
Fermi surface dominate. However, below some crossover

theory

data

ρ = 60.6 + 44.8 T 7/8

ρ
(μ

Ω
cm

)

T (K)

FIG. 4. (Color online) Resistivity: Comparison of theory Eq. (24)
and experimental data [28] for CeCu6−xAux at the critical concentra-
tion x = 0.1.

T (K)

M
/H

(μ
B

/
T

)

M/H = 0.223 − 0.07T + 0.02T 2

(at H = 0.1 T)

data
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0.17

0.18
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FIG. 5. (Color online) Uniform magnetization: Comparison of
theory Eq. (20) and experimental data [26] for CeCu6−xAux at the
critical concentration x = 0.1.

temperature the critical behavior in that case will be governed
by the hot quasiparticles. In Fig. 2, we have already compared
theory and experiment for the dynamical spin susceptibility. In
Fig. 3, we show the specific-heat data [26] in comparison with
C/T ∝ T −1/8 as obtained above in Eq. (19). The resistivity
result ρ(T ) − ρ(0) ∝ T 7/8 of Eq. (24) is fitted to the data in
Fig. 4.

Our prediction for the uniform magnetization is M(T ) =
M(0) − aT + bT 2, from Eq. (20) augmented by a Fermi liquid
correction ∝T 2. It fits the data [26] well, as shown in Fig. 5.

IX. CONCLUSION

We presented a semi-phenomenological theory of quantum
criticality near a critical point that separates antiferromagnetic
and paramagnetic phases of a metal. Starting from the assump-
tion that the Landau quasiparticle effective mass diverges on
approaching the critical point, giving rise to critical quasi-
particles, we identified the corresponding renormalization of
the dynamical spin susceptibility near the antiferromagnetic
wave vector. Critical contributions to the electron self-energy
induced by antiferromagnetic fluctuations in a clean system
are known to be strongly anisotropic (confined to the “hot
spots”). However, impurity scattering may be shown [7,8]
to distribute the effects of critical scattering all over the
Fermi surface. Here we have shown that even in a clean
system, the critical antiferromagnetic fluctuations give rise
to a critical self-energy uniformly over the Fermi surface.
This is because the magnetic fluctuations generate energy
fluctuations, which diverge in the long-wavelength limit. The
scattering of quasiparticles off these energy fluctuations leads
to a contribution to the effective mass which is nominally
proportional to a positive power of energy, but is strongly
enhanced by factors of the effective mass itself. This leads
to a self-consistency relation for the effective mass (or the
quasiparticle Z factor), which may have a strong-coupling
solution provided the initial value of Z at the appropriate
high-energy scale is sufficiently small (as may be caused by
precursor fluctuations leading to a weakly diverging effective
mass). While the critical quasiparticles living on the “cold”
parts of the Fermi surface dominate most of the observable
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quantities, the “hot” quasiparticles may be shown to be even
more singular; e.g., in d = 3, we find the equivalent of the Z-
factor exponent η to be = 1/2. In this context, it is interesting
to observe that the observed critical behavior of CCA depends
on whether the QCP is tuned by varying the Au concentration,
the pressure, or the magnetic field. It is conceivable that in
the case of magnetic field tuning the precursor fluctuations
necessary to access the strong-coupling regime are too weak
so that the system remains in the weak-coupling regime, as is
apparently observed. A further condition for the applicability
of the self-consistent solution is that the effective dimension
of the bosonic fluctuations, z + d, is sufficiently above the
upper critical dimension of the appropriate field theory (e.g.,
φ4 theory), such that boson-boson-interaction effects may be
neglected.

Application of our theory to the cases of 3D and 2D
fluctuations in a three-dimensional metal leads to a critically
diverging effective mass m∗ ∝ T −η with η = 1/4 (3D) and
η = 1/8 (2D), in good agreement with experimental data on
the two heavy-fermion compounds YRS and CCA, where
neutron scattering showed the presence of 3D and 2D
AFM fluctuations. Our theory obeys hyperscaling, taking
into account the scaling of the critical fermions. Further
comparisons of our theory with experimental data on YRS
and CCA show good agreement. In particular the universal
behavior of the Grüneisen ratio in the quantum-disordered
regime measured in YRS is in excellent agreement with our
result [8].

Finally, we emphasize that we assumed the heavy quasi-
particles to be robust, though modified by scattering from
critical spin fluctuations. There is no breakdown of the Kondo
effect nor an associated collapse of part of the Fermi surface
in our scenario. Experimental features, such as the crossover
behavior observed in transport properties (and, to a lesser
extent, in the thermodynamic quantities) across the “T ∗ line”
in the T-H phase diagram of YRS, may be accounted for by
a change in quasiparticle scattering strength associated with
thermal activation of the (ESR) spin resonance as well as by
single-quasiparticle spin-flip scattering [29,30].

While the good agreement of our theory with experiment
across the board is encouraging, there is a need to put
the phenomenological assumptions it involves on a firm
microscopic basis. Work in this direction is in progress.
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APPENDIX: CORRELATION LENGTH

The control parameter r in Eq. (1) that describes the distance
to the critical point has a nonanalytic contribution from the
irreducible spin polarization �(q,ω), which generates the full
susceptibility:

χ (q,ω) = �(q,ω)

1 + �ω(q)�(q,ω)
, (A1)

where �ω(q) is an irreducible quasiparticle-quasihole scatter-
ing vertex that has a minimum at q = Q. Schematically,

�(Q,ωm) =
∑
k,n

λ2
QG(k,εn)G(k + Q,εn + ωm), (A2)

where λQ is the spin vertex part discussed in the text, Eq. (1).
The imaginary part of � arises from Landau damping and

is renormalized by the λQ vertices:

Im �(Q,ω) ∝ N0λ
2
Q(ω/vF Q). (A3)

In contrast, the real part of � is governed by high-energy
contributions and its leading contribution is unrenormalized
Re �(Q,ω) ∝ N0(1 + . . .). There is, however, a nonanalytic
subleading contribution to Re �, which may be seen from the
Kramers-Kronig transform on Im � to be of the form

Re �(Q,0) ∝ N0λ
2
QT .

This contribution is responsible for the T dependence of the
correlation length in the critical region: 1/ξ (T ) ∝ λQ(T )T 1/2.

We turn now to the dependence of ξ on the tuning field,
say H . The scattering vertex �ω is analytic in H , but we
expect �(Q,ω = 0) to be nonanalytic at the critical field Hc.
This may be seen by examining the behavior of ∂�/∂H .
From Eq. (A2), one sees that this involves a factor ∂G/∂H

that contains a (q = 0,ω → 0) spin vertex, which is ∝1/Z,
from a Ward identity related to particle number and spin
conservation. Outside the critical cone, Z(H ) ∝ (H − Hc)ηzν ,
so that integrating ∂�/∂H ∝ 1/Z(H ), we find Re �(H ) ∝
(H − Hc)1−ηzν . By equating Re � and ξ−2 ∝ (H − Hc)zν , we
determine the correlation length exponent as

ν = 2

2 + zη
. (A4)
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Rev. Lett. 79, 159 (1997).
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