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Spin-orbit coupling in octamers in the spinel sulfide CuIr2S4: Competition between spin-singlet
and quadrupolar states and its relevance to remnant paramagnetism
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We theoretically investigate magnetic properties in the low-temperature phase with the formation of eight-site
clusters, octamers, in the spinel compound CuIr2S4. The octamer state was considered to be a spin-singlet state
induced by a Peierls instability through the strong anisotropy of d orbitals, the so-called orbital Peierls state. We
reexamine this picture by taking into account the spin-orbit coupling, which was ignored in the previous study.
We derive a low-energy effective model between jeff = 1/2 quasispins on Ir4+ cations in an octamer from the
multiorbital Hubbard model with the strong spin-orbit coupling by performing the perturbation expansion from
the strong correlation limit. The effective Hamiltonian is in the form of the Kitaev-Heisenberg model but with an
additional interaction, a symmetric off-diagonal exchange interaction originating from the perturbation process
including both d-d and d-p-d hoppings. Analyzing the effective Hamiltonian on two sites and the octamer by the
exact diagonalization, we find that there is competition between a spin-singlet state and a quadrupolar state. The
former singlet state is a conventional one, adiabatically connected to the orbital Peierls state. On the other hand,
the latter quadrupolar state is stabilized by the additional interaction, which consists of a linear combination
of different total spin momenta along the spin quantization axis. In the competing region, the model exhibits
paramagnetic behavior with a renormalized small effective moment at low temperature. This peculiar remnant
paramagnetism is not obtained in the Kitaev-Heisenberg model without the additional interaction. Our results
renew the picture of the octamer state and provide a scenario for the intrinsic paramagnetic behavior recently
observed in a muon spin rotation experiment [K. M. Kojima et al., Phys. Rev. Lett. 112, 087203 (2014)].
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I. INTRODUCTION

Interplay between charge, spin, and orbital degrees of free-
dom is a central issue in strongly correlated electron systems.
It brings about fascinating properties, such as the colossal
magnetoresistance and multiferroics in manganites [1,2] and
the superconductivity in iron-based compounds [3]. Spinels
are a family of compounds that provide a playground for such
cooperative effects between the multiple degrees of freedom.
For instance, the cooperative effects result in successive
phase transitions associated with magnetic and orbital orders
in AV2O4 (A = Zn, Mg) [4,5], a helical dimerization in
MgTi2O4 [6], and a formation of seven-site clusters (hep-
tamers) in AlV2O4 [7]. Particularly, in these exotic phenomena,
the orbital degree of freedom describing the anisotropy of the
electronic cloud plays a key role in their magnetic and elastic
properties.

The iridium sulfide CuIr2S4 is one of the spinel compounds
in which the multiple degrees of freedom are intricately
entangled with each other [8–16]. In this compound, the
nominal valence of an Ir cation is 3.5+, which corresponds to
the mixed valence state of Ir3+ and Ir4+. This was confirmed
by x-ray photoemission spectroscopy [9] and NMR [10], both
of which indicate that Cu cations are in the Cu+ state [9].
The charge degree of freedom is frozen associated with
the metal-insulator transition at 230 K. The transition is
accompanied by the structural change from cubic to tetragonal
symmetry [11,12]. In the low-temperature insulating phase,
the peculiar charge ordering takes place so that Ir4+ cations
form eight-site clusters—octamers, as shown in Fig. 1(a).
The formation of octamers was elucidated by structural
analyses by using synchrotron x-ray diffraction and neutron
diffraction; below the charge ordering temperature, it was

shown that the system exhibits considerable changes of Ir-Ir
bond lengths, leading to the formation of eight-site rings
with dimerization in four bonds in each ring, as shown in
Fig. 1(a) [12]. Moreover, the charge disproportionation of
Ir3+ and Ir4+ was observed by optical conductivity measure-
ment [13] and x-ray photoemission spectroscopy [14,15]. The
magnetic susceptibility was also measured in CuIr2S4 [16].
It shows a sharp drop at the metal-insulator transition from
the high-temperature Pauli paramagnetic behavior. In the
low-temperature insulating phase, the susceptibility exhibits
diamagnetism with less temperature dependence. This result
suggests the formation of nonmagnetic spin-singlet states in
the charge-ordered insulating phase.

A scenario for the metal-insulator transition with the
formation of octamers was proposed by considering the orbital
degree of freedom in 5d electrons in Ir cations [17]. In this
scenario, the strong anisotropy of 5d orbitals plays a key role
as follows. For the tetragonal distortion, which elongates IrS6

octahedra along the c axis, the triply degenerate t2g orbitals
of 5d electrons split into the higher-energy nondegenerate
xy orbital and the lower-energy doubly degenerate yz and
zx orbitals. Since there are 5.5 electrons on an Ir3.5+ cation,
0.5 holes per site occupy the xy level. Because of the
anisotropy of the t2g orbitals, Ir cations connected by the σ

bonds between the xy orbitals form one-dimensional chains
in the ab planes of the spinel structure. Due to the effective
quarter filling in the quasi-one-dimensional band, the system
is anticipated showing a Peierls instability, which leads to
a metal-insulator transition accompanied by dimerization of
Ir4+ pairs in the xy chains. The resultant fourfold charge
ordering in the form of Ir3+-Ir3+-Ir4+-Ir4+-· · · along the chains
is compatible with the octamer pattern in the experimental
results. Hence, in this scenario, the octamer formation is
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FIG. 1. (Color online) (a) Schematic picture of an Ir4+ octamer
in the low-temperature phase in CuIr2S4. Black thin and red thick
open circles represent Ir3+ and Ir4+ cations, respectively. The lengths
of the shaded bonds are shorter than the others. (b) Schematic picture
of the octamer with three kinds of inequivalent bonds. The thick z

bonds are shorter than the others.

understood by the Peierls instability induced by the orbital
anisotropy, called the orbital Peierls instability.

On the other hand, the spin-orbit coupling in 5d electron
systems is known to be large in comparison with that in 3d

and 4d electron systems. Recently, it was pointed out that the
Mott transition in the layered perovskite Sr2IrO4 is induced
not only by the Coulomb interaction but also by the relativistic
spin-orbit coupling in 5d electrons of Ir cations [18,19]. In the
Ir4+ cation, the strong spin-orbit coupling splits t2g orbitals
into jeff = 1/2 doublet and jeff = 3/2 quartet, and there is
one hole in the jeff = 1/2 states. The Coulomb interaction
may result in the localization of holes in the jeff = 1/2 narrow
band. The resultant insulating state is called the spin-orbit Mott
insulator.

Stimulated by such arguments, effective interactions be-
tween the jeff = 1/2 states in the spin-orbit Mott insulator
were theoretically studied for understanding of the low-energy
physics. In particular, in the case where octahedra composed
by ligands surrounding an Ir4+ cation share their edges with
each other, the low-energy Hamiltonian includes the peculiar
effective ferromagnetic interaction with bond-dependent Ising
anisotropy [20]. The same type of interaction is found in the
Kitaev model, which was exactly shown to be a quantum spin
liquid in the ground state [21]. The effective Hamiltonian
with the Kitaev interaction in addition to the conventional
antiferromagnetic superexchange interaction is called the
Kitaev-Heisenberg model. This observation has stimulated a
hunt for exotic states including a quantum spin liquid in Ir
compounds [22–28].

In CuIr2S4, the octamers were suggested to possess Ir4+
cations and IrS6 octahedra share their edges in the spinel
lattice structure. Therefore such a Kitaev-type interaction
resulting from the strong spin-orbit coupling might also be
relevant in this 5d electron compound. The effect of the
spin-orbit coupling, however, was not taken into account in
the orbital Peierls mechanism proposed in Ref. [17]. Recently,
intrinsic paramagnetic behavior with a small effective mag-
netic moment was observed by a muon spin rotation (μSR)
experiment at low temperature well below the metal-insulator
transition [29]. It is difficult to explain this behavior by the
orbital Peierls mechanism as there is no active magnetic degree
of freedom remaining in the gapped spin-singlet state. These
motivate a reconsideration of the octamer state by explicitly
taking into account the strong spin-orbit coupling.

In this paper, we study the effect of the spin-orbit cou-
pling on the magnetic properties in the octamer state in
CuIr2S4. Starting from the multiorbital Hubbard model for
t2g orbitals with the strong spin-orbit coupling, we consider
a low-energy effective model for the jeff = 1/2 quasispins
on Ir4+ cations obtained by the perturbation expansion from
the strong correlation limit. In this procedure, the spin-orbit
coupling is taken into account in the intermediate states of
the second-order perturbations. The effective Hamiltonian
includes an additional term to the Kitaev-Heisenberg model,
namely, the symmetric off-diagonal exchange interaction,
which does not conserve the total magnetic moment along
the spin quantization axis. The equivalent form was recently
obtained in Ref. [28] for honeycomb-lattice iridium oxides.
Before considering an octamer, we start with the analysis
of the effective Hamiltonian for two spins. We find that
the lowest-energy state of the effective model is given by
either a spin-singlet state or a quadrupolar state depending
on the parameters. The former is the conventional singlet state
stabilized by the antiferromagnetic Heisenberg interaction. On
the other hand, the latter quadrupolar state is the eigenstate
of the additional symmetric off-diagonal interaction. The
characteristics of this state are that (i) it is described by a
linear combination of two-spin states with different total spins
along the spin quantization axis and (ii) the coefficient in
the linear combination includes a complex phase. We find
that these two states compete with each other by changing
the spin-orbit coupling, transfer integrals, and Hund’s-rule
coupling. This competition is also important for the magnetic
state in an octamer. Indeed, we find that it brings about
peculiar paramagnetic behavior with a small effective moment
at low temperature. This intrinsic behavior is not found in
the Kitaev-Heisenberg model without the additional term.
Our results provide a possible explanation for the remnant
paramagnetism recently observed by the μSR experiment [29].

This paper is structured as follows. In Sec. II, we present
the derivation of the effective Hamiltonian. In Sec. III, we
present a numerical method to analyze the effective model.
In Sec. IV, we show the results of our numerical analysis:
results for a two-site system in Sec. IV A and for the octamer
in Sec. IV B. Finally, Sec. V is devoted to discussion and
concluding remarks.

II. MODEL

A. Multiorbital Hubbard model

In order to address magnetic properties in the low-
temperature octamer phase of CuIr2S4, we start from the
following multiorbital Hubbard model for threefold t2g orbitals
of Ir 5d electrons:

H = Ht + HU + HSO. (1)

The model is defined on the eight-site cluster representing an
octamer of Ir4+ cations, as shown in Fig. 1(b). There are three
kinds of bonds, x, y, and z bonds, in this cluster. The first term
Ht represents the intersite electron transfers:

Ht =
∑
〈ij〉l

(
d
†
iγ σ t̂

γ γ ′
l djγ ′σ + H.c.

)
, (2)
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FIG. 2. (Color online) Two types of transfer integrals between
Ir4+ cations considered in Eq. (2): (a) d-d direct hopping (−t ′)
between dxy orbitals (solid arrow) and (b) d-p-d indirect hopping via
pz orbital between dyz and dzx orbitals (dotted arrow). The transfer
integrals for other bonds are obtained by the cyclic permutation of
orbital indices.

where diγ σ is the annihilation operator for an Ir hole at site
i with orbital γ (=xy,yz,xy) and spin σ (=↑,↓); the sum is
taken for the nearest-neighbor sites i and j on the l bond, and
t̂
γ γ ′
l is the transfer integral between γ and γ ′ orbitals on the l

bond (l = x,y,z) connecting i and j sites. Here, we take into
account two dominant components of the transfer integrals
between 5d orbitals in the edge-sharing configuration of IrS6

octahedra: suppose the bond is a z bond, one is the transfer
integral between the xy orbitals coming from a d-d direct
hopping, and the other is the transfer integral between yz and
zx orbitals from a d-p-d indirect hopping via the pz orbital at
a S2− ion [see Figs. 2(a) and 2(b), respectively]. Namely, we
take

t̂ xy,xy
z = −t ′, (3)

t̂ yz,zx
z = t̂ zx,yz

z = −t, (4)

and other components zero (t,t ′ > 0). Here, t is given by
(pdπ )2/(εd − εp), where (pdπ ) is the Slater-Koster parameter
representing the overlap integral between pz and dyz (or dzx)
orbitals of S and Ir on the xy plane, and εd and εp are the atomic
energies of the Ir 5d orbital and the S 3p orbital, respectively.
For x and y bonds, the transfer integrals are obtained by the
cyclic permutation of orbital indices for Eqs. (3) and (4). We
consider the d-p-d indirect hopping (−t) and the d-d direct
hopping (−t ′) as free parameters in the following calculations.
We neglect the effect of differences of the bond lengths by
dimerization for a while; it will be incorporated in the model
in Sec. II D.

The second term in Eq. (1) represents the Coulomb
interactions given by

HU = U
∑
iγ

d
†
iγ↑diγ↑d

†
iγ↓diγ↓

+U ′ ∑
iσσ ′

∑
γ>γ ′

d
†
iγ σ diγ σ d

†
iγ ′σ ′diγ ′σ ′

− J
∑
iσσ ′

∑
γ>γ ′

d
†
iγ σ diγ σ ′d

†
iγ ′σ ′diγ ′σ

− J ′ ∑
i

∑
γ>γ ′

(d†
iγ↑diγ↓d

†
iγ ′↑diγ ′↓ + H.c.), (5)

where U , U ′, J , and J ′ are the intraorbital Coulomb repulsion,
the interorbital Coulomb repulsion, the Hund’s-rule coupling,
and the pair hopping, respectively. We assume the conditions
U ′ = U − 2J and J ′ = J in Eq. (5). The last term in Eq. (1)
is for the local spin-orbit coupling, which is given by

HSO = λ
∑

i

l i · si . (6)

Here, si is the spin of a hole i and l i represents the effective
angular momentum for the three t2g orbitals.

B. Effective model in the strong coupling limit

We consider the strong coupling limit of the model in Eq. (1)
where the transfer integrals are much smaller than the other
energy scales. When all of the transfer integrals are vanished
(Ht = 0), the t5

2g state in Ir4+ cations splits into jeff = 1/2
doublet and jeff = 3/2 quartet by the spin-orbit coupling λ,
and the ground state at each site is given by the jeff = 1/2
doublet. Note that the t5

2g state is effectively a one-hole state,
for which the Coulomb interactions are irrelevant. In order to
derive effective superexchange interactions between the jeff =
1/2 states, we consider the second-order perturbation in terms
of the transfer integrals, which induces t6

2g and t4
2g states as

the intermediate states. In the independent electron picture,
there is 15-fold degeneracy in the t4

2g configuration, while
the t6

2g state is nondegenerate. This degeneracy is lifted by the
Coulomb interactions and the spin-orbit coupling. Here, we
assume the magnitude of the Coulomb interaction is larger
than that of the spin-orbit coupling. We note that, for instance,
U and λ are estimated at about 2 and 0.5 eV, respectively,
for the iridium oxide Na2IrO3 [32]. First, by introducing the
Coulomb interaction HU , the 15-fold degeneracy in the t4

2g

state is split into four LS multiplets, as shown in the middle
of the energy diagram in Fig. 3. The ground state is given
by the fourfold 3T1 multiplet. Next, we introduce the spin-
orbit coupling HSO, while neglecting the off-diagonal matrix
elements of HSO between different LS multiplets. Then, the
degeneracy of the ground state multiplet 3T1 is lifted as shown
in the rightmost of the energy diagram in Fig. 3. Here, the

Energy

Coulomb
interaction

Spin-orbit
coupling

FIG. 3. Energy diagram of the t4
2g state by introducing the

Coulomb interactions and the spin-orbit coupling. The energy for
each level is shown in the rightmost.
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effective spin-orbit coupling for the 3T1 multiplet is written as

H̃SO = −ζ
∑

i

Li · Si , (7)

where ζ (> 0) is given by the reduced matrix element of HSO

in Eq. (6) for the 3T1 multiplet; Li and Si are the total angular
momentum and the total spin moment at site i, respectively.

We assume that the magnitudes of the Coulomb interactions
(U,U ′,J,J ′) and the spin-orbit coupling (ζ ) is much larger than
those of the transfer integrals (t,t ′) and that the magnitudes of
superexchange interactions (∼t2/U , t ′2/U ) are much smaller
than the spin-orbit coupling. In this case, jeff = 3/2 quartet
in the t5

2g state can be neglected and the low-energy effective
Hamiltonian is given by

Heff = P1/2Ht

1

HU + H̃SO
HtP1/2, (8)

where P1/2 is the projection operator onto the jeff = 1/2
doublet. After some straightforward calculations, we obtain
the effective Hamiltonian on the γ bond as follows:

H(γ )
eff = Jγ σ

γ

i σ
γ

j + Jp

(
σα

i σ α
j + σ

β

i σ
β

j

) + J ′
p

(
σα

i σ
β

j + σ
β

i σ α
j

)
,

(9)

where (α,β,γ ) are the cyclic permutations of (x,y,z). The Pauli
matrices σ

γ

i represent the quasispin operator for the jeff = 1/2
doublet. The exchange constants are given by

Jγ = 2t ′2

27

1

E
j=0
1

+
(

− t2

2
+ t ′2

18

)
1

E
j=1
1

+
(

t2

6
− t ′2

54

)
1

E
j=2
1

+
(

t2

3
− t ′2

27

)
1

E2
+ t ′2

27

1

E3
,

(10)

Jp = 2t ′2

27

1

E
j=0
1

− t ′2

9

1

E
j=1
1

+ t ′2

27

1

E
j=2
1

+ 2t ′2

27

1

E2
+ t ′2

27

1

E3
,

(11)

J ′
p = t t ′

3

1

E
j=1
1

− t t ′

9

1

E
j=2
1

− 2t t ′

9

1

E2
. (12)

Here, E
j=0
1 = U − 3J − 2ζ , E

j=1
1 = U − 3J − ζ , E

j=2
1 =

U − 3J + ζ , E2 = U − J , and E3 = U + 2J , which are the
eigenenergies of the t4

2g states inHU + H̃SO, as shown in Fig. 3.
All the exchange processes are taken into account and are char-
acterized by the eigenenergies El (= E

j=0
1 ,E

j=1
1 ,E

j=2
1 ,E2,

and E3) of the intermediate states. The coefficients of 1/El in
the exchange constants originate from the transfer processes
via the corresponding intermediate state with the eigenenergy
El . Hereafter, we set an energy scale as t = 1.

C. Some remarks on the effective model

The effective couplings Jp and J ′
p in Eq. (9) are proportional

to t ′2 and t t ′, respectively, as shown in Eqs. (11) and (12).
Hence, when t ′ = 0, both Jp and J ′

p vanish. In this limit,
the effective model in Eq. (9) becomes Jγ σ

γ

i σ
γ

j with Jγ < 0,

which has the same form as the Kitaev model [20,21]. It is also
noted that when we neglect the J ′

p term in Eq. (9), the effective
Hamiltonian is the Kitaev-Heisenberg model, which has been
studied for several Ir compounds [22,24,25,28]. In other words,
the effective model in Eq. (9) includes the additional J ′

p term
to the Kiteav-Heisenberg model.

The J ′
p term in Eq. (9) has the form of symmetric off-

diagonal exchange interaction. This is derived by the virtual
processes where a hole transfers to a neighboring site via the
d-d direct hopping (−t ′) and returns to the original site via the
d-p-d indirect hopping (−t), and vice versa. It is worthy noting
that the interaction has the same form as the xy component of
the spin quadrupolar operator defined on a bond [30],

Qxy = σx
i σ

y

j + σ
y

i σ x
j . (13)

An equivalent model including the J ′
p term was recently

discussed for honeycomb-lattice iridium oxides [28].
Among Eqs. (10)–(12), the sign of Jγ depends on t and

t ′. On the other hand, the exchange constants Jp and J ′
p are

always positive because these are rewritten as

Jp = 2

9

t ′2ζ 2

E
j=0
1 E

j=1
1 E

j=2
1

+ 2

27

t ′2

E2
+ t ′2

27E3
, (14)

J ′
p = 2

9

t t ′

E
j=1
1 E

j=2
1 E2

[
J
(
E

j=1
1 + E

j=2
1

) + 2ζE2 + ζ 2
]
. (15)

Figure 4 shows the t ′ dependence of the exchange constants. As
typical parameter values, we here set U = 10, J = 1, and ζ =
0.5. Note that similar values of the parameters were obtained
by the first-principles calculation for Na2IrO3 [31,32]. At
t ′ = 0, Jγ is negative, while Jp = J ′

p = 0. In this case, the
present model becomes the Kitaev model with a ferromagnetic
Ising-type interaction, as mentioned above. With increasing
t ′, all of the exchange constants increase. As shown in
Eqs. (14) and (15), Jp and J ′

p are always positive; J ′
p is

dominant compared to Jp for t ′/t � 1, as J ′
p ∝ t ′ but Jp ∝ t ′2.

Meanwhile, Jγ changes its sign from negative to positive at
t ′ ∼ t for the current parameter set. Therefore, for t ′/t 
 1,

-0.02

-0.01

 0.00

 0.01

 0.02

 0.03

 0.04

 0.0  0.2  0.4  0.6  0.8  1.0  1.2  1.4

-0.02

-0.01

 0.00

 0.01

 0.02

 0.03

 1  2  3  4  5

FIG. 4. (Color online) t ′ dependence of the exchange constants
Jγ , Jp , and J ′

p in Eqs. (10), (11), and (12), respectively. The inset
shows the D dependence at t ′ = 0.3. The parameters are chosen to
be U = 10, J = 1, and ζ = 0.5.
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Jγ , Jp, and J ′
p are all positive, and the model in Eq. (8)

favors an antiferromagnetic configuration for neighboring
spins. In particular, in the case with t = J = ζ = 0, all of
the energies in the intermediate states, El , become U . Then,
the effective model is reduced into the Heisenberg model
with isotropic exchange interactions: Jγ = Jp = t ′2/(9U ) and
J ′

p = 0.

D. Effective model on an octamer

For an octamer of Ir4+ cations, corresponding to the
dimerization observed in experiments, we take the length of
four z bonds shorter than those of x and y bonds, as shown in
Fig. 1; the lengths of x and y bonds are taken to be uniform
for simplicity. The difference of the bond lengths is taken into
account in the modifications of transfer integrals in Eq. (2) as
follows. The dimerization shortens the distance between NN
Ir cations and reduces the Ir-S-Ir angle, but it is expected not to
notably change the distance between NN Ir cation and S anion.
Moreover, we expect that the d-p-d indirect hopping (−t) does
not strongly depend on the Ir-S-Ir angle. Relying on these
expectations, we take into account the effect of dimerization
only on the d-d direct hopping t ′. Namely, we replace t ′ by Dt ′
on the four z bonds, where D > 1 represents the enhancement
factor due to dimerization. Note that this replacement modifies
the exchange constants in Eqs. (10)–(12) in a different manner.
The exchange constants Jγ , Jp, and J ′

p as functions of D at
t ′ = 0.3 are shown in the inset of Fig. 4.

III. METHOD

We calculate thermodynamic properties as well as the
ground-state properties of the effective model in Eq. (8)
by using the numerical exact diagonalization. We compute
the eigenenergies and the diagonal components of the static
magnetic susceptibility defined by the canonical spin-spin
correlation as

χαα = 1

N

1

Z

∑
ij

∫ β

0
dτTr

[
e−(β−τ )Heff σα

i e−τHeff σα
j

]
, (16)

where α = (x,y,z), β = 1/T is the inverse temperature (we
take the Boltzmann constant kB = 1), Z = Tr exp(−βHeff) is
the partition function, and N is the total number of sites on
the cluster. In the next section, first, we show the results for
a two-site cluster (N = 2), and then, those for an octamer
(N = 8).

IV. RESULT

A. Two-site system

1. Eigenstates and eigenenergies

Before showing the results for an octamer, we present
the results for a two-site system, as they will be helpful for
capturing the essential physics in the dimerized octamer. Here,
we focus on the interaction H(z)

eff for neighboring two spins on
the z bond (we take D = 1). The eigenstates |ψ〉 and their
eigenenergies Eψ of the two-site Hamiltonian are given by

|ψ−
Q〉 = 1√

2
(|↑↑〉 − i|↓↓〉), Eψ−

Q
= Jz − 2J ′

p, (17)

|ψ+
Q〉 = 1√

2
(|↑↑〉 + i|↓↓〉), Eψ+

Q
= Jz + 2J ′

p, (18)

|ψs〉 = 1√
2

(|↑↓〉 − |↓↑〉), Eψs
= −Jz − 2Jp, (19)

|ψt 〉 = 1√
2

(|↑↓〉 + |↓↑〉), Eψt
= −Jz + 2Jp. (20)

The eigenstates |ψ±
Q〉 are the mixed states between two states

with different total spin moments along the z direction. These
states are the eigenstates of the third J ′

p term in Eq. (9), which
does not commute with σ z

i + σ z
j . As mentioned in Sec. II C,

the J ′
p term is written by the quadrupolar operator in Eq. (13),

and hence, we call |ψ±
Q〉 the quadrupolar states. On the other

hand, the states |ψs〉 and |ψt 〉 are the conventional spin-singlet
state and the spin-triplet state with zero total spin moment in
the z direction, respectively.

Figure 5(a) shows the eigenenergies as functions of t ′.
When t ′ is large, the ground state is the spin-singlet state
|ψs〉. This behavior is consistent with the consideration for
the large t ′ limit in the previous section. On the other hand,
when t ′ becomes small, the ground state is taken over by the
quadrupolar state |ψ−

Q〉. Thus there is a competition between
the spin-singlet state |ψs〉 and the quadrupolar state |ψ−

Q〉 in
the intermediate t ′ region. Note that the competition always
occurs between these two states because Eψ−

Q
� Eψ+

Q
and
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FIG. 5. (Color online) t ′ dependence of the eigenenergy Eψ in
(a) the effective Hamiltonian in Eq. (9) and (b) the model with J ′

p = 0
on a two-site cluster. The eigenstates ψ−

Q , ψ+
Q , ψs , and ψt are given

in Eqs. (17)–(20). The parameters are chosen to be U = 10, J = 1,
and ζ = 0.5.
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FIG. 6. (Color online) Energy difference between two states,
Eψs

− Eψ−
Q

in (a) the effective Hamiltonian in Eq. (9) and (b) the

model with J ′
p = 0 on a two-site cluster. The ground state is |ψs〉

(|ψ−
Q〉) in the blue (red) region corresponding to the large (small) J

and ζ region. In the case with J ′
p = 0, the quadrupolar state |ψ−

Q〉,
which is the ground state in the red region in (b), is degenerate with
the other quadrupolar state |ψ+

Q〉. The parameters are chosen to be
U = 10 and t ′ = 0.9.

Eψs
� Eψt

[(Eψ−
Q

− Eψ+
Q

= −4J ′
p � 0) and (Eψs

− Eψt
=

−4Jp � 0)] [see Eqs. (14) and (15), respectively].
In Fig. 6(a), we plot the energy difference between the

spin-singlet state and the quadrupolar state, Eψs
− Eψ−

Q
, as

a function of the Hund’s-rule coupling J and the spin-orbit
coupling ζ . The ground state is either |ψs〉 or |ψ−

Q〉 depending
on the parameters. At J = ζ = 0, the ground state is the spin-
singlet state |ψs〉 because the Hamiltonian becomes the
isotropic Heisenberg model, as discussed in Sec. II C. On the
other hand, in the large J and/or large ζ region, the quadrupolar
state |ψ−

Q〉 becomes the ground state. This result indicates that
the Hund’s-rule coupling and the spin-orbit coupling stabilizes
the quadrupolar state |ψ−

Q〉. There is a level crossing be-
tween the two states in the plane of J and ζ , where the
first-excitation energy becomes zero.

Meanwhile, as discussed in the previous section, if we
neglect the J ′

p term, the effective interaction becomes the
Kitaev-Heisenberg form. In this case, the ground state for

small t ′ is doubly degenerate between |ψ+
Q〉 and |ψ−

Q〉, as
shown in Fig. 5(b). Figure 6(b) shows the energy difference
Eψs

− Eψ−
Q

in the effective model with J ′
p = 0. Although the

energy difference Eψs
− Eψ−

Q
behaves qualitatively similar to

that in Fig. 6(a), the excitation gap from the ground state is
zero in the region of Eψ−

Q
< Eψs

due to the degeneracy.

2. Magnetic susceptibility

The competition between the spin-singlet and quadrupolar
states gives rise to peculiar temperature dependence of the
magnetic susceptibility in Eq. (16). Figure 7(a) shows the
calculated data as functions of the inverse temperature β =
1/T for several t ′. In the high-temperature (small β) limit, the
susceptibility obeys the Curie law and the effective moment
given by the slope as a function of β is 1 because we choose
the magnitude of the local moment at each site as unity (the
model is defined by Pauli matrices σ

γ

i not by S = 1/2 spins).
This is also confirmed by β derivative of the susceptibility,
as shown in Fig. 7(b). Meanwhile, in the low-temperature
(large β) region, the susceptibility strongly depends on the
parameter t ′. When t ′ is small, the susceptibility increases
monotonically with increasing β and is saturated at a nonzero
value depending on t ′. This behavior at low temperature is
similar to the Van Vleck paramagnetism because the Hamil-
tonian does not commute with

∑
i σ

z
i and its off-diagonal

matrix element between the ground state and excited states is
nonzero.

On the other hand, for large t ′, the susceptibility exhibits
a broad peak and decreases down to zero at low temperature.
This temperature dependence is similar to that in the two-site
isotropic Heisenberg model which has the nonmagnetic spin-
singlet ground state. The characteristic temperature at which
the susceptibility takes a maximum value is determined by the
excitation energy. For instance, at t ′ = 1.2, the susceptibility
becomes maximum at T = β−1 � 0.02 − 0.03, as shown in
Fig. 7(a), which corresponds to the energy scale of the gap
Eψ−

Q
− Eψs

� 0.02, as shown in Fig. 5(a).
The susceptibility shows the peculiar temperature depen-

dence in the intermediate t ′ region, where the energies of the
spin-singlet and quadrupolar states are almost equal. In this
region, the susceptibility is neither saturated at a nonzero
value nor suppressed down to zero up to β ∼ 500 with
decreasing temperature, as exemplified in the data at t ′ = 1
in Fig. 7(a). The low-temperature part gradually increases
linearly with β, and the slope is much smaller than that at high
temperature, as shown in Fig. 7(b). Moreover, the slope hardly
depends on the temperature above β � 200. These indicate
that the paramagnetic behavior, which is different from the
high-temperature limit, appears at very low temperature, and
the effective magnetic moment is strongly renormalized from
1 to a small value. The peculiar behavior originates from the
keen competition between |ψs〉 and |ψ−

Q〉.
In order to clarify the role of the J ′

p term in Eq. (9),
we calculate the magnetic susceptibility by omitting it. For
large t ′, the susceptibility behaves similarly to the case in the
presence of the J ′

p term, as shown in Fig. 7(c); it shows a
peak and decreases to zero at low temperature. On the other
hand, when t ′ is small, the susceptibility does not saturate at
low temperature and the slope becomes larger than 1 in the
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FIG. 7. (Color online) Temperature dependence of (a) the mag-
netic susceptibility and (b) its β derivative for several values of t ′ in
the effective Hamiltonian in Eq. (8) on the two-site cluster. (c) and
(d) The results when neglecting the J ′

p term.

low-temperature region, as shown in Fig. 7(c). This is in sharp
contrast to the result for the model including the J ′

p term shown
in Fig. 7(a). Moreover, as shown in Fig. 7(d), the slope in β,
which corresponds to the square of the effective moment per
site, approaches 2 at low temperature. This result is understood

as follows. As shown in Fig. 5(b), the ground states are doubly
degenerate between |ψ±

Q〉. Since the doublet states are both
written in terms of |↑↑〉 and |↓↓〉, the effective moment of
the ground states is 2. This results in the slope of 22/N = 2,
where N = 2.

In the intermediate t ′ region where the three states except
for |ψt 〉 are degenerate [see Fig. 5(b)], the result is also
distinct from that in the presence the J ′

p term. The temperature
dependence of the susceptibility at t ′ = 0.8 is presented
in Fig. 7(c). The slope is not strongly suppressed in the
low-temperature region, but changes gradually at a function
of temperature, as shown in Fig. 7(d). The results indicate
that the J ′

p term in Eq. (9) plays a crucial role in the
paramagnetic behavior with a renormalized effective moment
at low temperature.

B. Eight-site system

1. Energy gap

In the previous section, we present the results for the
two-site system. Here, we analyze the eight-site system which
is defined on the octamer shown in Fig. 1. Figure 8(a) shows
the energy gap between the ground state and first excited state
as a function of the Hund’s-rule coupling J and the spin-orbit
coupling ζ . In this figure, the parameters are chosen to be
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FIG. 8. (Color online) Energy gap between the ground state and
the first excited state in (a) the effective Hamiltonian in Eq. (8) and
(b) the model with J ′

p = 0 on the eight-site cluster. The parameters
are chosen to be U = 10, t ′ = 0.3, and D = 3.
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FIG. 9. (Color online) Temperature dependence of (a)–(c) the diagonal components of the magnetic susceptibility and (d)–(f) their
derivatives in terms of β calculated for the effective Hamiltonian on the eight-site cluster at J = 0.9, 1.0, and 1.2. The parameters are
chosen to be U = 10, ζ = 0.5, t ′ = 0.3, and D = 3.

U = 10, t ′ = 0.3, and D = 3. Note that the effective interac-
tions on the z bonds for these parameters correspond to those
in the two-site system at t ′ = 0.9 taken in Fig. 6. The result
in Fig. 8(a) is similar to the absolute value of the data plotted
in Fig. 6. This indicates that the energy gap in the octamer
is dominated by that in dimers on the z bonds, which have
a shorter bond length (incorporated by a larger D than 1).
Therefore, in the small J and small ζ region in Fig. 8(a), the
ground state of the octamer is approximately described by a
direct product of four spin-singlet states |ψs〉 [Eq. (19)] on the
z-bond dimers. On the other hand, in the large J and/or large
ζ region, the ground state is close to a direct product of four
quadrupolar states |ψ−

Q〉 [Eq. (17)] on the z bonds.
We also calculate the energy gap in the Kitaev-Heisenberg

model on the octamer by setting J ′
p = 0 in Eq. (9). Figure 8(b)

shows the result for the same parameters as those in Fig. 8(a).
In the region where both J and ζ are small, there is a finite gap
similar to Fig. 8(a). Hence, in this region, the ground state is
considered to be well approximated by a direct product state
of |ψs〉 on the z bonds. On the other hand, in the large J and/or
large ζ region, the energy gap is vanishingly small, in contrast
to the result in Fig. 8(a). This behavior presumably originates
from the degeneracy of |ψ+

Q〉 and |ψ−
Q〉 found in the two-site

system.

2. Magnetic susceptibility

Next, we show the temperature dependence of the suscep-
tibility in Fig. 9 for several values of the Hund’s-rule coupling

J . The data are calculated in the parameter region where the
energy gap is small [see Fig. 8(a)]. First, let us discuss the
results at J = 1.0 where the energy gap is almost vanishing.
Figure 9(b) shows the temperature dependence of the suscepti-
bility at J = 1.0. In this case, all three diagonal components of
the susceptibility, χxx , χyy , and χzz, approximately obey the
Curie law up to β = 500, and the slopes (effective moments)
for β � 200 are substantially smaller than the value of 1 in the
limit of β → 0. See also β derivatives presented in Fig. 9(e);
all three components become � 0.1 and less dependent on β

for β � 200. These results indicate that the octamer exhibits
peculiar paramagnetic behavior at low temperature and the
effective moment is strongly renormalized to a small value at
low temperature from the bare moment.

We also calculate the susceptibility while changing J

in the vicinity of J = 1.0. Figures 9(a) and 9(c) show the
temperature dependence of the susceptibility at J = 0.9 and
1.2, respectively. At J = 0.9, χzz increases with decreasing
temperature. This temperature dependence indicates that the
renormalized paramagnetic behavior remains apart from J =
1.0. As shown in Fig. 9(d), the slope of χzz at low temperature
for J = 0.9 is smaller than that for J = 1.0. For J � 0.9, such
remnant paramagnetic behavior at low temperature becomes
less distinguished; the susceptibility tends to decrease to zero,
similar to the two-site case with large t ′ in Fig. 7(a). On
the other hand, as shown in Fig. 9(c), the susceptibility at
J = 1.2 is not proportional to β at low temperature. The slope
decreases gradually and becomes almost zero at β = 500, as
shown in Fig. 9(f). For larger J � 1.2, the susceptibility tends

045102-8



SPIN-ORBIT COUPLING IN OCTAMERS IN THE SPINEL . . . PHYSICAL REVIEW B 90, 045102 (2014)

 300  400  500  600  700  800
0.0

0.4

0.8

1.2

1.6

2.0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

FIG. 10. (Color online) Temperature derivative of the suscepti-
bility χzz on a plane of β-J in the effective model in Eq. (8).

to saturate at a nonzero value at low temperature, similar to
the Van Vleck-type behavior seen for the two-site case with
small t ′ in Fig. 7(a).

Thus the paramagnetic behavior with a small effective
moment at low temperature appears in the parameter region
where the excitation gap becomes small. From the argument in
Sec. IV B 1, the small excitation gap is due to the competition
between the two different types of dimerized states: one is the

state where the four dimers are approximately described by
the spin-singlet states |ψs〉, and the other is the state where
they are close to the quadrupolar states |ψ−

Q〉.
In order to clarify the parameter region where the para-

magnetic behavior with a small effective moment is evident,
we show the β derivative of the susceptibility on the plane
of the inverse temperature β and Hund’s-rule coupling J in
Fig. 10(a). This quantity takes a nonzero value about or less
than 0.1 not only at J � 1.0 but also in between J � 0.9 and
�1.1. Furthermore, in this region of J , a small but nonzero
value remains by decreasing temperature down to T ∼ 1/800.
The effective moment corresponding to the square root of
the β derivative of the susceptibility takes the highest value
(∼√

0.1 � 0.316) at J � 1, where the energy of the singlet
state and the quadrupolar state on dimers compete with each
other. When the parameters are apart from the competing
point of these two states, the effective moment decreases
rapidly.

As shown in the two-site case, the J ′
p term plays an

important role in the emergence of the remnant paramagnetic
behavior. Figures 11(a)–11(c) show the temperature depen-
dence of the susceptibility at several J calculated by setting
J ′

p = 0. Since the excitation gap decreases with increasing J

and becomes almost zero at J � 0.8 for ζ = 0.5 as shown in
Fig. 8(b), the peculiar temperature dependence is expected to
appear at J � 0.8 if it exists. The results in Figs. 11(a)–11(c),
however, indicate that the susceptibility behaves similarly
for different J in this region; it obeys the Curie law at
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FIG. 11. (Color online) Temperature dependence of (a)–(c) diagonal components of the magnetic susceptibility and (d)–(f) their derivatives
in terms of β calculated for the effective Hamiltonian with J ′

p = 0 on the eight-site cluster at J = 0.7, 0.8, and 1.0. The parameters are chosen
to be U = 10, ζ = 0.5, t ′ = 0.3, and D = 3.
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high temperature and shows the Van Vleck-type behavior
at low temperature. Indeed, as shown in Figs. 11(d)–11(f),
the β derivatives of the susceptibility approach zero at low
temperature. Therefore the paramagnetic behavior with a small
effective moment at low temperature is absent when the J ′

p

term is neglected.

3. Spectral decomposition of the magnetic susceptibility

In order to elucidate the origin of the paramagnetism
with a small effective moment, we here perform the spectral
decomposition for the magnetic susceptibility. The z compo-
nent of the magnetic susceptibility in Eq. (16) is rewritten
as

χzz = 1

N

1

Z

∑
mn

e−βEn − e−βEm

Em − En

∣∣〈n|σ z
total|m〉∣∣2

, (21)

where |m〉 is the eigenstate of the Hamiltonian with the
eigenvalue Em, and σ z

total = ∑
i σ

z
i . Then, at low temperature,

the susceptibility is approximately given as

χzz ∼ 1

N

∑
n

1 − e−β�En

�En

(
Mz

n

)2
, (22)

where �En = En − E0 is the excitation gap between the
ground state |0〉 and the n-th excited state |n〉, and
Mz

n = |〈n|σ z
total|0〉| is the matrix element of σ z

total between
the ground state |0〉 and the nth excited state |n〉. From
Eq. (22), if the excitation energy �En is much smaller
than the temperature, the susceptibility includes a Curie-like
contribution as

χzz ∼ β

(
Mz

n

)2

N
. (23)

Here, the square root of (Mz
n)2/N corresponds to the effective

moment. On the other hand, when the excitation energy �En

is much larger than the temperature, the susceptibility is given
by

χzz ∼
∑

n

1

�En

(
Mz

n

)2

N
. (24)

This does not depend on the temperature. Hence, in the limit of
T → 0, the susceptibility shows Van Vleck-type behavior (or
nonmagnetic behavior when Mz

n = 0 for all n) if the ground
state is not degenerate. Although this indicates that the slope
of susceptibility in β (effective moment) becomes zero in the
limit of T → 0, paramagnetic behavior is expected when the
temperature is comparable or larger compared to an excitation
energy for the state in which (Mz

n)2/N is nonzero, as inferred
in Eq. (23).

Figure 12(a) shows the excitation energies �En as a
function of J . We also present the values of (Mz

n)2/N by the
thickness of the curves in this figure. Although the lowest
excitation energy takes minimum at J ∼ 0.8, the matrix
element (Mz

n)2/N for the first excited state is almost zero. On
the other hand, at J � 1.0, the matrix element (Mz

n)2/N takes
a substantial value ∼0.1, while the excitation energy becomes
∼0.003. This result leads to the paramagnetic behavior with
a small effective moment 0.3 �

√
0.1 in the temperature

range of T � 0.003 (β � 300), which is consistent with
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FIG. 12. (Color online) Excitation energies as functions of J for
(a) the effective Hamiltonian in Eq. (8) and (b) the model with J ′

p = 0
for an octamer. Matrix elements (Mz

n)2/N for each excitation are also
plotted by the thickness of each curve. The parameters are chosen to
be U = 10, ζ = 0.5, t ′ = 0.3, and D = 3.

the temperature dependence of the susceptibility shown in
Figs. 9(b) and 9(e).

In contrast, when the J ′
p term is neglected, there are no such

low-energy excited states which contribute to the paramagnetic
behavior, as shown in Fig. 12(b): the lowest-energy state
with a substantial value of (Mz

n)2/N appears only in the
high-energy region of �En � 0.03. This result indicates that
the paramagnetic behavior does not appear below T ∼ 0.03,
which is consistent with the temperature dependence of the
susceptibility shown in Fig. 11.

V. DISCUSSION AND CONCLUDING REMARKS

Our results provide an alternative picture of the octamer
state in CuIr2S4 to the orbital Peierls scenario proposed in
the previous study [17]. The previous scenario focused on
the ordering of 5d orbitals under the tetragonal distortion
while neglecting the spin-orbit coupling. It concluded that the
octamer state is a conventional spin-singlet state composed
of dimers driven by orbital ordering. The dimerization is
caused by the Peierls-type mechanism, which is essentially the
instability appearing in the weak coupling limit. In contrast,
our theory is based on the model including both strong
electron correlation and spin-orbit coupling. Our effective
model is derived by the perturbation from the strong coupling
limit, where these two energy scales are much larger than
the transfer integrals. Thus our approach is complementary
to the previous weak-coupling approach. In addition to the
conventional spin-singlet state, which may be adiabatically
connected to the orbital Peierls singlet state, our result brings
about a qualitatively new state with dominant quadrupolar
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correlations. This new state is induced by the symmetric off-
diagonal exchange interaction, which is enhanced by the d-p-d
indirect hopping, the spin-orbit coupling, and the Hund’s-rule
coupling.

Our analysis including the spin-orbit coupling concludes
that the low-temperature behavior of the magnetic susceptibil-
ity strongly depends on the ground state. In the conventional
spin-singlet region, the susceptibility is essentially zero at low
temperature, reflecting the gap opening. On the other hand,
in the quadrupolar region, it saturates at a nonzero value,
corresponding to the Van Vleck contribution. Interestingly, the
susceptibility exhibits peculiar paramagnetic behavior with a
renormalized effective moment in the transient region between
the two regimes. This apparent weak paramagnetism is unusual
for a finite-size cluster with strong dimerization. The additional
symmetric off-diagonal interaction plays an important role in
this remnant paramagnetism.

In the present study, we neglect the tetragonal distortion
of IrS6 octahedra for simplicity. The tetragonal distortion
leads to additional interactions to the effective Hamiltonian
in Eq. (8) through the crystal field splitting [31]. Although the
additional interactions slightly modulate the wave function of
the singlet and quadrupolar states, the competition between
these states is expected to occur under the tetragonal distor-
tion. Therefore we anticipate that the paramagnetism with
a small effective moment emerges at low temperature even
in the presence of the realistic tetragonal distortion. Further
quantitative arguments require detailed estimates of the model
parameters.

We also neglected the couplings between the octamers
since their energy scale is considered to be smaller than
the temperature range discussed in the present analysis.
In our localized model, the interoctamer interactions are
brought about dominantly by the superexchange interactions
between the magnetic Ir4+ moments via nonmagnetic Ir3+
sites. As there is, at least, one Ir3+ site between neighboring
octamers, the lowest-order contribution to the superexchange
interactions is proportional to t4/U 3 or t ′4/U 3. If we take
U/t = 10, the energy scale is roughly 10−3. This is smaller
than the temperature range of β ∼ 200–500, where the
remnant paramagnetic behavior is found in the magnetic
susceptibility.

Recently, a μSR experiment suggested that a weak
paramagnetism is persistent below ∼100 K in the octamer
phase [29]. This behavior was confirmed not to originate from
magnetic impurities but to be attributed to Ir moments in
octamers. Our results on the weak paramagnetism may give a
possible explanation of this peculiar behavior. In our results,
suppose the transfer integral t = 0.1–1 eV, the paramagnetic
behavior with a small effective moment appears below several
tens K.

Experimentally, the effective moment was estimated to be
0.085(3)μB at each site. In an isolated Ir4+ cation with jeff =
1/2 spin, the effective magnetic moment is 1μB. Therefore
the experiment indicates that the effective moment in the Ir4+
cation is reduced to ∼8.5% of the isolated value on average.
In our theoretical results, the effective moment is estimated
to be, at most, 30% of an isolated Ir4+ magnetic moment.
We note that the value is an upper limit and may become
smaller depending on the parameters. We also calculate the

local magnetic susceptibility at each site of the octamer (not
shown). We find that four corner sites of the octamer where
the coordination number is two have a larger contribution than
the sites on the x bonds. This tendency is opposite to the
experimental observation; experimentally, it was deduced that
the paramagnetism dominantly comes from Ir4+ cations on
the x bonds in Fig. 1 with three neighbors within the
octamer. Further detailed analyses are needed to reconcile
the discrepancy: for instance, refinement and extension of the
model on the theoretical side and more microscopic analyses,
such as NMR, on the experimental side.

Once our theory applies, it provides a prediction which
can be tested in experiments. The paramagnetic behavior is
realized by the competition between the two different types
of magnetic states as explained before. This competition can
be controlled by the microscopic parameters, such as the
transfer integrals, the spin-orbit coupling, and the Hund’s-rule
coupling. Particularly, the transfer integrals are sensitive to
the lattice constant and structure. We expect that the effective
moment as well as the temperature dependence of the suscep-
tibility is sensitively changed by applying pressure. To predict
such change, it is necessary to know how the parameters are
modified under pressure precisely. First-principles calculations
as well as a detailed experimental analysis of the lattice
structure will be helpful.

The competition between the spin-singlet and quadrupolar
states will give rise to further interesting physics. Especially,
the quantum phase factor included in the wave function for
the quadrupolar state might lead to novel phenomena, not
only in the insulating state but also in the metallic state,
such as anomalous transport phenomena in the vicinity of
the metal-insulator transition. Indeed, the octamer insulating
state with charge ordering is collapsed by Zn doping to Cu
sites in CuIr2S4, and the system becomes conductive and
even exhibits superconductivity at low temperature [33,34].
The mechanism of the superconductivity remains elusive.
On the other hand, Se doping to S sites also makes the
system conductive, but no superconductivity appears [16].
It will be interesting to examine the effect of quadrupolar
correlations competing with spin-singlet formation on the
metal-insulator transition for understanding the mysterious
properties in the doped compounds including the superconduc-
tivity. A complementary weak-coupling approach including
the spin-orbit coupling will also be interesting to clarify the
mechanism of the superconductivity as well as the octamer
formation.
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