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Wormhole for electron waves in graphene
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The theory of transformation optics for light has fascinated the scientific community for almost one decade due
to its revolutionary and groundbreaking implications. Because the propagation of electrons in condensed-matter
systems is also described by a wave equation, one may also envision the extension of this idea to matter
waves. Here, we suggest that graphene can be used as a platform to demonstrate a “tunnel” or “wormhole” for
electrons. Based on an effective medium approach, we theoretically demonstrate that two properly designed
graphene-based nanomaterials can effectively “annihilate” one another from an electronic point of view, and
provide for the delocalization of the wave-function stationary states, similar to a wormhole.
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Graphene is a two-dimensional material characterized by
a remarkably high crystal quality, and its unusual electronic
“relativistic” spectrum creates many intriguing and exciting
opportunities in low-dimensional physics, enabling one to
mimic quantum relativistic phenomena in a condensed-matter
system [1–7]. Low-energy electronics in graphene are gov-
erned by the massless Dirac equation. It has been shown that it
is possible to gain some control over the propagation of charge
carriers in graphene by applying a periodic electrostatic poten-
tial on graphene’s surface. This can be done, for example, with
periodically patterned gates, by deposition of adatoms, or by
exploiting the potential induced by a crystalline substrate (e.g.,
boron nitride) [8–13]. These graphene superlattices (GSLs)
have the potential to tailor the transport properties of electrons
[14–16] and can lead to new inroads into nanoelectronics.
Notably, in a recent series of works [17,18], we suggested
that it may be possible to have an electron “perfect lens” in
graphene based on the superlattice concept. This idea is the
electronic counterpart of a perfect lens originally proposed
in the context of electromagnetic metamaterials [19]. We
demonstrated that in some conditions two materials with com-
plementary properties may effectively behave as some form
of “matter-antimatter” and annihilate one another from the
electronic point of view, such that the paired materials provide
a perfect “tunnel” for any extended or bounded stationary
states. This is analogous to a “wormhole” that connects two
regions of space, as if the region in between was nonexistent.
Building on these studies, here we theoretically investigate the
realization of electron wormholes based on one-dimensional
(1D) graphene superlattices, and unveil the actual physical
response provided by such structures. We envision this study
may provide fertile ground for new physics in graphene
electronics. Previous works have discussed the realization of
light wormholes [20] based on transformation optics [21].
Moreover, other authors suggested electronic analogs of the
Veselago-Pendry lens [22,23], and most remarkably, Ref. [22]
showed that a p-n junction in graphene may mimic Veselago’s
lens under a semiclassical approximation. However, this is
quite different from our proposal [17,18], which provides a
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perfect electron “tunnel” even for bounded states and incoming
waves with wide incidence angles. It is relevant to highlight
that Klein tunneling ensures the complete transmission of an
electron wave for normal incidence. However, for incident
angles deviating from the normal direction an electron wave is
typically strongly scattered by a single potential barrier [3–5].
Our results extend in a nontrivial manner Klein tunneling to
electron waves with wide incident angles, including grazing
incidence and evanescent waves.

We are interested in 1D graphene superlattices, such that
the microscopic electrostatic potential has a step-type spatial
variation [Fig. 1(a)], with two different values V = Vav ± Vosc.
It is well known that such 1D periodic potentials may yield
strongly anisotropic Dirac cones and particle velocities, and
may allow for the propagation of electron beams with virtually
no diffraction [9,10]. Recently, we have proven that the
low-energy states in GSLs can be characterized by an effective
Hamiltonian that describes the dynamics of the wave-function
envelope. For states with a pseudomomentum near the Dirac
K point [3], the effective Hamiltonian may be taken equal
to (Ĥefψ)(r) = [−i�vF σ (χ ) · ∇ + Vav] · ψ(r), where vF ≈
106 m/s is the Fermi velocity, σ (χ ) = σ x x̂ + χσ y ŷ, σ x,σ y

are the Pauli matrices, Vav is the average electrostatic potential
in the superlattice [Fig. 1(a)], and χ is an effective medium
parameter that we designate by anisotropy ratio and which
depends on the fluctuating part Vosc of the microscopic poten-
tial [17]. Effective medium techniques have also been used to
study the properties of excitons in semiconductor superlattices
treated as anisotropic media [24,25]. As elaborated in the
Supplemental Material [26], here we have slightly modified
the formalism of Ref. [17] so that ψ∗ · ψ can be regarded
as a probability density function, and the time evolution of
the pseudospinor ψ is determined by i�∂tψ = Ĥefψ . Within
this framework, the GSL may be regarded as a continuous
medium. In particular, the stationary states energy disper-
sion is |E − Vav| = �vF

√
k2
x + χ2k2

y , which corresponds to
a stretched Dirac cone [17]. The pseudospinor associated with
a stationary state with energy E and wave vector k = (kx,ky)
is of the form ψE,ky

= eik·r(1 seiθq )T /
√

2. The parameter
θq is equal to the angle between q = (kx,χky) and the x

axis and s = sgn(E − Vav), so that it is possible to write
seiθq = �vF (kx + iχky)/(E − Vav) [17].
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FIG. 1. (Color online) (a) Sketch of a graphene superlattice
characterized by a steplike periodic electrostatic potential V (x) =
Vav + Vosc sgn[sin(2πx/a)]. (b) Geometry of two dual graphene
superlattice slabs encapsulated in pristine graphene and the energy
diagram associated with each material.

It was predicted in Refs. [17,18] that two GSLs with
symmetric anisotropy ratios χ1 = −χ2 and equal x widths
W1 = W2 are dual in the sense that for the energy level
E0 = (V1,av + V2,av)/2 the superlattices have no effect on the
wave propagation [Fig. 1(b)], so that any incoming electronic
wave packet is tunneled through the paired GSLs as if they
were absent. To demonstrate this idea, we designed two dual
superlattices with χ1 = −1/5.6 and χ2 = −χ1 and a lattice
period a = 10 nm. Using the theory of Ref. [17] it can be
checked that these anisotropy ratios correspond to microscopic
potentials with V1,osca/�vF ≈ 7.83 and V2,osca/�vF ≈ 5.30
[V1,osc ≈ 0.52 eV and V2,osc ≈ 0.35 eV]. It is supposed that
the two superlattices have finite widths W1 = W2 = 20a and
are encapsulated in pristine graphene [Fig. 1(b)]. The energy
scale is fixed so that E = 0 corresponds to the tip of the Dirac
cone in pristine graphene (region x < 0). In the first example,
the energy level wherein the perfect transmission is supposed
to occur is set to E0a/�vF = 0.3. The average potentials in the
superlattices are taken equal to (V1,av − E0)a/�vF = −0.5 and
(V2,av − E0)a/�vF = 0.5. We use the transfer matrix formal-
ism to characterize the scattering of an incoming electron plane
wave ψE,ky

, propagating in pristine graphene with energy E

and transverse quasimomentum ky [16]. Assuming that the
spatial variation along the y direction is of the form eikyy , the
transfer matrix M = M(x,E,ky,χ ) relates the wave function
calculated at two points of space as ψ(x0 + x) = M · ψ(x0).
For a homogeneous region characterized by the parameters χ

and V , the transfer matrix satisfies

M =
⎛
⎝cos(kxx) + χky

sin(kxx)
kx

i
√

k2
x + χ2k2

y
sin(kxx)

skx

i
√

k2
x + χ2k2

y
sin(kxx)

skx
cos(kxx) − χky

sin(kxx)
kx

⎞
⎠ ,

(1)

where s = sgn (E − V ) and kx is the solution of |E − V | =
�vF

√
k2
x + χ2k2

y . The above formula generalizes the theory of
[16] to materials with nontrivial anisotropy ratio (χ �= 1). This
will be useful later. Returning to the case of pristine graphene
(χ = 1), it is seen that because the pseudospinor is continuous

across the interfaces, the global transfer matrix for a cascade
of l = 1, . . . ,N homogeneous regions (with V = Vl in the
lth region) is Mglob = ∏N

l=1 Ml(dl), where dl is the thickness
of the lth slab. Using this approach it is possible to compute
the global transfer matrix that relates the wave function at the
input and output interfaces, ψo = Mglob · ψ i , of the two dual
graphene superlattices with total thickness W1 + W2 = 40a

(N = 80). Finally, the transmission (T ) and reflection (R)
coefficients can be found by solving the linear system:

Mglob · ψ+ + RMglob · ψ− = T ψ+, (2)

where ψ± = [1 si(±kx,i + iky)/
√

k2
x,i + k2

y
]T , and kx,i is

the x-propagation constant of the incident wave. The cal-
culated R and T for E = E0 are depicted in Figs. 2(a)
and 2(b) (discrete symbols) as a function of ky . As seen,
for incident waves with |ky | < ky,max with ky,maxa ≈ 1.1 the
transmission coefficient satisfies to an excellent approximation
T ≈ 1, i.e., the amplitude is near unity and the phase is close
to zero degrees. Hence, the paired GSLs indeed bridge the
input and output interfaces of the structure behaving as a
wormhole tunnel for electron waves. The parameter ky,max

may be regarded as the breaking point in the validity of
the effective medium model. Note that that spectral region
|ky | < ky,max includes all the propagating states in graphene at
E = E0. Indeed, it can be checked that ky = 0 corresponds to
normal incidence, whereas ky = ky0 ≡ E0/�vF corresponds
to grazing incidence. In the present example, ky0a = 0.3 and
thus ky, max ≈ 3.67ky0. For |ky | > ky0 the incident electronic
state is an evanescent wave, and cannot be normalized [17].
The performance of the paired GSLs is less satisfactory from
the reflection point of view, because R is near zero only for
|ky | < 0.4/a.

The response of the paired superlattices can also be
determined with the effective medium approach. Again, this
can be done with the help of transfer matrices, but now there
are two macroscopic regions and therefore we only need to
consider two matrices (N = 2), which are calculated using
Eq. (1) with χ = χl and V = Vl,av (l = 1,2). For E = E0

this gives T = 1 and R = 0 for all ky (a perfect “tunnel”),
consistent with Refs. [17,18]. This macroscopic theory is
based on the assumption that the macroscopic (envelope)
pseudospinor is continuous at the interfaces of the different
effective media, similar to the microscopic formulation.
However, our numerical studies indicate that this hypothesis
may lead to unsatisfactory results, as further discussed ahead.
In truth, there is no compelling physical reason to enforce that
the wave function is continuous in the macroscopic approach.
The crucial requirement is that the probability current density
jx is continuous at the interfaces normal to the x direction.
As shown in the Supplemental Material [26], in our case jx =
vF ψ∗ · σx · ψ . The continuity of jx is evidently guaranteed by
the continuity of ψ . However, this is not the only possibility. In
fact, it can be checked that a generalized boundary condition
of the type Ux−

0
· ψ(x−

0 ) = Ux+
0

· ψ(x+
0 ) is compatible with

the continuity of jx at an interface x = x0, with Ux±
0

linear
operators that depend on the effective media, provided the
U operators are such that U−1,† · σx · U−1 is the same for all
media. Because for pristine graphene U must be taken equal
to the identity, it is necessary that U−1,† · σx · U−1 = σx . This
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FIG. 2. (Color online) (a), (b) Amplitude and phase of the transmission and reflection coefficients for an electron plane wave that travels in
pristine graphene with energy E0a/�vF = 0.3 and impinges on a slab of two dual GSLs with total thickness W = 40a, with χ1,2 = ∓1/5.6 and
an average potential offset (V1,2,av − E0)a/�vF = ∓0.5. (c) (superlattice 1) and (d) (superlattice 2) Amplitude and phase of the transmission
coefficient of the individual GSLs taken separately. (e)–(f) Similar to (a) and (b) but for two dual GSLs with χ1,2 = 0, The discrete symbols
(joined by thin lines) correspond to the results calculated using the microscopic model, whereas the solid thick curves correspond to the effective
medium model results.

can be satisfied if U commutes with σx and is unitary. Any U
of the form

U = eiuσx =
(

cos u isin u

isin u cos u

)
, (3)

with u real valued, satisfies these restrictions. The parameter u

depends on the effective medium parameters (χ ) and for pris-
tine graphene should be taken equal to zero. A numerical fitting
of the microscopic and macroscopic model results shows that
u(χ ) = c1 arccos[1 + c2(χ − 1)] may accurately model the
wave scattering at the interfaces with c1 = 0.689 and c2 =
1.650 [26]. In summary, we propose a boundary condition
of the type �U(χ ) · ψ	x=x0 = 0 at the interface x = x0, with
�F 	x=x0 ≡ Fx=x+

0
− Fx=x−

0
. Within this framework, the global

transfer matrix is given by Mglob = ∏N
l=1Ul · Ml(dl) · U−1

l .
The reflection and transmitted coefficients are still computed
by solving the linear system (2). The results obtained with
this approach are depicted in Figs. 2(a) and 2(b) (thick
solid lines), revealing a quite good agreement between the
microscopic and the effective medium models, especially for
|ky | < ky, max.

Crucially, the combined effect of the two superlattices
is essential to short-circuit the input and output regions
and have the graphene wormhole. This is demonstrated by
Figs. 2(c) and 2(d), which represent the individual response
of each GSL. In Figs. 2(e) and 2(f), we report another
design for the two dual GSL slabs, now with χ1 = −χ2 = 0

(this corresponds to Vosc,1 = Vosc,2 ≈ 6.28�vF /a ≈ 0.42 eV)
and average potential offsets (V1,2,av − E0)a/�vF = ∓0.5.
Interestingly, in this case the corrected effective medium model
with the boundary condition �U(χ ) · ψ	x=x0 = 0 predicts that
the paired superlattices perfectly mimic a wormhole, such
that T = 1 and R = 0 for all the incoming waves with
energy E0. Indeed, it can be checked that under the corrected
effective medium model framework the conditions for perfect
transmission are met when u(χ1) = u(χ2), which is exactly
satisfied only when χ1 = −χ2 = 0. In the example of Figs. 2(e)

FIG. 3. (Color online) Profile of the wave-function amplitude
|ψ |2 normalized to arbitrary unities (arb. units), at the input (dashed
curves) and output (solid curves) interfaces of the graphene wormhole
for an incoming packet with (a) RG,1 = 2.86a and (b) RG,2 = 1.14a,
calculated with (i) the microscopic model (green curves) and (ii) the
effective medium model (black curves).
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and 2(f), the microscopic and macroscopic theories agree up
to ky,maxa ≈ 1.2.

To illustrate how the dual GSLs may enable bridging
the input and output regions for the case of an incoming
spatially confined wave packet, we consider the scenario
wherein a Gaussian electron wave impinges on the dual
GSL nanomaterials. The Gaussian beam is taken equal to
ψ inc(x,y) = ∫ +∞

−∞ ψE0,ky
(x − xi,y)e−k2

yR
2
G/4dky , where ψE0,ky

is the pseudospinor for a plane wave stationary state with E =
E0 in pristine graphene. The parameter RG can be regarded
as the “beamwidth” at the reference plane xi = 0, which is
taken coincident with the input plane. We consider a dual GSL
with the same parameters as in Figs. 2(a) and 2(b), except that
the tunneling energy is set to E0a/�vF = 0.025 and the av-
erage potentials are adjusted to satisfy (V1,2,av − E0)a/�vF =
∓0.5. For this design the conditions T ≈ 1 and R ≈ 0 are

approximately satisfied for |ky | < ky,max with ky,maxa ≈ 1.1.
Hence, we can estimate that for a beam with a character-
istic size larger than RG,min = λmax/2 = 2.86a with λmax =
2π/ky,max the dual GSL should mimic a wormhole at E = E0.
Figure 3 depicts the calculated wave-function profiles at the
input and output planes for the cases (a) RG,1 = RG,min and
(b) RG,2 = RG,min/2.5. As seen, in case (a) the electron wave
is perfectly reproduced at the output plane, whereas in case
(b), when the localization is so fine that the response of spatial
harmonics |ky | > ky,max becomes relevant, the wave-function
profiles at the input and output planes are quite different.
Notably, in this example RG,min is extremely subwavelength
as compared to the electron wavelength in pristine graphene
at E = E0 (RG,min = 0.011λ0). This elucidates how well the
dual GSLs can effectively short-circuit the two interfaces and
imitate a wormhole for electron waves.

FIG. 4. (Color online) (i) Geometries of the different dual GSLs embedded in pristine graphene (χ0 = 1). (ii) Density plots of |ψ |2 (in
a logarithmic scale) calculated with the effective medium theory for an incident Gaussian electron wave with RG = 2.86a. (iii) Similar to
(ii) but calculated with the exact microscopic theory. (iv) The pseudospinor profiles (normalized to arbitrary units, and along the y = 0 line)
as a function of the x coordinate calculated using the microscopic model (green curves) and with the effective medium model (dashed thick
black curves). The dot-dashed (brown) curves represent the results obtained with the effective medium model based on the simplistic boundary
condition �ψ	x=x0 = 0. In all the examples, E0a/�vF = 0.025 and (V1,2,av − E0)a/�vF = ∓0.1. In panels (a) and (b) the GSLs are such that
χ1,2 = ∓1/5.6, whereas in panel (c) χ1,2 = 0.
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To further unravel the mechanisms that permit the nearly
perfect transmission of the incoming electron wave, we
computed the probability density distribution |ψ |2 in all space
using both the microscopic (|ψmic|2) and macroscopic (|ψef|2)
models. We consider two distinct configurations represented
in Figs. 4(ai) and 4(bi). In both cases the total thickness of the
two dual GSLs is the same. Thus, because dual GSLs with the
same thickness “annihilate” one another, both configurations
are expected to imitate a wormhole. In this example, we
set E0a/�vF = 0.025, (V1,2,av − E0)a/�vF = ∓0.1, and
the remaining structural parameters are as in Fig. 2(a). The
Gaussian beam has a beamwidth RG = 2.86a at the reference
plane xi = −5a, and x = 0 is taken as the interface with
the GSLs. The calculated distribution for |ψ |2 is depicted in
Figs. 4(a) and 4(b). As seen, there is good agreement between
the effective medium model and the exact microscopic
theory. Moreover, the results reveal that in this example the
probability density function is peaked at the interfaces of the
materials with symmetric χ . This should not be confused with
the resonant behavior characteristic of Pendry’s optical lens
due to the excitation of plasmons [19], and of the HgCdTe
semiconductor lens described in [18]. Indeed, it can be verified
that most of the spatial spectrum inside the GSLs is associated
with propagating waves. In panels (iv) of Fig. 4 we show |ψ |2
calculated along the line y = 0. The dot-dashed lines in these
plots represent the effective medium results based on the naive
boundary condition �ψ	x=x0 = 0. As seen, such approach
highly overestimates the peak value of |ψ |2, leading to a
completely erroneous distribution for |ψ |2. This reinforces
the idea that in the effective medium framework the boundary
condition is different from that of the microscopic theory.

As previously discussed, in the corrected effective medium
theory the conditions T = 1 and R = 0 are exactly satisfied
only when χ1 = −χ2 = 0. As seen in Fig. 4(c), for such
a design, the electron wave is supercollimated along the
direction of propagation with virtually no diffraction. This
is consistent with the extreme anisotropy regime described in
Refs. [9,10,17]. Moreover, in this example the wave-function
profiles at the input and output planes are nearly coincident,
further supporting that the dual GSLs mimic a wormhole. It
is interesting to note that when χ = 0 the transfer matrix M
[Eq. (1)] is unitary and of the form M = exp(±i

|E−Vav|
�vF

xσx).
Because this matrix is also independent of ky it can be
checked that in the effective medium framework |ψ(x,y)|2
is independent of x in the GSL regions, consistent with
Fig. 4(civ).

In summary, we theoretically demonstrated that dual GSLs
may enable the perfect transmission of electron waves with a
specific energy, and mimic a wormhole that effectively bridges
the input and output interfaces. As a by-product, we found out
that the dynamics of electron waves in graphene superlattices
can be described using an effective medium approach based
on a nontrivial boundary condition. The findings of this work,
besides being of theoretical interest, may have far reaching
implications in graphene electronics.
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