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One-dimensional tight binding models such as the Aubry-André-Harper (AAH) model (with an on-site cosine
potential) and the integrable Maryland model (with an on-site tangent potential) have been the subject of extensive
theoretical research in localization studies. AAH can be directly mapped onto the two-dimensional (2D) Hofstadter
model which manifests the integer quantum Hall topology on a lattice. However, such a connection needs to
be made for the Maryland model (MM). Here we describe a generalized model that contains AAH and MM
as the limiting cases with the MM lying precisely at a topological quantum phase transition (TQPT) point. A
remarkable feature of this critical point is that the one-dimensional MM retains well defined energy gaps whereas
the equivalent 2D model becomes gapless, signifying the 2D nature of the TQPT.
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The integer quantum Hall Effect (IQH) is a canonical
example of a gapped bulk topological phase with no generic
symmetry protection. IQH can be captured by the two-
dimensional (2D) Hofstadter model [1–10], a 2D lattice
tight binding model with nonzero flux per unit cell. The
Hofstadter model can be mapped onto the one-dimensional
(1D) Aubry-André-Harper [11,12] (AAH) model, a 1D tight
binding chain with an on-site cosine potential. Aubry and
André [12] identified a localization transition in the AAH
model with modulation incommensurate with the lattice
(corresponding to an irrational value of flux). This result led to
an extensive theoretical investigation of the AAH model in the
context of localization studies [12–17]. Recent experimental
developments in photonic crystals [18–20] and ultracold
atoms [21–23] have realized these localization phenomena in
1D quasiperiodic AAH lattices.

A completely different example of a 1D tight binding
model with an on-site tangent modulation is presented by
the 1D “Maryland model.” The Maryland model (MM) was
proposed and solved exactly by Grempel et al. [24–26]. MM
has a one-to-one correspondence with the quantum kicked
rotor problem, which has been experimentally realized in
ultracold atoms [27], and has been extensively studied [28,29].
In this Rapid Communication, we provide a mathematical
connection between MM and IQH. In addition, we show that
MM presents an intriguing example of a topological quantum
phase transition (TQPT).

The Maryland model with the period of the on-site potential
incommensurate with the lattice spacing presents an example
of a 1D quasicrystal (QC) for which a special “quasiperi-
odic” translation symmetry was recently identified [19].
A family of 1D QCs taken together (generalized AAH,
Fibonacci [30]) [20,31] has been topologically classified with
an equivalent IQH topology in 2D. This classification was
identified by connecting different models of QCs with the same
topological invariant corresponding to the real space 2D lattice
with a flux [31]. An argument was made [19] and subsequently
debated [32,33] that this quasiperiodic translation symmetry
allows one to associate 2D IQH invariants to each 1D member
of the family of QCs [19]. The fact that the MM belongs to
this 1D quasicrystal symmetry class and was not associated

with the IQH topology calls for an investigation of this
model from another perspective. We base our arguments only
on the well established connection between families of 1D
tight binding models with periodic modulation and 2D IQH
topology [1,11,12].

In this Rapid Communication, we take a different approach
in understanding the relationship between the IQH topology
and the Maryland model. We construct a family of 1D tight
binding models parametrized by a phase with a general on-site
modulation potential that contains AAH and MM as limiting
cases. We construct the equivalent real space 2D lattice model
by taking an inverse Fourier transform with respect to this
phase parameter. We analyze the energy spectrum of the
general 1D model as a function of the phase parameter.
We identify the topological invariants for this general model
by using the theory of electric polarization [34,35], which
provides a natural framework to study IQH invariants. Based
on this analysis we explicitly show that the Maryland model
sits at the critical point of a quantum phase transition to
the topologically trivial state. The criticality of the Maryland
model allows us to associate topological invariants to it in
a purely mathematical sense by using the limiting procedure
along the deformation path in the parameter space. We show
that even though the 1D gaps are preserved throughout
the deformation from AAH to MM, the energy gaps in
the equivalent 2D model close at the TQPT, as required
by general considerations. We discuss the consequences
of this result for the topological classification of 1D QC
families [19,32,33].

We consider a 1D tight binding chain of size N with an
on-site potential modulation Vn(α,ϕ),

H (ϕ,α) = −
N−1∑
n=1

t(c†n+1cn + c†ncn+1) −
N∑

n=1

Vn(α,ϕ)c†ncn,

(1)

Vn(α,ϕ) = 2λ

(
cos

(
2πnb + ϕ − α π

2

)
1 + α cos(2πnb + ϕ)

)
,

where c
†
n and cn are creation and annihilation operators

on the site n = 1,2, . . . ,N , and t is the amplitude of the
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nearest neighbor hopping. The on-site potential Vn(α,ϕ) is
characterized by the strength λ, period 1/b, and the phase
parameter ϕ. The parameter α interpolates between the
limiting cases AAH (α = 0) and MM (α = ±1),

Vn(α,ϕ) = 2λ

{
cos(2πnb + ϕ), for α → 0,[

tan
( 2πnb+ϕ

2

)]α
for α → ±1.

(2)

This general on-site potential is a smooth function of α in
the open interval α ∈ (−1,1). Vn(α,ϕ) has singularities at α =
±1 corresponding to the integrable MM, which we approach
asymptotically in a limiting sense, and we define TQPT in
terms of these singularities. Vn(α,ϕ) is a specific example of
a generic 2π periodic on-site potential F[2πnb + ϕ], where
F(z) is an analytic function everywhere except in the limit of
singular MM, where it acquires isolated poles.

2D ancestor. Taking an inverse Fourier transform with
respect to ϕ results in a real space lattice, which is the 2D
Hofstadter model with a flux b per unit cell. The same idea
applies to the Hamiltonian in Eq. (1),

H2D(α) =
∫ π

−π

dϕH (ϕ,α)eimϕ,

(3)

cn ≡ cn(ϕ) = 1√
2π

∑
m

eimϕcn,m,

where n,m = 1, . . . ,N . The resulting real space 2D Hamil-
tonian that is equivalent to H (ϕ,α) (up to a constant energy
shift) reads

H2D(α) =
∑
m,n

[
t(c†n,mcn+1,m + c

†
n+1,mcn,m)

+ 2λ

∞∑
l=0

[Inl(α)c†n,mcn,m−l + H.c.]

]
, (4)

where

Inl(α) = e−il(2πnb+α π
2 )

[
eiπα

α
δl,0 + (−1 +

√
1 − α2)l−1

× [2 − α2(1 − eiπα) − 2
√

1 − α2]

2αl+1
√

1 − α2

]
(5)

describes the hopping amplitude from site m − l to m, i.e.,
a hopping of range l (the l = 0 term is the constant shift in
the on-site energy). Note that Inl(α) in Eq. (5) is defined in
a limiting sense at the special points α = 0, ± 1 (AAH and
MM) [36]. Figure 1 plots the absolute value of the hopping
amplitude |Inl(α)| for different values of the hopping range
l as a function of α. In the limiting case of α → 0 (AAH)
only the l = 1 term survives, In1(0) = 1/2, which corresponds
to the nearest neighbor hopping of the Hofstadter model.
As α increases, hopping terms of longer range l in the m

direction acquire nonvanishing amplitudes. In the limiting case
of α → ±1 (MM), the dual 2D lattice acquires long range
hopping terms of arbitrarily large l in the m direction, all of
equal unit amplitude [see Eq. (5)]. This arbitrarily long range
hopping singularity is indicative of a quantum phase transition
occurring at the critical points α = ±1. To further elucidate
the physical nature of these α = ±1 critical points, we analyze

l=0

l=1

l=2
l=3 l=4 l=5

Maryland Model

AAH Model

Maryland Model

l=20
1.0 0.5 0.0 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0

Α

I n
l
Α

FIG. 1. (Color online) |Inl(α)| as a function of α for different
hopping range l. As α → 0 (AAH model), only the nearest neighbor
hopping term is nonzero (l = 1, shown in red). Long-range hopping
amplitudes increase with α, and in the limit α → ±1 (Maryland
model) the hopping amplitudes of all ranges are equal to unity
(|Inl(α)| = 1).

the band structure and the topological invariants of Eq. (1) as
a function of α.

Band structure. We impose open boundary conditions on
the 1D tight binding Hamiltonian H (ϕ,α) in Eq. (1) and
numerically diagonalize it for the system size of N = 200
sites. It is instructive to plot the resulting energy bands as a
function of the phase parameter ϕ, which captures the 2D band
structure in the hybrid space (n,ϕ). We start with the case of
a commensurate modulation by setting b = 1/5 and λ = 1.
Figure 2 shows the resulting band structure as a function of
the phase parameter ϕ for four different values of α. The case
of AAH (α = 0) (top left panel of Fig. 2) demonstrates a well
defined set of gaps reflecting the robust integer quantum Hall
topology of the 2D Hofstadter model. For α = 0.8 and 0.98,

FIG. 2. (Color online) The energy spectrum plotted for N = 200
sites, b = 1/5, and λ = 1 for α = 0 (AAH model), α = 0.8, α =
0.98, and α = 1.0 (Maryland model). The red line separates empty
and filled states in the spectrum. Instead of fixing the Fermi level in
our numerics we fix the number of particles per site since the latter
can be fixed throughout the deformation driven by the parameter α

and even at α = 1.
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the band gaps gradually decrease. All band gaps close (scale
to zero with the system size) precisely at the critical point
α = 1 (as explicitly shown using the exact spectrum [36,37]).
The gapless nature of the 2D spectrum for the MM case
(α = ±1) in the hybrid space (n,ϕ) is explicitly confirmed
using the exact analytical expression for the MM spectrum
with commensurate modulation [37].

The closing of the spectral gaps coincides with the hopping
range divergence in the 2D lattice and indicates a TQPT in the
system as α → ±1 (i.e., at the MM point). The interesting
aspect of MM is that the 2D spectrum is gapless in the
reciprocal space (kn,ϕ) whereas the 1D spectrum has well
defined gaps for each value of ϕ. Here kn is the Fourier image
of the site index n. The fact that the 1D MM spectrum has gaps
whereas the corresponding dual 2D spectrum is gapless makes
perfect sense since the nontrivial TQPT can only exist in the
2D space. The scale invariance of the system at the transition
point can also be explicitly demonstrated [36].

Chern number from polarization theory. In the following,
we change α from 0 to 1 and track the change in the
IQH topological invariant associated with the 2D system
[Eq. (1)] in the hybrid space (n,ϕ). An ideal tool for this
task is the polarization of the 1D chain defined in the hybrid
space [34,35]. The polarization of a finite 1D insulator is given
by the average charge center of the hybrid Wannier function
(HWF) [n̄(ϕ)] of the system [38],

n̄(ϕ) =
∑

n〈nρ(n,ϕ)〉∑
n〈ρ(n,ϕ)〉 ,

(6)
ρ(n,ϕ) =

∑
occupied states

|n,ϕ〉〈n,ϕ|,

where n is the real space site index and |n,ϕ〉 is the hybrid
eigenstate of the system, and the angular brackets 〈· · · 〉 stand
for the ground state expectation value given a fixed filling
factor. Note that here we fix the filling factor in contrast to
the typical approach of fixing the Fermi energy. This choice
is equally applicable in the case of MM, α = 1, where on-
site energies on some sites are divergent. The latter can be
occupied by a maximum of one electron and therefore present
no problem in the definition of the filling factor.

The nonzero Chern number is reflected in a discontinuity
of n̄(ϕ) as a function of the phase (or gauge) parameter ϕ. This
discontinuity is a robust feature of the IQH and was recently
proposed [38] as a tool to measure topological invariants
directly in 2D cold atomic systems [9,10,39]. Note that the
generalized 1D chain [Eq. (1)] has well defined gaps in the
spectrum for any fixed ϕ and |α| � 1 (including the Maryland
model), which allows us to define the 1D polarization in terms
of HWF centers in the whole parameter space.

In Fig. 3, we plot the shift in the HWF centers for the same
values of α (for b = 1/5) as in Fig. 2. We fix the filling factor
(particle number per site) such that the chemical potential
is in the gap above the top of the lowest band in the AAH
limit (α = 0). In the limit of AAH, the HWF center as a
function of ϕ shows a one unit cell jump corresponding to
the Chern number C = 1, or, equivalently, a transfer of charge
e by a distance of one unit cell as ϕ changes by a period,
reflecting topological charge pumping [2]. We monitor this
jump (invariant) as we deform AAH (α = 0) to MM (α → 1),

FIG. 3. (Color online) HWF centers plotted as a function of the
adiabatic parameter ϕ for α = 0 (AAH model), α = 0.8, α = 0.98,
and α = 1.0 (Maryland model).

keeping the filling factor fixed. Note that the polarization jump
corresponding to the topological charge transfer survives in
the MM limit α → 1 (see Fig. 3, bottom right). It may seem
paradoxical at first that we can associate a Chern number
with a gapless system. The limiting procedure α → 1 allows
one to project on to the states that are connected to the
topological band defined for |α| < 1. Note that the topology
is not robust as any infinitesimal perturbation may mix the
states, thereby violating the quantization of the topological
response. Such behavior is expected of a critical phase at
α = 1 on general grounds. Note the additional discontinuities
appearing in HWF shift n̄(ϕ) in the case of MM (Fig. 3, bottom
right) arise due to the divergent on-site potential, effectively
breaking the system up into smaller subsystems coupled by
tunneling.

Topological classification of 1D quasicrystals. Families of
1D incommensurate tight binding models manifest a special
“quasiperiodic” translational invariance: An arbitrary shift in
the phase ϕ → ϕ + δϕ can be compensated by a shift along
the chain n → n + δnδϕ . Note that this is true only at irrational

FIG. 4. (Color online) 1D quasicrystal band structure and the
shift in polarization as a function of the phase ϕ for the AAH model
(upper panel) and Maryland model (lower panel) for b = 110 001

1 000 000 .
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FIG. 5. (Color online) The phase diagram of Eq. (1) parametrized
by |α| � 1, the deformation parameter interpolating between the
AAH and the Maryland model.

values of b since only in this case 2πbn forms a dense set mod
2π . It has been argued [19] that this quasiperiodic translational
invariance allows one to assign the same Chern number to
each member of the family of QCs, i.e., for each value of the
phase parameter ϕ. This interpretation has been challenged in
Ref. [32]. The quasiperiodic translation symmetry is preserved
in the case of the Maryland model (α = 1), which sits exactly
at the critical point of a 2D TQPT. In Fig. 4 we plot the
band structure and the change in the polarization as a function
of the phase ϕ for the incommensurate AAH and MM. We
choose the flux fraction to be a truncated Liouville constant
(Liouville numbers are irrational numbers infinitely close to
rational numbers). Note that the finite size Maryland model
still demonstrates the presence of a nonzero Chern number in
the same restricted sense as we found for the commensurate

case. The constant slope of n̄(ϕ) in Fig. 4 manifests the constant
Berry curvature (as a function of ϕ) (see Ref. [36] for details).
The latter is a signature of the “quasiperiodic” translation
invariance, as noted by Kraus et al. in Ref. [19]. Remarkably,
the spectrum is gapped in the incommensurate (Liouville) 1D
model Eq. (1) (for fixed ϕ) for |α| < 1 and forms a dense
set for α = ±1 (rather than a continuous set), whereas the
equivalent 2D model becomes gapless as we approach critical
points α = ±1. The details of the 1D spectrum depend on the
type of the irrational number b, however, at no value does
the spectrum become absolutely continuous [29]. Within the
class of 1D models with quasiperiodic symmetry, the Maryland
model manifests a 2D topological phase transition as a function
of the deformation parameter α which can only be realized by
sweeping the phase ϕ (see Fig. 5).

Conclusion. We have identified a topological feature of
the Maryland model introduced in Refs. [24,25] in the
context of Anderson localization and kicked quantum rotor
studies. We show that this model represents a topological
quantum phase transition point in a class of corresponding
2D lattice models with IQH topology. The criticality allows
us to associate topological invariants with the Maryland
model in a restricted mathematical sense at the special filling
factors that are adiabatically connected to the spectral gaps
in the 1D Aubry-André-Harper model. Our theory presented
here establishes deep mathematical connections between 2D
topological models and a family of 1D incommensurate
localization models.
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